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Since the discovery of x-ray generation by Wilhelm Conrad Roentgen about hundred 

years ago a wide range of x-ray based probes were developed which allows to 

characterize not only the structure but also the electronic configuration of matter [1-8]. 

Besides fully ordered crystalline materials partially ordered or better, materials without 

any long-range order like glasses are investigated.  Most commonly a combination of 

extended x-ray absorption fine structure (EXAFS), and wide/small angle x-ray scattering 

(WAXS/SAXS) is applied to reveal the structure from atomic resolution to the overall 

shape of the particle itself [9-16]. The atomic selectivity of near edge x-ray spectroscopy 

(NEXAFS) permits to study the influence of local symmetry brakes on localized 

electronic states and moreover provides a tool to characterize the electron density at the 

absorber atom [17-21]. 

Even if most of these techniques were first applied in the first half of the 20
th

 century, and 

many theoretical and experimental solutions were worked out, these experiments were 

restricted to expert-groups only.  In the early 90
th 

dedicated user facilities at storage rings 

were developed providing the necessary infrastructure, know-how, and the necessary flux 

to allow for high trough-put experiments making the highly demanding experiments to 

standard characterization tools in materials, chemical, and earth sciences. 

The increased through-put was early on utilized to follow the temporal evolution of 

materials during chemical reactions and mechanical and heat treatments.  Special setups 

like Quick-EXAFS or dispersive XAFS were used to study reversible and irreversible 

processes [22-28]. Temporal structural studies using WAXS techniques were enabled by 

the development of area detectors with high-count rate capabilities [29-33].  Typical time 

resolutions were in the range of seconds to milliseconds [25, 31, 32].  With the 

development of the third-generation synchrotrons, storage rings optimized to produce 

highly brilliant x-ray beams with focus on so-called insertion device beamlines 

(dedicated structures to produce x-rays independent from the beam guidance magnet 

structure) new experimental techniques were feasible to increase the time resolution.  

Due to the radiation losses the particle beam has to be accelerated in accelerator cavities 

which are integral part of the storage ring.  The radio frequency in combination with the 

geometry of the ring results in a timing structure of the electron beam and therefore of the 

produced x-ray beams. The individual bunches show typically 100ps pulse-length and are 

typically separated from each other by 2-150ns. This timing structure was used to apply a 

laser pump x-ray probe experiment which is a well known concept in laser spectroscopy.  

A laser pulse creates an excited state which will be probed by the x-ray pulse [34-37].  

The time resolution is given by the convolution of laser excitation and the x-ray probe 

pulse length. State of the art time resolution is about 50ps-100ps.  To achieve the 

necessary statistics the signal of thousands of excitation/probe pulses has to be averaged 

[38-41]. Over the past decade various pioneering experiments on solutions and solid-state 

samples were successfully performed, first general user facilities established, and the 

power of the technique demonstrated [42-61]. 

The nature of most relaxation processes is far more complex than described in a two level 

system. After an excitation pulse hits an ensemble of matter a fraction will be excited and 

will relax over various pathways to intermediates with relative long lifetimes.  This 

temporal development results in a de-phasing of the originally coherent state [62].  

Depending on the potential surface and on the reaction coordinates multiple pathways are 

in general possible.  At a given time after the excitation a set of different exited states 
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inclusive the ground state will be observed.  By changing the time delay the ratio of the 

various states can be changed.  At present only the simplest two or three level systems are 

investigated [63-65].   

The sample damage threshold and the effects of de-phasing and various reaction 

pathways will determine the maximal possible excitation rate of the investigated state.  

An additional complication is caused by the largely different absorption cross section for 

pump and probe wavelength resulting in an even more reduced excitation rate.  As a 

consequence the LITR XAFS/WAXS experiment will generally suffer under a low 

signal/noise ratio which finally limits what can be measured.  This problem is even 

enhanced by a technical detail; typically the excitation rep-rate is significantly smaller 

than the probe rep-rate. This results in an effective intensity loss of a factor 1000-10000 

in respect to a conventional x-ray experiment [47, 65]. 

Even if these restriction are limiting the general use of time dependent investigations at 

synchrotrons, many improvements can be achieved in dedicated beamlines to allow good 

data quality with reasonable through put.  To compensate for the intensity loss the 

beamline should be a high flux line with multiple optimized insertion devices and an 

optimized band pass monochromator.  To fully benefit from this high flux the detection 

systems have to be optimized. To explain the magnitude of this task we want to show 

numbers for a 1mmol solution of an Fe-containing sample, a typical dilute sample.  In the 

case of 11-ID-D at Advanced Photon Source, a dedicated high flux beamline, about 

3000-4000 fluorescence photons/per bunch will hit a detection system which covers 10% 

of the solid angle.  To avoid deadtime a conventional detection system will be in the 

order about 10000-elements. Even if such systems are presently not available there are 

various routes feasible. It will be important that the cost per element will significantly 

drop in comparison to nowadays available systems. To use detection systems which 

count multiple photons per bunch equipped with an energy filter, either by a combination 

of Z-1filter and soller slit, or by integration of crystal optics, is a cost effective 

alternative. The detection system at 11-ID-D can detect up to 100 photons per bunch the 

full dynamic range is about 5-6 orders of magnitude.   

Many experimental techniques exist to improve the signal to noise ratio; however they 

are typically very specific to the individual sample system. Utilizing gracing incident 

techniques for x-rays and using normal incidence for the excitation is one way to 

overcome the various absorption cross sections.  Another way is to optimize the 

excitation wavelength and the optical density of the material. Moreover, the excitation 

wavelength, polarization, and pulse length can be tuned to specifically excite specific 

excited states. The excitation range spans a wide range of the spectrum from RF, THz, 

optical to the UV-spectrum. First proposals are suggesting to guide the exited state with 

multiple excitations through the reaction path way overcoming the de-phasing problem 

[66-71].  

Concluding one can say that the largest limitation of time dependent X-ray measurements 

are the low signal to noise ratios achievable at synchrotrons. By utilizing state of the art 

beamline design, detector technology, and optimized sample setup most of these 

disadvantages can be compensated so that good data quality can be achieved with 

reasonable throughput. However, the beamline has to be highly specialized providing 

cutting edge technology. At present, there is no beamline worldwide focused on time 

dependent measurements on glasses.  
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