
On the work of Don Davis



Don was born a bit over 70
years ago in Fort Knox

Kentucky.



He received his PhD in 1972.

From Jim Milgram.



He did important work on vanishing lines in the
Adam’s spectral sequence, immersions and non
immersions of RPn, the Segal Burnside ring
conjecture, v1 and v2 periodicity, bo-reolutions,
v1−periodic homotopy of Lie groups, stable
geometric dimension of vector bundles over RPn,
combinatorial number thoery, and most recently
topolgical complexity.



Don’s ability to calculate is
legendary.



I concocted and example that
involves some of Don’s favorite
functions.



α(n) : The number of ones in
the binary expansion of n.



νp(n) : The p−adic valuation
of n defined by

n = pνp(n)m
with (m, p) = 1.



S(n, k) : the Sterling number
of the second kind.



S(n, k) is the number of ways
to partition n objects into k
non-empty subsets.



Here is its formula that defines
the Sterling number:

(ex − 1)j = Σ
k≥j

S(k, j)xk

k!





3 0 5 0 0 8 9 0 0

1 1 6 1 1 9 10 1 1

3 0 7 0 0 10 11 0 0

7 2 1 2 2 11 12 2 2

15 0 10 0 0 12 13 0 0

31 1 65 1 1 13 14 1 1

63 0 350 0 0 1 15 0 0

127 3 1701 3 3 28 1 3 3

255 0 7770 0 0 462 36 0 0

511 1 34105 1 1 5880 750 1 1

1023 0 145750 0 0 63987 11880 0 0

2047 2 611501 2 2 627396 159027 2 2

4095 0 2532530 0 0 5715424 1899612 0 0

8191 1 10391745 1 1 49329280 20912320 1 1

16383 0 42355950 0 0 408741333 216627840 0 0

32767 4 171798901 4 4 3281882604 2141764053 4 4

65535 0 694337290 0 0 25708104786 20415995028 0 0

131071 1 2798806985 1 1 197462483400 189036065010 1 1

262143 0 11259666950 0 0 1492924634839 1709751003480 0 0

524287 2 45232115901 2 2 11143554045652 15170932662679 2 2

1048575 0 181509070050 0 0 82310957214948 132511015347084 0 0

2097151 1 727778623825 1 1 602762379967440 1142399079991620 1 1

4194303 0 2916342574750 0 0 4382641999117305 9741955019900400 0 0

8388607 3 11681056634501 3 3 31677463851804540 82318282158320505 3 3

16777215 0 46771289738810 0 0 227832482998716310 690223721118368580 0 0





The (i , j)th entry is


S(i , j + 1) if α(j + 1) is odd
and i ≥ j + 1

i + j + 1 if α(j + 1) is odd
and i < j + 1

ν2( Σ
i≥1

80i−1(
(j+1

i
)

+ (24(j+1) − 1)
(i+j+1

i
)
)) if α(j + 1) is even



As of yesterday Don wrote 120
papers.



Anderson-Davis

"A vanishing theorem in
homological algebra" (1973)



They prove a vanishing line for
the Adams spectral sequence.



There are the classes

Ps
t , t > s ≥ 0

in the mod 2 Steenrod algebra
which are dual to the Milnor

element
ξ2

s
t .



These classes satisfy
(Ps

t )2 = 0



So for any module, M over the
Steenrod algebra we can define
the Margolis cohomology

H∗(M ; Ps
t )



Suppose you are given a
module over the Steenrod
algebra, M , with the property
that

H∗(M ; Ps0t0 ) 6= 0
for some Ps0t0 with s0 < t0.



The dimension of Ps0t0 is

d = 2s0(2t0 − 1)



Suppose you are lucky and you
find that for all Ps

t of
dimension less than d

H∗(M ; Ps
t ) = 0



Then the picture for
ExtA(M ,Z2)

has a vanishing line.



0 1 2 3 ....
t-s

s

0

slope = 1/(d-1)

∼ (t0 − 2)−



For example if Y is a p−local
finite CW complex with

H∗(Y ; Ps
t ) = 0

for all
Ps

t , with t + s ≤ n + 1
and

P0
t , t 6= n + 1



Then Y has a vn−self map.



Don’s work on immersions of
real projective spaces.



We start with two facts about
real projective spaces:
• The stable tangent bundle of
RPn is

(n + 1)ξ
•

2Lξ
is trivial for L >> 0.



In particular

(2L − n − 1)ξ

is the stable normal bundle.



So the geometric dimension of
(2L − n − 1)ξ ≤ nk − n

if
RPn # Rk



The converse is a special case
of a theorem of Hirsh.



Now the geometric dimension
of

(2L − n − 1)ξ ≤ k − n
means that

(2L − n − 1)ξ
has

(2L − k − 1)
linearly independent sections
s1, · · · , s(2L−k−1)



These sections can be used to
construct a map

Pn × P2L−k−2→ P2L−n−2

which is homotopic to the
inclusion on each factor.
(Such a map is called an axial
map.)



So one way to prove that there
cannot be an immersion is to
apply your favorite cohomology
theory, E∗, to an asserted axial
map.



Specifically there is a class,
X ∈ E 2(RPn) such that the
axial maps sends

X i → (X1 + X2)i

up to a unit.



The method is to pick an i so
that X i = 0, for dimensional
reasons, but (X1 + X2)i 6= 0.



Don used BP2∗ = Z(2)[v1, v2]
and an amazing tour de force
of a calculation of most of

BP2∗(Pm1 × Pm2)
to prove what is probably the
best general non immersion
theorem known



RP2(m+α(m)−1) * R4m−2α(m)



Other theories, (tmf, ER(n))
give slightly stronger results.
But in some sense this non
immersion is within 3 of all
know results.



I guess I have to explain

“in some sense".



One can change the dimension
of the projective space or the
Euclidean space.



For example: In 1983 using
MO[8] Don showed that

RP124 * R231

His general theorem shows that

RP126 * R232



For example: In 1983 using
MO[8] Don showed that

RP124 * R231

His general theorem shows that

RP126 * R232



Positive results.



There is a fibration

BO(k)

BO



The stable normal bundle, ν,
of RPn fits into this picture



BO(k)

BORPn ν

νk



BO(k)

BORPn ν

νk



The obstructions to such a lift
live in

H∗(RPn; π∗−1(F ))

where we can take F to be a
stunted projective space.



The Postnikov tower of this
fibration was invented to create
a framework for computing the
obstructions.

It is the kind of hideous
calculation that is a challenge
even for Don.



Fortunately, in an example of
convergent evolution, there
was a 14 year older
mathematician who shared
Don’s love of calculation.



Of course I am referring to
Mark Mahowald.

Don wrote 36 papers with
Mark as a coauthor.



It is hard to overestimate
Mark’s influence on Don and
on homotopy theory.



Mark (later improved in the
work of Gitler and Mahowald)
modified the Postnikov tower
by inserting the obstruction
one Adams filtration at a time.



In particular one starts with a
minimal resolution of the
A-module H∗(F ;Z/2) to
compute the k−invariants
through a range.



The resulting tower is cleverly
called a

Modified Postnikov tower.



Here is a sample of the kind of
immersion Don obtains using

MPT’s.



RPn # R2n−d
n α(n) d

mod (8)
4 3 9
6 4 9
1 5 12
0 α(n − 1) = 6, n 6= 64 13

mod (16)
14 5 n 6= 62 14
12 ≥ 5 ν(n + 4) < 7 12



Don derived these immersions
in a 1983 paper.



Don’s work on the Segal
Burnside Ring Conjecture
conjecture and W.H. Lin’s
theorem.



The Segal conjecture was
motivated by a theorem of
Atiyah and Segal on the
equivariant K−theory of a G
space.



The Segal conjecture for a
finite group, G , is that there is
an isomorphism between

lim← [Sn ∧ BG(k), Sn]
and the completion of the
Burnside ring of finite G-sets.



In 1979 Lin proved a conjecture
of Mahowald which implied the
Segal conjecture for G = Z/2.



His proof involved very difficult
lambda algebra calculations
which, according to Don, were
hard to understand.



The proof was published
in a joint paper by

Lin, Davis, Mahowald and
Adams



Lin proved a conjecture of
Mark’s involving truncated real
projective spectra

P∞j
which makes sense even for
j ≤ 0.



Specifically
P∞j

is the Thom spectrum of a
virtual bundle which is j copies
of the canonical line bundle
over P∞, j ∈ Z.



So there is a spectrum

P∞−∞ = lim←P∞j .



H∗(P∞−∞;Z/2) = Z/2[x , x−1].



There is a map
S−1→ P∞−∞

which in cohomology induces
(Σaix i) 7→ a−1



There is a map
S−1→ P∞−∞

which in cohomology induces
(Σaix i) 7→ a−1



Namely
P∞−n

P∞−1S−1



Namely
P∞−n

P∞−1S−1



Lin’s theorem, proven in
[LDMA] is that this map
induces a homotopy
equivalence after 2−adic
completion.



This is the heart of the proof of
the Segal conjecture for Z/2.



This theorem suggest an
invariant of classes in the
stable homotopy groups of the
spheres.



P∞−1

P∞1−n

S−1St−1 α

P∞−nS−n



P∞−1

P∞1−n

S−1St−1 α

P∞−n

S−n



P∞−1

P∞1−n

S−1St−1 α

P∞−nS−n



P∞−1

P∞1−n

S−1St−1 α

P∞−nS−n



Don’s work on v1−periodic
homotopy.



For a fixed prime, p, The
v1−periodic homotopy groups,
v−11 πi(X ) of a space is often a
direct summand of some actual
homotopy group, πi+L(X )(p).



So if you can compute the
v1−periodic homotopy groups
of such a space you have
computed some actual
homotopy.



v−11 π∗(Sn) have been
computed by Mahowald and

Thompson.



The v1−periodic groups are
completely calculable for many
spaces, (e.g. Lie groups), but
are complicated enough to be

interesting.



If you want elements of large
order, the place to look are the

v1−periodic groups.



In fact for the spheres there are
v1−periodic classes that
achieve the largest order.



I will start by defining the
v1−periodic groups.



I will then tell you the answer
for SU(n).



The Sterling numbers will
appear.



For a prime, p, there are the
mod pe homotopy groups
πn(X ;Z/pe) = [Mn(pe),X ]



There is the self map
introduced by Adams which

induces a K−theory
isomorphism.

A : Mn+s(e)(pe)→ Mn(pe)



If p is odd s(e) is

2pe−1(p − 1).

If p = 2 s(e) is

max(8, 2e−1).



So one can define
v−11 πi(X ;Z/pe)
by iterating A.



We can now vary e and take
the direct limit of

v−1
1 (X ;Z/pe)→ v−1

1 (X ;Z/pe+1)→



v−1
1 πi(X ) = lime v−1

1 πi+1(X ;Z/pe)



The periodic homotopy groups
of SU(n) depend on the
p−adic valuation of the

Sterling numbers

νp(S(k, j))



Define numbers

ep(k, n) = min
n≤j≤k

{νp(S(k, j))}



For odd primes
•v−11 π2k(SU(n)) ≈ Z/pep(k,n)

•v−11 π2k−1(SU(n))
is a group of the same order



You would be hard pressed to
extract any information from
this result.



Don was not deterred!



Don analyzed these numbers
and proved that π∗(SU(n)) has
an element of order greater
than

n +
n − 2

p2
 +

n + p2 − p − 1
p3





The odd groups are somewhat
more difficult.



The first person to figure out
how to compute the odd
groups was a student of Don’s

Huajian Yang



From 1988 to 2003 Don and
his coauthors completed the
calculation of the v1−periodic
homotopy of all Lie groups at
all primes.



The tools were the Unstable
Novikov Spectral Sequence,



The unstable K−theory
spectral sequence,



representation theory at the
prime 2.



and work of Bousfield (1999)
that reduced the calculation for
1-connected H spaces to the
Adams operations at the odd
primes



By adjointing the maps in the
definition of periodic
homotopy:

v−1
1 πi(X ) = lime v−1

1 πi+1(X ;Z/pe)



Davis and Mahowald, in 1990
constructed an omega
spectrum

Φ(X )
such that

πs
∗(Φ(X )) = v−11 π∗(X )



Bousfield computed
KU∗(Φ(X ))

at odd primes as a module over
the Adams operations.



He then plugged this into the
stable K−theory Adams
spectral sequence.



The answer came out in a form
Don could use to complete the
computation of v1 periodic
homotopy of Lie groups at odd
primes.



Even the v1 period homotopy
of the spheres has some
interesting complications.



The elements of ImJ, ρj
generate cyclic groups in the
odd stems with orders related
to Bernoulli numbers.



There are unstable cyclic
groups in adjacent even stems
with the same orders.



We know the spheres of origin
of the elements of ImJ.

So it makes sense to talk about
the smallest sphere where the
composite

ρj ◦ ρi
is defined.



Except for a few cases at the
prime 2 these composites are
unstable v1 classes.



Here is the way the game
works:
If you understand the multiple
of the (unstable) generator
that represents

ρj ◦ ρi
when it is born.



Then you know when the
compositions die in
v1−periodic homotopy.



The compositions were studied
by Mahowald and Thompson
(1988)



Don completely determined the
life of the compositions of ImJ
from the moment the two
classes mate to their demise.



The answer (for p = 2)
involves the number

ν2( Σ
i≥1

80i−1(
(

j + 1
i

)
+ (24(j+1) − 1)

(
i + j + 1

i

)
)).

we saw some time ago.



I was fortunate to have worked
with Don on the project



Don’s work on combinatorial
number theory



Motivated by trying to
understand the orders of the v1
periodic homotopy groups of
SU(n), Don wrote 10 papers in
combinatorial number theory



They are all quite technical.



I will say a few words about his
2012 paper

“For which p−adic integers x
can Σ

k

(x
k
)−1 be defined?"



The function

f (n) =
n
Σ

k=0

(n
k
)−1

is viewed as taking values in
the p−adic numbers, Qp.



Don studies the properties of
this function.



Specifically:

For a p−adic integer

x =
∞
Σ

i=0
εipi



When does

limn f (
n
Σ

i=0
εipi)

converge in the Qp topology.



The limit obviously exist if
x ∈ N



Here is a theorem:

There are certain primes for
which the limit only exist for

x ∈ N and x = −1.



An odd prime is good if

for every n such that
1 ≤ n ≤ p − 2

νp(f (n)) ≤ 1



If an odd prime is not good it
is called a Davis prime.



The good primes are the
primes for which the limit only
exist for the natural numbers
and −1.



Here is the bizarre fact.

The only Davis prime less than

100, 000, 000
is

23



Don gives a separate argument
for the non convergence if
p = 23.



So the non convergence
theorem is true for all primes
less than 100,000,000.



Are there more Davis primes?

Noam Elkies thinks there are
infinitely many.



So for Don
42

may be
23.



Don’s work on Topological
complexity.



The topological complexity,
TC(X ), of a space X :



There is the fibration

E : PX → X × X

γ 7→ (γ(0), γ(1))



Cover X by contractible open
sets

{U1, · · · ,Ur+1}

Such that over each Ui E has
a section.
The smallest r is the
topological complexity of X .



Cover X by contractible open
sets

{U1, · · · ,Ur+1}
Such that over each Ui E has
a section.

The smallest r is the
topological complexity of X .



Cover X by contractible open
sets

{U1, · · · ,Ur+1}
Such that over each Ui E has
a section.
The smallest r is the
topological complexity of X .



It is easy to explain why Don
became interested in the
problem of computing the
topological complexity for Lens
spaces.



In a 2013 paper
Gonzalez, Velasco and Wilson
proved that the smallest
integer, k such that there is a
nice map

L2n+1(2e)× L2n+1(2e)→ L2k+1(2e)

is related to TC(L2n+1(2e))



If k is the smallest such
number then

2k ≤ TC(L2n+1(2e)) ≤ 2k + 1



If k is the smallest such
number then

2k ≤ TC(L2n+1(2e)) ≤ 2k + 1



The condition on the map is
not too dissimilar to the axial
condition I mentioned for the
immersion problem.



In fact the topological
complexity for RPn is one more
than the best immersion
dimension.



So the linear algebra
technology Don developed to
prove his non immersion
theorem gave him the tools to
extract what are probably the
best lower bounds for
TC(L2n+1(2e)) implied by ku.



Don rediscovered a cool
connection between Mn the
moduli space of polygons in R2

and real projective spaces.



Specifically the n−gons he
looks at have one edge on the
X axis between
(0, 0) and (0, n − 2).
All other edges length 1.



The Moduli space of such
configurations is Sn−3 with
Z/2 action flipping about the
X axis.



For example RP4:

•0

•
•

•

• •

•

1

2
3 4

5

6
7 (length = 5)

•

•
X



For example RP4:

•0

•
•

•

• •

•

1

2
3 4

5

6
7 (length = 5)

•

•
X



This is a really interesting
realization of what topological
complexity is telling us. One
can think of the polygon as the
arms of a robot.



TC(RPn) tells us something
about how many rules are
required to move a robot from
one configuration to another.



The case of the long side
having length n − 2 can be
generalized.



On might consider the moduli
space of n − gons where the
long side has length r . Z/2
acts on these manifolds just as
it did in the previous case.



The space of such n−gons
modulo reflection is denoted
Mn,r



So Mn,n−2 = RPn−3



Otherwise it is some n − 3
dimensional manifold.



In Don’s 120th paper Don
gives bounds on
TC(Mn,r)



For example he proves that

TC(Mn,n−4) ≥ 2n − 6



I could not cover all of Don’s
work.
It is too vast.
So I will end here and simply
wish Don



HAPPY BIRT HDAY


