Practical aspects and implications of interfaces in glass-ceramics

Mark J. Davis SCHOTT North America, Inc.

Outline

- Key questions to address
- Interfacial effects in glass-ceramics---a laundry list
- Glass-ceramics in general: SCHOTT commercial examples
- Commercial or near-commercial gc / interface examples
- Key questions: review

Key Questions (from H. Jain)

- What has been the role of interfaces in the development of emerging applications?
- With regard to applications, what aspects of interfaces are most important and why?
- What are the scientific issues that require basic understanding of interfaces in glass-ceramics? What is the relative importance of each?
- What properties of glass-ceramics hold promise for the future?

Practical Effects (Internal)

Microstructural development

- surface energies and their impact on nucleation
- general glass stability; controlled vs. un-controlled crystallization (i.e., critical cooling rate in a commercial setting vs. academic...)

Structural

- detailed nature of interface (e.g., "pristine", microcracked...)
- crack blunting processes
- residual stresses, crystal clamping
- permeability

Electrical

- Effective connectivity
- Resistive / capacitive behavior

Optical

scattering effects

Practical Effects (External)

- Joining (low-temperature)
 - Hydrophilic vs. hydrophobic surfaces
 - Competitive bonding technologies
- Glass-to-metal sealing (high-temperature)
 - Flow vs. crystallization "stiffening"
 - Interfacial reactions
 - Hermeticity (CTE matching)
- Polishing
 - Crystal vs. glass effects (mostly proprietary know-how)

Why glass-ceramics?

- Single Crystals often exhibit the highest property performance, but are generally more difficult and expensive to manufacture
- Ceramics are easier to manufacture, but are typically porous to some degree and may exhibit inhomogeneities, aging, decreased strength, etc.
- Glasses take advantage of processing ease, homogenization efficiency, and tailorable compositions, but lack certain functions (e.g., novel CTE combinations, lack of center-of-symmetry)
- Glass-ceramics can be seen as "glass packaged crystals" and combine the ease of glass processing and potential for new property combinations (e.g., ultra-low thermal expansion, 2nd-harmonic generation, piezoelectricity)

How is a commercial glass-ceramic produced?

Thermal expansion tailoring

Same composition for all curves

Examples of SCHOTT glass-ceramics

8.2 m telescope mirror blanks

Pressed glass-ceramic reflectors

Ring-laser gyroscopes

Glass-ceramic cooktops

Large mirror blank production (Zerodur)

VLT telescope in Chile (8.2 m mirrors with adaptive optics)

On the road to Cerro Paranal, Chile

Zerodur mirror fabrication

(www.eso.org)

Typical LAS (Zerodur) glass-ceramic microstructure Non-isothermal ~2 °C/hr

~10²² m⁻³ HQSS crystals

~10²⁵ m⁻³ ZrTiO₄ crystals

bar = 200 nm

Maier and Muller, 1987

Isothermal heat treatment

Petzoldt and Pannhorst, 1991

Permeability of Zerodur

Figure from Suckow et al. (1990)

Zerodur permeability enables high-precision RLG production

Sagnac Effect

Ring Laser Gyroscope (RLG)

Aufschüttung

Scattering example in glass-ceramics (DWDM substrate)

Visible light only (IR blocking filter KG3) $\lambda < 850 \text{ nm}$

Sample thickness ~ 35 mm

Crystal size ~35 nm

small particle limit:

$$\tau = \frac{4a^3}{3}(n \cdot \Delta n)^2 \frac{1}{\lambda^4} \rho$$

Rayleigh (1881)

IR only (visible blocking filter RG 1000) $\lambda > 850 \text{ nm}$

Quantitative scattering example in glass-ceramics (Zerodur)

Crystal clamping of a FE phase (Lynch and Shelby 1984)

Also Grossman and Isard (1969)

Fig. 4. Axial ratio (c/a) of clamped lead titanate crystals vs composition of initial glass.

Fig. 5. Transition temperature of residual glass of fully crystallized samples vs composition of initial glass.

Glass
PbTiO₃

Assuming ~1% strains and E ~ 260 GPa, calculated residual stresses ~ 3 GPa (!)

Residual stress studies (crystal/glass interface)

System	Мах σ (МРа)	Source
Li ₂ O-2SiO ₂	~150	Mastelaro and Zanotto (1999)
Soda-lime silicate	~200	Mastelaro and Zanotto (1996)
LAS	~400	Zevin et al. (1978)
PbTiO ₃ – BaO – B ₂ O ₃	~3000 (?)	Estimated from data of Grossman and Isard (1969)

⇒ In all cases, calculated stresses >> nominal 20 MPa tensile strength of typical (imperfect) external glass surfaces

Engineered microstructure examples (G. Beall)

Fluorrichterite

- > High Crystallinity
- > Interlocking Crystals
- ➤ Grain-size from 1-10 µm
- > Acicular Crystals (Rods)
- ➤ Bladed Crystals (Laths)
- > Polysynthetic Twinning

Canasite

Enstatite

Aqueous based low-temperature bonding

Glass and glass-ceramic sealing materials

High overpressure tolerance Good high-CTE match

Metal / glass-ceramic chemical reaction

450

Temperature

Bubble interfaces as nucleation sites

- curiosity or more widespread?

Lithium disilicate composition

Piezoelectric glass-ceramics (SCHOTT)

- Strong crystalline alignment
- Non-ferroelectric (polar)

R.E. Newnham, PSU

Piezo resonance results

Li₂Si₂O₅ - B₂O₃ system

35 mm disks

NaNbO₃ – SiO₂ system

SCHOTT glass made of ideas

Ferroelectric glass-ceramic: SBN + Li₂B₄O₇

Prasad et al. (2002)

Hysteresis due to interfacial polarization (alk.-niobate gc's) Ming-Jen Pan, NRL

Alkali-niobate-silicate glass-ceramics (1)

As-quenched glass

Alkali-niobate-silicate glass-ceramics (2)

Key Questions Review (1)

What has been the role of interfaces in the development of emerging applications (for glass-ceramics)?

Somewhat taken for granted to date with the exception of special "tough" glass-ceramics (e.g., amphibolebearing...)

Key Questions Review (2)

With regard to applications, what aspects of interfaces are most important and why?

- Structural integrity
- > Impact on optical scattering
- > Effect on electrical properties

Key Questions Review (3)

- What are the scientific issues that require basic understanding of interfaces in glass-ceramics? (What is the relative importance of each?)
- Stress environment in high-crystal fraction glass-ceramics and means by which to control/predict
- Quantitative optical scattering models for "non-dilute" glass-ceramics
- Advanced techniques (e.g., impedance spectroscopy) to investigate electrical properties of complex glass-ceramics in light of structure-property relations to design superior materials

Key Questions Review (4)

What properties of glass-ceramics hold promise for the future?

Good Question!

- Mechanical (e.g., ballistic performance)
- Optical (e.g., a more measured look at gc lasers, etc)
- Electrical (true competitors to well-known, low-cost ceramics?)

