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Outline

 What kind of information your synchrotron technique may provide

– Dynamics of glasses

– X-ray probes structure and electronic state

 What are the basic principles of your technique

– The excited state: Intermediates, ensembles, & more

– The pump-probe experiment

– Reversible/irreversible problems

– The time resolution

 What are the limitations of your technique

– Poor Signal/noise ratio 

– Increase detection efficiency/available flux

– Sample damage

 What kind of sample does one need
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Motivation
Dynamics of Glasses

 Reversible- non-reversible processes

 Typical Problems:

– Melting

– Phase transitions (RW-DVD)

– Dynamic behavior (like…..)

– Charge dynamics in glasses

– Chemical reactions

 X-ray will probe ?
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Motivation:
X-ray Probes Structure and Electronic State

 Local Electron 

Density

 Symmetry

 Atomic selectivity

Electronic Structure

Absorber Atom

NEXAFS
 Distance

 Symmetry

 Atomic selectivity

 Number of 

Neigbors

Local Structure

Absorber Atom

EXAFS
 Global Electron 

Density

 Global Shape

 Movie with 

Limited Spatial 

Resolution

Global Structure

WAXS/SAXS
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Motivation:
Electronic Structure, Symmetry 
and Pre-Edge

T1 excited state has (dz2, dx2-y2) electronic configuration with singly occupied 3dx2-y2

and 3dz2 orbitals .

The energy gap between 3dx2-y2 and 3dz2 in the final excited state is ~ 2.2 eV .

The energy of 3dx2-y2 orbitals shifts up in the final excited state.

ground state
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Lin X. Chen, Xiaoyi Zhang (ANL)
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Ligation

Motivation:
Electronic States & White Line

 Change of EFermi: 

derivative like shape

 Change of density of state:

various peaks may appear

 Energy level of empty states

(with restrictions)

 Local symmetry changes

Ligation

Jahn Teller Distortion

Ground State
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Motivation:
Local Structure & EXAFS
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Time evolution of As-Se glasses after 

laser excitation (Se-edge):
50ps

200ps

500ps

1ns

5ns

• “Movie” of local structure

• Atomic-selectivity

• Melting-effects

• Smaller systematic errors (difference measurements!)



Motivation:
Global Structure & GI-SAXS/WAXS 

 Crystallization (Gi-WAXS)

 Melting (Gi-WAXS)

 Phase transitions (Gi-WAXS)

 Grain growth (for example catalysis)

 Today: first experiments on LB-films

8Byeongdu Lee

In-situ Heating experiment

Macromolecules 2005, 38, 10532
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Basic Principles:
The Excited State

 Experiment on ensemble

 Initial excitation coherent (very fast)

 Thermalization to intermediate 

(longer lifetime; usually probed)

 Relaxation process includes many 

transient states/intermediates

 De-phasing of ensemble with time

9Lin X. Chen



X-ray pulse

Excited State

Laser pulse
adjustable

delay time

Basic Principles:
The Pump-Probe Experiment

 Pump creates Excite state  

(intermediate) population

 Probe pulse is delayed and 

probes a mixture of different 

excited states & ground state

 Multiple probe-pulses can be 

used to probe the 

development of a system 

(movie)

 Signal is averaged over many 

excitation pulses 

(ensemble/reproducibility)
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Basic Principles:
The excitation Mechanism

 Electromagnetic pulses: magnetic/electric excitations (collective excitation)

 THz excitations: vibration/collective modes

 IR-pulses: vibrations/heating/melting

 Optical & UV: bond-braking

 Ultrafast pulses: optical/acoustic phonons
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 Polarization

 Resonator /Symmetry

 Wavelength

 Combinations 

Selectivity:

The spectrum (often Lasers)



Basic Principles:
The Time-Resolution (stroboscopic)

 Laser excitation: 10fs-10ns

 Synchrotron pulse: 30ps-1ns (APS typically 80ps)

 XFEL: 1fs-200fs

 Plasma sources: 50fs-500fs

 Thermal sources: 1ps-20ps

 Slicing sources: 200fs-5ps
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X-ray 

pulse
Excited 

State

Laser 

pulse
adjustable

delay time

Time-resolution is given by 

convolution of excitation 

and probe-pulse 

(stroboscopic experiment)

or by

convolution of probe-pulse 

and detector resolution

Typical excitation and probe pulses



Basic Principles:
The Time-Resolution (time resolution of detector )
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X-ray 

pulse

 Probe pulse covers the full time 

evolution of interest

 Time spectrum will be “statistically” 

acquired (less systematic errors)

 Time resolution is independent from 

timing-jitter between excitation and 

probe

 Available detection systems:

– Streak cameras (~1ps, low quantum 

efficiency)

– PIN-diodes (~1ps, high quantum 

efficiency, small solid angle first 

demonstrations)

– PIN-area detectors (~1ps, ASIC 

design in progress)  



Basic Principles:
The Time-Resolution (time resolution of detector )

 First tests show 

resolution of about 3ps

 Only available for single 

element

 Work on multielement 

system in progress (first 

10-20 element system 

available in 18 month)

 ASIC design in 

collaboration with HEP 

(University of Chicago)

 Detector Unit: InGaAs-

PIN diodes with 40µm 

active area

14



Basic Principles:
The Experimental Setup

 Multi-Photon counting

 Digital processing 

 Optimized solid angle (20%)

 Lydle-detection principle (Z-1 

filter, soller-slit, non energy 

resolving detector) 

15



The Limitations:
Sample Damage and Irreversible Processes

16

Typical damage:

Reactor:



Wavelength (nm)

The Limitations:
Hugely Different Absorption Coefficient for Pump & Probe

 Gracing incidence Geometry for x-rays normal 

(Brewster) for excitation

 Dilute sample system: dispersions of nano-particles

 Excitation wavelength tuning

17

Excitation absorption length: typically 100nm or shorter

Probe absorption length: typically 10µm or longer

Experimental ways out:



The Limitations:
Largely Different Repetition Rates for Pump & Probe
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Laser X-ray (Synchrotron)

Rep-Rate Power/pu

lse

Spectral range

[Hz] [mJ/pulse]

1-10 50-100 IR/optical/UV

1K-10K 1-0.5 IR/optical/UV

100K-10M 0.05-0.01 IR

6.5 MHz (APS 

standard mode)



The Limitations & Solutions
High Flux Beamlines

 Long straight section

 Multiple specialized  (inline) 

undulators 

(restriction of energy range)

 Large acceptance angle of 

beamline optics

 High heat-load optics & 

front-end

 Variable bandwidth 

monochromators

19

Example of two inline undulator 

beamline (11-ID-D/APS):



Limitations & Solutions:
Micro/Nano-Focus Provides Flexibility for Excitation Wavelength 

 Wavelength flexibility costs pulse 

power

 -> low excitation rates

 Strongly focusing to keep power-

density constant

 Variable focus size

 Scanable focus spot

 Large collection efficiency

 Very fast adjustable (shot-to-shot)?

 Beam-shaping capabilities

20

A B

New approach using MEMS-technology?



Limitations & Solutions
The Fluorescence Detection System

21

APS Mode 24-Bunch 324-Bunch 1296-Bunch

Repetition Rate 6.5MHz 88MHz 352MHz

Bunches/µs 6-7 88 352

Photons/Bunch

(ID(5x1013)/BM(1012))
7.7M / 154K 0.57M / 11.4K 0.14M / 2.8K

Fluo-Photons/Bunch

(1%Fe in light matrix)
385K / 7.7K 28.5K / 570 7K / 140

Photons in Detector / 

Bunch

(10% solid angle/

10% efficiency)

3.8K / 80 285 / 6 70 / 1

A 10.000 element system will be required 

to utilize all photons



Limitations & Solutions
The Fluorescence Detection System: Conventional SDD System

 Monolithic front chip (commercially available)

 Preamplifier (linear amplifier) “home-made” and optimized for ADC

 ADC/sender/receiver: industrial collaboration

 Digital processing in consumer electronics (GPU’s?) 

 Required time spacing: ~120ns

22

Cost per channel $500-$1000 

Total cost about $1M for 1000-2000 SDD system



Limitations & Solutions
The Fluorescence Detection System: Multi-Photon  Detection

 Energy resolution by filter-

systems and filters/crystal optics

 Utilization of modern rapid 

prototyping techniques

 Fast detection systems like 

plastic-scintillators/PMT or 

APD’s

23

Mn fluorescence

Fe fluorescence

Elastic line

Filter System with Fe-Fluorescence



Limitations & Solutions
The Fluorescence Detection System: Digital Processing

 Usage of signal averager (1GHz 

sampling rate / 1ms storage 

 Acts like oscilloscope with very 

small dead time between triggers

(50µs)

 Maximal counting time per point 

about 60s

 Read-out overhead ~100ms

 Data analysis happens after 

memory is read out

 Fitting of the detector response 

function to the measured signal

 About 5 order of dynamic range

 Maximal 100counts per detector 

unit (1 photon ~25mV peak)

24



Sample Requirements

 No standard Experiments: Each system has to be discussed

– Flat thin  samples (thickness optimized to optical absorption)

– Solution/particle systems are possible

 Scientific problem has to be well characterized

– Optical pre-characterization

– Large parameter space to probe

– X-rays are very selective !

 Good knowledge about ground state experiments

– Sample damage

– Good reference (for proposed excitation models)

– Good theoretical knowledge

25



Conclusion

 Laser initiated time resolved techniques are relative new (since 5 years 

available)

 Signal/noise ratio & sample damage are the most important limitations

 Many technologies are around to overcome the experimental problems 

but they are not commercially available (large development effort)

 Typical time resolution is about 80ps ( groups are working to reach 1ps)

 X-ray techniques are highly specific probes therefore the scientific 

problem has to be well defined

 You will need well characterized samples
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