LECTURE 12: A survey of ab initio based MD
- Finding approximations
- Density functional theory
- Functionals
- Car Parrinello MD
Goals ...

- We want to study glasses or glass-forming liquids without any prerequisite e.g. models coming from the force field (approximation in classical MD).

- Charge transfer in covalent systems or in metallic glasses.
 - \(q = \text{cst} \) in most classical MD (Coulomb interaction)

- Description of other (e.g. spectroscopic) properties
 - X-ray, Raman, IR, XPS, ...

How ?

- Just solve Schrödinger equation \(H \Phi = E \Phi \)

- For large systems, there are basically 2 options
 - **Adiabatic approximation**: \(e^- \) move faster than nucleus which can be considered as fixed.
 - **Mean field approximation** for the \(e^- - e^- \) correlation (DFT)
A. BASICS

1. Finding approximations

- We write the Hamiltonian for molecules or solids

- Contains the interaction and the kinetic energy of N atoms (nuclei of mass M) at positions \mathbf{R}_i, and n electrons of mass m at positions \mathbf{r}_i

- Can be also written under the simpler form:

$$\mathcal{H} = \sum_{i=1}^{n} \frac{p_i^2}{2m} + \frac{1}{2} \sum_{j,i \neq j}^{n} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{i=1}^{n} \sum_{l=1}^{n} \frac{Z_i e^2}{|\mathbf{r}_i - \mathbf{R}_l|} + \sum_{l=1}^{N} \frac{p_l^2}{2M_l} + \frac{1}{2} \sum_{k,l \neq k}^{N} \frac{Z_k Z_l e^2}{|\mathbf{R}_k - \mathbf{R}_l|}$$

$$\mathcal{H} = T_e(\{p\}) + V_{ee}(\{r\}) + V_{EN}(\{r\}, \{R\}) + T_N(\{P\}) + V_{NN}(\{R\})$$

- Electronic kinetic E
- Electron-electron potential E
- Electron-nucleus potential E
- Nuclear kinetic E
- Nucleus-nucleus potential E
A. BASICS

1. Finding approximations

- We then solve Schrödinger equation:
 \[\mathcal{H} \Psi_{i,l}(r,R) = E_{i,l} \Psi_{i,l}(r,R) \]

- **Adiabatic approximation.** Since M=2000-100,000 me, there are two different time scales: electrons and nuclei (ions).
 - Vibrational excitations: \(h\omega \approx 10 \text{ meV} \)
 - Electronic excitations: \(h\omega_e \approx 1 \text{ eV} \)
 - \(\tau_{\text{ion}} \gg \tau_e \)...on the time scale of electrons, ions can be considered as frozen.

- **Consequence.** We can split the wavefunction into an e-part and a ion-part:
 \[\Psi_{i,l}(r,R) \equiv \chi_{i,l}(R) \cdot \Phi_e(r,R) \]
 \[\begin{bmatrix} T_e + V_{ee} + V_{en}(R) + V_{nn}(R) \end{bmatrix} \Phi_e(r,R) = E_e(R) \Phi_e(r,R) \]
 \[\begin{bmatrix} T_n + E_e(R) \end{bmatrix} \chi_{i,l}(R) = E_{i,e} \chi_{i,l}(R) \]
A. BASICS

1. Finding approximations

- Adiabatic approximation, continued. 1) We solve for a parameter R

$$
\begin{bmatrix}
T_e + V_{ee} + V_{eN}(R) + V_{NN}(R)
\end{bmatrix} \Phi_e(r, R) = E_e(R) \Phi_e(r, R)
$$

to obtain $\Phi_e(r, R)$ and $E_e(R)$ (Born-Oppenheimer surface)

2) Knowing $E_e(R)$, we solve

$$
\begin{bmatrix}
T_n + E_e(R)
\end{bmatrix} \chi_{i,l}(R) = E_{i,e} \chi_{i,l}(R)
$$

to obtain $\chi_{i,l}(R)$ and $E_{i,e}$

- Common approximations:
 - At low temperature, harmonic approximation. $\chi_{i,l}(R)$ only non-zero around

$$
E_e(R) \simeq E_e(R_0) + \frac{1}{2!} (R - R_0)^2 \frac{\partial^2 E_I(R)}{\partial R^2} + ...
$$

 - At high temperature, nuclei behaves as a classical particle

$$
M \frac{d^2 M}{dt^2} = - \frac{\partial E_e(R)}{\partial R}
$$
A. BASICS

2. Solutions for the electronic Hamiltonian

- Reduction of complexity. We want to compute $\Phi(r_1, r_2, \ldots, r_{\text{Nel}})$

- Discretize space of each variable on a grid of N_G grid points. To define Φ, we need to specify $(N_G)^{\text{Nel}}$ values. Ugh! Many body problem!

- Many properties can be reproduced by an independent electron approach. Description of the system with Nel single particle wavefunctions Φ_1 having $N_G\text{Nel}$ values. For total energy of the ground state, the best available method is density functional theory

- Many static or quasi-static can be obtained from derivatives of the total energy
 - Forces $- \frac{\partial E_e(R)}{\partial R}$
 - Dynamic matrix (vibrations) $- \frac{\partial^2 E_e(R)}{\partial R_i \partial R_j}$
 - Polarisation $- \frac{\partial E_e(R)}{\partial E_{\text{elect}}}$
B. DENSITY FUNCTIONAL THEORY

- **Idea:** Systems with interacting electrons in a potential $V(r) = - \sum_{i=1}^{N} \frac{Z_i e^2}{|r - R_i|}$ can be mapped onto a system with non-interacting electrons in a fictitious potential $V'(r) \neq V(r)$ that has the same total energy and the same electronic density.

- **Definition:** Density is the basic variable.

- **N** interacting electrons in an external potential $V_{\text{ext}}(r)$ in a non degenerate groundstate. (GS) The ground state density is unique (non degenerate):

 $$n(r) = N \int \int \Psi^*_\text{GS}(r, r_2, r_3, ..., r_N) \Psi_\text{GS}(r, r_2, r_3, ..., r_N) d^3 r_2 d^3 r_3 ... d^3 r_N$$

- It can be shown (Hohenberg- Kohn th.) that for the non-interacting electronic system, one has:

 $$V'_{\text{ext}}(r) = V_{\text{ext}}(r) + \text{const}$$
B. DENSITY FUNCTIONAL THEORY

- The DFT functional is given by:
 \[F[n] = \langle \Psi_{GS}^n | T_e + V_{ee} | \Psi_{GS}^n \rangle \]
with:
\[\int n(r)d^3r = N \]

Universal functional (does not depend on a specific \(V_{ext}(r) \)).

- Energy of the system is:
 \[E[n] = F[n] + \int n(r)V_{ext}(r)d^3r \]
and minimized by the ground state density
 \[E[n_{GS}] = E_{GS} \]

- Kohn-Sham approach:
 - Given an interacting GS charge density \(n_{GS}(r) \) of a N electron system
 - There exists just one external potential \(V_{KS}(r) \) for a non-interacting N-elec.
 System that has \(n_{GS}(r) \) as the ground state charge density.
 - Defines the Kohn-Sham Hamiltonian
 \[\mathcal{H}_{KS} = \frac{p^2}{2m} + V_{KS}(r) \]
B. DENSITY FUNCTIONAL THEORY

- Given the KS Hamiltonian
 \[\mathcal{H}_{KS} \equiv \frac{p^2}{2m} + V_{KS}(r) \]
 we find the eigenvector \(|\Psi_{KS}^i\rangle \) with eigenvalue \(E_{KS}^i \)
 satisfying

\[n(r) = 2 \sum_{i=1}^{N/2} \langle \Psi_{KS}^i | r \rangle \langle r | \Psi_{KS}^i \rangle \]

- The KS exact functional then writes:
 \[E[n] = F[n] + \int n(r) V_{ext}(r) d^3r \]
 Ordinary DFT functional

But we define:

\[T_0[n] = \sum_{i=1}^{N/2} 2 \langle \Psi_{KS}^i | \frac{p^2}{2m} | \Psi_{KS}^i \rangle \]
Kinetic energy of the KS system
Universal functional of \(n \)

\[E_H[n] = \frac{1}{2} \int \int d^3r d^3r' \frac{e^2 n(r)n(r')}{|r-r'|} \]
Hartree Coulomb interaction
Classical interaction of the electrons
B. DENSITY FUNCTIONAL THEORY

- By definition, the exchange-correlation (XC) functional is:
 \[E_{XC}[n] = F[n] - T_0[n] - E_H[n] \]

- The total energy functional then writes:
 \[E[n] = T_0[n] + E_H[n] + E_{XC}[n] + \int n(\mathbf{r})V_{\text{ext}}(\mathbf{r})d^3\mathbf{r} \]
 \[= T_0[n] + E_{KS}[n] \]

- Note that T0 is not the kinetic part of the real interacting system but the fictitious non-interacting one.

- By construction, one has for the electronic density:
 \[n(\mathbf{r}) = 2 \sum_{i=1}^{N/2} \langle \Psi_i^{KS} | \mathbf{r} \rangle \langle \mathbf{r} | \Psi_i^{KS} \rangle \]

- **Conclusion:** All the difficult part is hidden in \(E_{XC} \)
C. EXCHANGE-CORRELATION

- We want to calculate:

\[E_{\text{XC}}[N] = \frac{1}{2} \int n(r) d^3r \int d^3r' \frac{n_{\text{XC}}(r, r' - r)}{|r' - r|} \]

with

\[n_{\text{XC}}(r, r' - r) \equiv n(r') \int_0^1 d\lambda [g(r, r', \lambda) - 1] \]

Involving the pair correlation function \(g(r, r', \lambda) \) of a system with density \(n(r) \) and electron-electron interaction \(\lambda \).

- \(n_{\text{XC}} \) is the exchange-correlation hole, a quantum-mechanical zone surrounding every electron in an interacting system that reduces the probability \(P(r, r') \) of finding other electrons within the immediate vicinity.

- Classically, one would have \(P(r, r') \sim n(r)n(r') \) (Hartree-Coulomb energy). But this neglects the possibility of (spin) symmetry (Pauli exchange interaction).

- Exact results when \(g(r, r') \to 1 \) (i.e. at infinity) or for other selected cases.
C. EXCHANGE-CORRELATION

- Otherwise...approximations

 - Local density approximation (LDA)
 \[E_{XC}[n] \simeq E_{XC}^{LDA}[n] \]
 - Generalized gradient approximation (GGA)
 \[E_{XC}[n] \simeq E_{XC}^{GGA}[n] \]

- Local density approximation:
 \[E_{XC}^{LDA}[n] \equiv \int d^3 r \ n(r) \ \epsilon(n(r)) \]

assuming that \(\epsilon(n(r)) \) is just a function of the local electronic density.

- Advantage: \(\epsilon(n(r)) \) is the exchange and correlation energy per electron of a homogeneous interacting electron gas. Exact for this system.

- Allows reproducing shell structure of atoms, bond lengths, vibrational frequencies.
C. EXCHANGE,-CORRELATION

- **Generalized gradient approximation**: the functional now also depends on the local gradient of \(n(r) \).

\[
E_{XC}^{GGA}[n] \equiv \int d^3 r \, f\left(n(r), \nabla n(r)\right)
\]

- Gradient expansion of the exchange-correlation hole

- Provides better geometries for weak bonds which are too short in LDA. Better total energies (e.g. atomisation).

Lattice constants a (in A) for some solids

<table>
<thead>
<tr>
<th>Solid</th>
<th>(a_{\text{LDA}})</th>
<th>(a_{\text{GGA}})</th>
<th>(a_{\text{expt}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>4.05</td>
<td>4.20</td>
<td>4.23</td>
</tr>
<tr>
<td>NaCl</td>
<td>5.47</td>
<td>5.70</td>
<td>5.64</td>
</tr>
<tr>
<td>Al</td>
<td>3.98</td>
<td>4.05</td>
<td>4.05</td>
</tr>
<tr>
<td>Si</td>
<td>5.40</td>
<td>5.47</td>
<td>5.43</td>
</tr>
<tr>
<td>Ge</td>
<td>5.63</td>
<td>5.78</td>
<td>5.66</td>
</tr>
<tr>
<td>GaAs</td>
<td>5.61</td>
<td>5.76</td>
<td>5.65</td>
</tr>
<tr>
<td>Cu</td>
<td>3.52</td>
<td>3.63</td>
<td>3.60</td>
</tr>
<tr>
<td>W</td>
<td>3.14</td>
<td>3.18</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Mean abs. error: 0.078 for LDA, 0.051 for GGA.
C. EXCHANGE,-CORRELATION

- Generalized gradient approximation:

\[E_{xc} \text{ often break up into exchange (e.g. Becke, B) and correlation functionals (e.g. Lee, Yang and Parr, LYP). Or Perdew-Wang (PW91).} \]

\[E_{xc}(\rho(\vec{r})) = E_x(\rho(\vec{r})) + E_c(\rho(\vec{r})) \]

\[E_x^{LDA}(\rho(\vec{r})) = -\frac{3}{4} \left(\frac{3\rho(\vec{r})}{\pi} \right)^{1/3} \]

\[E_x^{CGA} = E_x^{LDA} - \sum_{\sigma} F(s_\sigma) \rho_\sigma^{4/3}(\vec{r})d\vec{r} \]

\[s_\sigma = \frac{\nabla \rho_\sigma}{\rho_\sigma^{4/3}} \]

\[F^B = \frac{\beta s_\sigma}{1 + 6 \beta s_\sigma \sinh^{-1}(s_\sigma)} \]

Becke, 1988

Becke & Perdew/Wang: BPW91
Becke & Lee/Parr/Yang: BLYP

Coulomb correlation
Interpolated by Ceperley et Alder 1980
C. EXCHANGE-CORRELATION

Perspectives and conclusions:

- Modelling of such XC functions beyond the scope of the lecture.
- Generation of E_{XC} approximations is still a large and still rapidly expanding field of research.
- Many different flavours of functional available which are more or less appropriate for any particular study.
- Ultimately the choice E_{XC} of must be made in terms of results (direct comparison with experimental data).

Figure 1. Neutron structure factor $S(q)$ as a function of magnitude of momentum transfer q for liquid GeSe$_2$, obtained within GGA (solid line) and LDA (dots), compared to experiment (circles), ref 8. For clarity, the LDA curve is displaced downward by 0.4. We used scattering lengths of $\delta_{\text{Ge}} = 8.189$ fm and $\delta_{\text{Se}} = 7.97$ fm.

Massobrio et al. JACS 1999
D. IMPLEMENTATION

Plane waves. We are now trying to obtain the ground state (GS) energy and the electronic density.

\[
E_{GGA}^{GS} = \min_{\Psi_{KS}} \left[T_0[\{\Psi_{i}^{KS}\}] + E_{KS}^{GGA}[n(r)] \right]
\]

\[
n(r) = 2 \sum_{i=1}^{N/2} \langle \Psi_{i}^{KS} | r \rangle \langle r | \Psi_{i}^{KS} \rangle
\]

- **In a practical calculation,** one uses a variational approach and expands \(\Psi_{i}^{KS} \) on a finite basis (Hilbert space), e.g. with *atomic orbitals* (most common approach in quantum chemistry):

 1 ions, n Q numbers

 \[
 | \Psi_{i}^{KS} \rangle = \sum_{l} \sum_{n} C_{ln}^{i} | \Phi_{l,n} \rangle
 \]

- **Advantages:** smart basis and small size. Tight-binding approach. Properties are calculated in terms of atomic orbitals.

- **Disadvantages:** Basis depends on atomic position. No systematic way to increase the basis, delocalized states in an empty region are hard to describe (e- in a crystal vacancy).
D. IMPLEMENTATION

- **Plane-wave basis set.** Alternative for periodic systems (Bloch's theorem): \(\Psi_{i}^{KS} \) can be written as the product of the lattice periodic part (e.g. reciprocal lattice vectors \(G \)) and a wavelike part.

\[
|\Psi_{i,q}^{KS}\rangle = e^{i\mathbf{q}\cdot\mathbf{r}} \sum_{\mathbf{G}} C_{G}^{i,q} |\mathbf{G}\rangle
\]

Exact if the basis set is infinite, otherwise fixed by an energy cutoff \(E_{\text{cutoff}} \).

- **Advantage:** Basis covers all space uniformly, does not depend on position (good for weak bonds), simple and fast evaluation, fixed by a single parameter \(E_{\text{cutoff}} \).

- **Disadvantages:** To have a converged result with reasonable small \(E_{\text{cutoff}} \), one describes only valence electrons. **Need of pseudopotentials.**

Pseudopotentials. Concept related to replacing the effects of the core electrons with an effective potential.
D. IMPLEMENTATION

Pseudopotentials. Concept related to replacing the effects of the core electrons with an effective potential. Just the outer shell electrons participate in the chemical bonding.

- The pseudopotential generation procedure starts with the solution of the atomic problem (all electrons) using the Kohn-Sham approach.

- Once the KS orbitals are obtained, one makes an arbitrary distinction between *valence and core states*.

- The core states are assumed to change very little due to changes in the environment so their effect is replaced by a model potential derived in the atomic configuration and it is assumed to be transferable.

- Outside the core region, the pseudo-wavefunction coincides with the all electron calculation.

D. IMPLEMENTATION

- General conditions for pseudo-potential generation (Hamann, et al. PRL 43, 1494 (1979)).

 1. All-electron and pseudo eigenvalues agree for the reference configuration.

 2. AE and PS wavefunctions agree beyond a certain cutoff, rc.

- Two opposing considerations:

 1. Good transferability ⇒ small rc.
 2. Large rc ⇒ smoother pseudopotentials.

- A good pseudopotential is one that strikes a balance between these two contraints.
Unified Approach for Molecular Dynamics and Density-Functional Theory

R. Car

International School for Advanced Studies, Trieste, Italy

and

M. Parrinello

*Dipartimento di Fisica Teorica, Università di Trieste, Trieste, Italy, and
International School for Advanced Studies, Trieste, Italy*

(Received 5 August 1985)

We present a unified scheme that, by combining molecular dynamics and density-functional theory, profoundly extends the range of both concepts. Our approach extends molecular dynamics beyond the usual pair-potential approximation, thereby making possible the simulation of both covalently bonded and metallic systems. In addition it permits the application of density-functional theory to much larger systems than previously feasible. The new technique is demonstrated by the calculation of some static and dynamic properties of crystalline silicon within a self-consistent pseudopotential framework.

PACS numbers: 71.10.+x, 65.50.+m, 71.45.Gm

Electronic structure calculations based on density-functional (DF) theory\(^1\) and finite-temperature computer simulations based on molecular dynamics\(^2\) (MD) have greatly contributed to our understanding of condensed-matter systems. MD calculations are able to predict equilibrium and nonequilibrium properties of condensed systems. However, in all practical applications, very large and/or disordered systems and to the computation of interatomic forces for MD simulations.

We wish to present here a new method that is able to overcome the above difficulties and to achieve the following results: (i) compute ground-state electronic properties of large and/or disordered systems at the level of state-of-the-art electronic structure calcula-
E. MOLECULAR DYNAMICS

- “We present a unified scheme that, by combining molecular dynamics and density-functional theory, profoundly extends the range of both concepts.”

- Car-Parrinello Molecular Dynamics (CPMD). Idea: Split the dynamics (as expected from Lagrangian) into ion (classical) and electronic (fictitious) dynamics. Newton’s equation of motion for the ions is solved:
 \[M_I \frac{d^2 R_I}{dt^2} = F_I \]
 the forces being calculated from the electronic density, via:

 \[F_I = - \frac{\partial}{\partial R_I} V \left(\{ R_I \} \right) \]

 \[V \left(\{ R_I \} \right) = \min_{\Psi_{KS}} E_{GGA}^{GGA} \left[\{ \Psi_{KS} \}, \{ R \} \right] = E_{GGA}^{GGA} \left[\Psi_{GS}^{KS}, \{ R \} \right] \]

 plus some usual (classical) MD ingredients (Verlet algorithm, time step,...)
E. MOLECULAR DYNAMICS

- Minimization technique in CPMD
 1. For a given set of \(\{R\} \), minimize \(E[\Psi_{KS}] \) to obtain \(\Psi_{KS}^{GS} \)
 2. Compute the forces on the ions from \(\Psi_{KS}^{GS} \)
 3. Move the ions with the Newton equation

- Car Parrinello fictitious dynamics:

\[
\begin{align*}
\mu \frac{d^2 |\Psi_i^{KS}\rangle}{dt^2} &= -\frac{\partial}{\partial \langle \Psi_i \rangle} E^{GGA}[\Psi_{KS}, \mathbf{r}] \\
M_I \frac{d^2 \mathbf{R}_I}{dt^2} &= -\frac{\partial}{\partial \mathbf{R}_I} E^{GGA}[\{|\Psi_{KS}\rangle, \{R\}|] = \sum_{i=1}^{N/2} 2 \langle \Psi_i^{KS} | \frac{\partial V_{ext}}{\partial \mathbf{R}} | \Psi_i^{KS} \rangle
\end{align*}
\]

- Conserved energy is:

\[
\frac{1}{2} M_I \left| \frac{d \mathbf{R}_I}{dt} \right|^2 + \mu \sum_i \left(\frac{d |\Psi_i^{KS}\rangle}{dt} \right) \left(\frac{d |\Psi_i^{KS}\rangle}{dt} \right)^* + E^{GGA}[\Psi_{KS}, \mathbf{R}]
\]
E. MOLECULAR DYNAMICS

Meaning of the fictitious electronic mass μ:

- “Non-physical” parameter controlling the time scale of the "classical" Car Parrinello electronic dynamics.

- Close to the minimum, Ψ_{KS}^i, Ψ_{KS}, oscillates at frequencies

$$\omega_{\text{electron}} = \sqrt{\frac{2(E_e^{KS} - E_o^{KS})}{\mu}}$$

with E_e^{KS} and E_o^{KS} the eigenvalues of empty/occupied states, so that a minimum frequency is

$$\omega_{\text{min}}^{\text{electron}} \approx \sqrt{\frac{2E_{\text{gap}}}{\mu}}$$

- To be sure of adiabatic separation between artificial electronic and real ionic motion, one must have:

$$\omega^{\text{ions}} \ll \omega_{\text{min}}^{\text{electron}} \approx \sqrt{\frac{2E_{\text{gap}}}{\mu}}$$

In this case, the electronic system remains near the ground state and K_e is small.
E. MOLECULAR DYNAMICS

CPMD simulation of 200 atomic As_2Se_3

- $t=10$ a.u. (0.24 fs)
- $L=17.98$ Å
- Trouillier-Martins pseudos
- $E_{\text{cut}}=20$ Ry
- BLYP functional
- $m=2000$ a.u.

- Kinetic energy of the electrons K_e remains small.
- Total energy E_H conserved
F. GETTING STARTED

- What you need to specify to run a DFT computation
 - Basis set
 - Coordinates
 - Exchange functional: B, B3, etc.
 - Correlation functional: LYP, PW91, etc.

- Packages
 - CPMD www.cpmd.org
 - ABINIT www.abinit.org
 - VASP https://www.vasp.at
 - Fireball http://fireball-dft.org

- Lectures. Need of a detailed course on quantum chemistry, DFT, and ab initio methods.
 - CECAM tutorials www.cecam.org/
Conclusion

- Ab initio methods allow to investigate materials properties using atomic number as only input.

- Theoretical background provided by density functional theory (DFT)

- Additional approximations are needed to make DFT useful and applicable

- The combination of DFT with MD is provided through the Car-Parrinello approach involving the fictitious dynamics of the electron.

Next (last) lecture: Application of ab initio methods to glasses

Home reading: The impact of DFT on Materials research

Useful references: