
MINIMAL TORI WITH LOW NULLITYDAVID L. JOHNSON AND OSCAR PERDOMOAbstrat. The nullity of a minimal submanifold M ⊂ S
n is the dimension of the nullspae of theseond variation of the area funtional. That spae ontains as a subspae the e�et of the groupof rigid motions SO(n+ 1) of the ambient spae, modulo those motions whih preserve M , whosedimension is the Killing nullity kn(M) of M . In the ase of 2-dimensional tori M in S

3, there is anadditional naturally-de�ned 2-dimensional subspae that ontributes to the nullity; the dimensionof the sum of the ation of the rigid motions and this spae is the natural nullity nnt(M). In thispaper we will study minimal tori in S
3 with natural nullity less than 8. We onstrut minimalimmersions of the plane R

2 in S
3 that ontain all possible examples of tori with nnt(M) < 8. Weprove that the examples of Lawson and Hsiang with kn(M) = 5 also have nnt(M) = 5, and weprove that if the nnt(M) ≤ 6 then the group of isometries of M is not trivial.1. IntrodutionLet ρ̃ : M → S3 be a minimal immersion of an oriented surfae without boundary M in the unitthree dimensional sphere S3 ⊂ R
4. Let N : M → S3 be the Gauss map, i.e. N(m) ⊥ TmMand 〈N(m),m〉 = 0. For any m ∈ M , a(m) will denote the nonnegative prinipal urvature of

M at m and W1(m) and W2(m) will denote two unit tangent vetors suh that dNm(W1(m)) =
−a(m)W1(m) and dNm(W2(m)) = a(m)W2(m). When M is a torus, it is known that for every
m, a(m) is positive [2℄, therefore in this ase we an hoose W1(m) and W2(m) so that they de�nesmooth vetor �eld on M . In the following, for M a torus, W1 and W2 denote suh unit tangentvetor �elds and a : M → R will be the smooth funtion given by the positive prinipal urvature.Sine M is minimal, M is a ritial point of the area funtional. Sine M →֒ S3 has odimension1, any variation of the surfae M is given by a funtion f ∈ C∞(M). The seond variation of thearea funtion at this ritial point is given by the stability operator

J : C∞(M) → C∞(M) given by J(f) := −∆f − 2a2f − 2f.The nullity of a minimal surfae is de�ned as the dimension of the kernel of the operator J and willbe denoted by n(M). Elements of the nullity are in�nitesimal variations of M whih, up to order2, do not hange the area of M .1.1. Killing nullity. Given a �xed matrix B ∈ so(4), de�ne fB : M → R by fB = 〈Bρ̃(m), N(m)〉.It is lear that fB satis�es the ellipti equation J(fB) = 0 beause, when we move the immersion
M by the group of isometries eBt : S3 → S3 we indue a family that leaves the area and seondfundamental form onstant; fB is the funtion assoiated with this family.In [3℄, Lawson and Hsiang lassify all the minimal surfaes that are invariant under under a 1-parametri group of isometries in S3. One way to see this lassi�ation is the following: De�ne theKilling nullity by setting KS := {fB : B ∈ so(4)} to be the spae of all variations arising from
SO(4), and the Killing nullity is de�ned as kn(M) := dim(KS). We have that kn(M) ≤ n(M)and in general the Killing nullity is expeted to be 6 sine the dimension of so(4) is 6. Lawson andDate: January 18, 2011.2010 Mathematis Subjet Classi�ation. 58E12, 58E20, 53C42, 53C43.1



MINIMAL TORI WITH LOW NULLITY 2Hsiang lassify all the examples of surfaes with kn(M) < 6, i.e. they lassify all minimal surfaeswith not full Killing nullity. More preisely, their lassi�ation an be desribed in the followingway,
K3 = {M ⊂ S3 : kn(M) = 3},whih is the set of totally geodesi spheres. Up to rigid motions there is only one example.
K4 = {M ⊂ S3 : kn(M) = 4},is the set of Cli�ord tori, and
K5 = {M ⊂ S3 : kn(M) = 5},is a olletion of immersed minimal tori. There are in�nitely many non-isometri examples in K5.One of the goals of this paper will be to provide a better understanding of this set.1.2. Natural nullity. Minimal tori in S3 will have a potentially larger nullity than the Killingnullity. For a minimal torus, sine W1 and W2 are globally de�ned, we an de�ne hθ : M → R as thediretional derivative of−2a−

1

2 in the diretion cos(θ)W1+sin(θ)W2, that is, hθ = cos(θ)a−
3

2W1(a)+

sin(θ)a−
3

2W2(a). For tori, HS =
{
λhθ : λ ∈ R, θ ∈ S1

} form a subspae of ker(J), whih follows bya diret omputation. In general, dim(HS) := hn(M) is expeted to be 2. Reall that the funtions
fB de�ned above also satisfy J(fB) = 0, that is, they represent in�nitesimal variations of the Mthrough minimal torus. The funtions fB are not only in�nitesimal variations but atually generatea family of minimal tori, namely the family t −→ etM . The funtions hθ are also in�nitesimalvariations of M through minimal immersions sine J(hθ) = 0, however, the authors have not yetbeen able to determine whether or not the funtions hθ generate a family of minimal tori.The priniple fous of this paper is to study the spae KS+HS := NS, the subspae of the nullityarising from these two natural soures. We all the natural nullity of the spae M nnt(M) :=
dim(NS). In this paper we lassify all minimal tori with nnt(M) < 8.The Lawson-Hsiang examples, beyond the Cli�ord torus, will be shown by a Liouville argumentto be the immersed minimal tori with dim(HS) = 1, as well as those having Killing nullity 5.We also show, using a result by Ramanathan about isometries of a minimal surfaes of S3, that if
dim(HS) = 1 then M ∈ K5. In other words, we have that

NN5 = {M ⊂ S3 : nnt(M) = 5} = K5 = H1,where H1 = {M ⊂ S3 : dim(HS) = 1}.We onstrut every possible torus with nnt(M) < 8 by building, for any angle θ ∈ S1 and anyskew-symmetri matrix B, an integrable distribution DB,θ in SO(4) × R
2 with the property thatthe projetion onto the �rst olumn in SO(4) always de�nes a smooth minimal immersion of R2. If

M is a torus with nnt(M) < 8 then there is a B and θ for whih M is the image of suh a leaf. Inpartiular, by our previous result we have that if M ∈ K5 then dim(HS) = 1, so hθ = 0 for some
θ. This observation tells us that K5 an be obtained as oming from examples in the distribution
DB,θ. We prove that if M ∈ K5 then hθ+π

2

∈ KS. i.e., we prove that not only is kn(M) = 5 butalso nnt(M) = 5.To desribe our last result we point out that if M ∈ K5 then nnt(M) = 5 and M is invariant underin�nitely many isometries (a 1-parameter group to be preise). We prove that if nnt(M) = 6 then
M has some nontrivial isometry.



MINIMAL TORI WITH LOW NULLITY 3The authors would like to thank the referee for numerous suggestions and omments.2. PreliminariesThis setion reviews some known results that will be used later on. The �rst result, due to BlaineLawson, has already been used in the introdution in order to de�ne the unit tangent smooth vetor�elds W1 and W2 in an immersed minimal torus of S3.Theorem 2.1. [Lawson [2℄℄ If M ⊂ S3 is a losed minimal surfae and a : M → R denotes thenonnegative prinipal urvature funtion, then a is positive everywhere if and only if χ(M) = 0.The next theorem also was mentioned in the introdution in order to de�ne the natural nullity fortori. Even though this is a known result, for ompleteness sake we will provide a proof at the endof this setion.Theorem 2.2. If M ⊂ S3 is a minimal immersed torus, and W1 : M → S3 and W2 : M → S3 areunit vetor �elds that de�ne the prinipal diretions, then the funtions
h0, hπ

2

: M → R given by h0 = a−
3

2W1(a) and hπ

2

= a−
3

2W2(a)satisfy
J(h0) = −∆h0 − 2h0 − 2a2h0 = 0 = J(hπ

2

).There is a orrespondene between onstant mean urvature (CMC) surfaes in Eulidean spae andminimal surfaes in S3. The proof of the Theorem (2.2) for the ase of CMC surfaes in Eulideanspae is established in setions �2 and �3 of [5℄.In setion 4 we onstrut a family of minimal immersions of the plane into S3. The following theoremwill be used to show that Lawson-Hsiang examples orrespond to a subfamily of those immersions.Theorem 2.3. [Ramanathan [6℄℄ Let ρ̃ : M → S3 be a minimal immersion of an oriented ompatsurfae. Suppose that M admits a one parameter group of isometries φt : M → M with respet tothe indued metri. Then, there exists a one-parameter family of orientation preserving isometries
Φt of S3 suh that ρ̃ ◦ φt = Φt ◦ ρ̃ for all t ∈ R.The next theorem is a onsequene of the uniformization theorem applied to a minimal torus in S3.Theorem 2.4. For every minimal immersion of a torus ρ̃ : M → S3, there exists a overing map
τ : R2 → M , a doubly periodi onformal immersion ρ : R2 → S3, a Gauss map ν : R2 → S3, anda �xed angle α, so that

ρ(u, v) = ρ̃(τ(u, v)), ν(u, v) ⊥ ρ∗(T(u,v)R
2), ν(u, v) ⊥ ρ(u, v),and

∂2ρ

∂u2
= −

∂r

∂u

∂ρ

∂u
+

∂r

∂v

∂ρ

∂v
+ cos(2α)ν − e−2rρ

∂2ρ

∂v2
=

∂r

∂u

∂ρ

∂u
−

∂r

∂v

∂ρ

∂v
− cos(2α)ν − e−2rρ

∂2ρ

∂u∂v
= −

∂r

∂v

∂ρ

∂u
−

∂r

∂u

∂ρ

∂v
− sin(2α)ν

∂ν

∂u
= e2r(− cos(2α)

∂ρ

∂u
+ sin(2α)

∂ρ

∂v
)

∂ν

∂v
= e2r(sin(2α)∂ρ

∂u
+ cos(2α)

∂ρ

∂v
)where e−2r = 〈 ∂ρ∂u ,

∂ρ
∂u〉 = 〈∂ρ∂v ,

∂ρ
∂v 〉. Moreover, ∆r + 2 sinh(2r) = 0.



MINIMAL TORI WITH LOW NULLITY 4Proof. The idea of the proof is the following: the existene of the onformal map ρ and the overing
τ follows from the uniformization theorem, the existene of the onstant α follows from the fatthat

f(z) = f(u+ iv) = 〈
∂2ρ

∂u2
, ν〉 − i 〈

∂2ρ

∂u∂v
, ν〉is an analyti, doubly periodi funtion in the whole plane, and therefore is onstant. Clearly thisonstant funtion f is not identially zero otherwise M would be totally geodesi. By saling theoordinates u and v by a onstant, we an make f(u+ iv) = cos(2α) + i sin(2α) for some onstantangle α.To omplete the proof, the equations for the seond derivatives of ρ are just the standard ompu-tation of the Christo�el symbols, and the ellipti equation of r follows from omputing the Gaussurvature using the Christo�el symbols and setting it to 1 − e4r, i.e, this ellipti equation followsfrom the Gauss equation. �Remark 2.5. We an hange the angle α to any value by rotating the oordinates u and v.Corollary 2.6. Using the same notation as in Theorem (2.4), the prinipal diretions of the minimalimmersion are given by

V1 = er(cos(α)∂ρ
∂u

− sin(α)
∂ρ

∂v
) and V2 = er(sin(α)∂ρ

∂u
+ cos(α)

∂ρ

∂v
).More preisely,

dν({dρ(u,v)}
−1(W1 ◦ τ)) = −e2rV1 and dν({dρ(u,v)}

−1(W2 ◦ τ)) = e2rV2.Moreover, it follows from the last expression that the prinipal urvatures are ±a where the funtion
a : M → R is de�ned by a(τ(u, v)) = e2r(u,v). We also have that hα ◦ τ = 2 ∂r

∂u and hα+π

2

◦ τ = 2∂r
∂v .Proof.

−dν({dρ(u,v)}
−1(W1 ◦ τ)) = erdν(− cos(α)

∂

∂u
+ sin(α)

∂

∂v
)

= e3r(− cos(α)(− cos(2α)
∂ρ

∂u
+ sin(2α)

∂ρ

∂v
) + sin(α)(sin(2α)

∂ρ

∂u
+ cos(2α)

∂ρ

∂v
)

= e2rV1Similarly, dν({dρ(u,v)}−1(W2 ◦ τ)) = e2rV2. In the same fashion,
hα ◦ τ = (e2r)− 3

2 ( cos(α)V1(e2r) + sin(α)V2(e2r) )
= e−3r er ( cos(α) (cos(α)∂ρ

∂u
− sin(α)

∂ρ

∂v
)(e2r) + sin(α) (sin(α)

∂ρ

∂u
+ cos(α)

∂ρ

∂v
)(e2r) )

= 2
∂r

∂u
,and hα+π

2

◦ τ = 2∂r
∂v . �Proof. [Of Theorem (2.2)℄ Take maps ρ, V1, V2, ν : R2 → S3, τ : R2 → M and r : R2 → R suhthat they satisfy the ondition of Theorem (2.4) with α = 0, i.e., with V1(u, v) = W1(τ(u, v)) =er(u,v) ∂ρ∂u(u, v) and V2(u, v) = W2(τ(u, v)) = er(u,v) ∂ρ∂v (u, v). Sine ∆R2r+2 sinh (2r) = 0, we obtainthat

∆R2

∂r

∂u
+ 4cosh (2r)

∂r

∂u
= 0.



MINIMAL TORI WITH LOW NULLITY 5Sine ∂ρ
∂u(u, v) = e−rV1(u, v) = e−rW1(τ(u, v)) and a(τ(u, v)) = e2r(u,v), we have

∂r

∂u
= a−

1

2W1(
1

2
ln(a)) =

1

2
a−

3

2W1(a).Denote by ∆M the Laplaian in the surfae. Sine the metri indued by ρ in R
2 is given by

ds2 = e−2r(du2 + dv2), we obtain that,
∆M (

1

2
a−

3

2W1(a)) = a∆R2(
∂r

∂u
) = −a(2(a+ a−1)(

1

2
a−

3

2W1(a)))Therefore the funtion h0 = a−
3

2W1(a) satis�es J(h0) = 0. J(hπ

2

) = 0 follows similarly. �3. Minimal tori with hn(M) < 2The Lawson-Hsiang torus examples are haraterized as those immersed minimal tori in S3 that arepreserved by a 1-parameter group of ambient isometries [3℄. It is lear that if for some B ∈ so(4),
M ⊂ S3 is invariant under the group of isometries {eBt : S3 → S3 : t ∈ R}, then the funtion fBvanishes. This is beause the funtion fB is the funtion assoiated with the variation Mt = eBtMand, under our assumption, Mt = M for all t, therefore this variation is onstant and fB must beidentially zero. We will start this setion showing the onverse of this observation.Proposition 3.1. If ρ̃ : M → S3 is an immersed losed minimal surfae, suh that fB : M → Rvanishes for some B 6= 0, then ρ̃(M) is invariant under the group {etB : t ∈ R}, so that M is oneof the examples of Hsiang-Lawson.Proof. Let X : S3 → R

4 be the tangent vetor �eld on S3 given by X(p) = Bp. Sine 0 = fB(m) =
〈Bρ̃(m), N(m)〉, then X indues a unit tangent vetor �eld on M . Therefore the integrals urvesof the vetor �eld X that start in ρ̃(M) remains in ρ̃(M), i.e. if ρ̃(m) ∈ ρ̃(M) then etB ρ̃(m) ∈
ρ̃(M). �We ontinue this setion showing that if M is an example in K5, then hn(M) = 1.Proposition 3.2. If ρ̃ : M → S3 is a minimal immersion of a torus in the set K5, then, for someangle θ, hθ : M → R vanishes, and therefore hn(M) = 1.Proof. Sine M ∈ K5, fB vanishes for some B ∈ so(4). As in the previous proposition, thevetor �eld X(m) = Bρ̃(m) de�nes a tangent vetor �eld on M . Sine the funtion a is invariantunder isometries and X is a Killing vetor �eld, then the funtion X(a) is identially zero. Wewill prove the proposition by showing that for some �xed angle θ and some �xed real number λ,
X = λa−

1

2 (cos(θ)W1 + sin(θ)W2). Choose maps ρ, ν, V1, V2 : R2 → S3, a overing τ : R2 → M anda funtion r : R2 → R using Theorem (2.4), and its orollaries, suh that
W1(τ(u, v)) = V1(u, v), W2(τ(u, v)) = V2(u, v) and N(τ(u, v)) = ν(u, v).With this speial parametrization of this torus and having in mind that a(τ(u, v)) = e2r(u,v), wehave that α = 0 and

V1 = er ∂ρ
∂u

,

V2 = er ∂ρ
∂v

,

W1(a)(τ(u, v)) = 2e3r(u,v) ∂r
∂u

(u, v) and
W2(a)(τ(u, v)) = 2e3r(u,v) ∂r

∂v
(u, v).



MINIMAL TORI WITH LOW NULLITY 6Using the previous identities and the Theorem (2.4) we an hek that(3.1) ∇W1
W2 = −

W2(a)

2a
W1 and ∇W2

W1 = −
W1(a)

2a
W2.Sine X is a tangent vetor �eld, X(τ(u, v)) = f(u, v)V1(u, v) + g(u, v)V2(u, v) for two doublyperiodi smooth funtions f, g : R2 → R. Sine, moreover, X is a Killing vetor �eld,

〈∇W1
X,W1〉(τ(u, v)) = V1(f)(u, v)−

W2(a)

2a
(τ(u, v))g(u, v) = er(∂f

∂u
− g

∂r

∂v
) = 0,

〈∇W2
X,W2〉(τ(u, v)) = V2(g)(u, v) −

W1(a)

2a
(τ(u, v))f(u, v) = er(∂g

∂v
− f

∂r

∂u
) = 0, and

(〈∇W1
X,W2〉+ 〈∇W2

X,W1〉)(τ(u, v)) = V1(g)(u, v) +
W2(a)

2a
(τ(u, v))f(u, v) +

V2(f)(u, v) +
W1(a)

2a
(τ(u, v))g(u, v)

= er(∂g
∂u

+ f
∂r

∂v
+

∂f

∂v
+ g

∂r

∂u
)

= 0.A diret veri�ation gives that the three equations above imply that the funtion h(u + iv) =
(erf)(u, v) + i(erg)(u, v) is an analyti funtion. Sine h is doubly periodi in R

2, and in partiularis bounded, then we get that the funtion h is onstant. We an write this onstant as λ cos(θ) +

iλ sin(θ) with λ 6= 0. Sine f = e−rλ cos(θ), g = e−rλ sin(θ) then X = λa−
1

2 (cos(θ)W1+sin(θ)W2).Sine X(a) = 0 vanishes, then hθ = λ−1a−1X(a) also vanishes. Notie that hn(M) has to be 1,otherwise M would be a Cli�ord torus. �The previous proposition shows that if H1 is de�ned as in the introdution, then K5 ⊂ H1. Thefollowing proposition shows that H1 is also a subset of K5.Proposition 3.3. Let ρ̃ : M → S3 be a minimal immersion of a torus. If for some θ, hθ : M → Rvanishes, then fB vanishes for some nonzero skew-symmetri matrix B. Therefore, M is either aCli�ord torus or a torus in K5.Proof. De�ne the vetor �eld X by X = a−
1

2 cos(θ)W1 + a−
1

2 sin(θ)W2. Using equation (3.1) wean prove the following identities whih show that X is a Killing vetor �eld on M .
〈∇W1

X,W1〉 = −
1

2
a−

3

2W1(a) cos(θ)− a−
1

2

1

2a
W2(a) sin(θ) = −

1

2a
hθ = 0

〈∇W2
X,W2〉 = −

1

2
a−

3

2W2(a) sin(θ)− a−
1

2

1

2a
W1(a) cos(θ) = −

1

2a
hθ = 0

〈∇W1
X,W2〉 = −

1

2
a−

3

2W1(a) sin(θ) + a−
1

2

1

2a
W2(a) cos(θ)

〈∇W2
X,W1〉 = −

1

2
a−

3

2W2(a) cos(θ) + a−
1

2

1

2a
W1(a) sin(θ) = −〈∇W1

X,W2〉.Therefore the �ow of the vetor �eld X, ΘX(t, ·) : M → M de�nes a 1-parameter group of isometriesinM . By Theorem (2.3), M is invariant under a 1-parameter group of isometries of S3, and therefore
fB vanishes for some nonzero B ∈ so(4). �



MINIMAL TORI WITH LOW NULLITY 7The previous two propositions show that H1 = K5. For a minimal torus in K5, we have that thespae HS is one dimensional. What an we say about the funtion that spans this one dimensionalspae? We will prove, in Setion 5, that this funtion is ontained in KS, i.e. we will show that
HS ⊂ KS. 4. minimal tori with natural nullity less than 8In this setion we �nd an integrable distribution that produes every possible minimal torus with
nnt(M) < 8. This distribution will be used to show that if kn(M) = 5, then NS ⊂ KS and alsothat whenever nnt(M) ≤ 6, then the group of isometries of M is not trivial.Remark 4.1. The ondition nnt(M) < 8 is equivalent that for some θ and some B ∈ so(4), hθ = 2fB .Proof. Reall that nnt(M) = dim(NS), therefore, if nnt(M) < 8, then, there exist onstants λ and
θ and a matrix B ∈ so(4) suh that

λhθ − 2fB = 0If the spae KS has dimension 6, then λ annot be zero and then we an resale so that λ = 1,whih will give us the relation hθ = 2fB. On the other hand, if the dimension of KS is less than 6then M is one of the Lawson-Hsiang examples, i.e. M is either a Cli�ord torus or a torus in K5. Ineither of these ases there exists an angle θ suh that hθ vanishes (3.2). Taking this θ and the zeromatrix B, one again we obtain the relation hθ = 2fB. �4.1. Distributions that produe all examples of minimal tori with nnt(M) < 8. We de�nethe integrable distributions DB,θ, depending upon B ∈ so(4) and θ ∈ S1, that generate all minimalimmersions of the plane with nnt(M) < 8. As a bonus we will �nd a family of solutions the theellipti sinh-Gordon equation given by ∆r + 2 sinh(2r) = 0, where r : R2 → R.
DB,θ is a 2-dimensional distribution in the tangent bundle

T
(
SO(4)× R

2
)
,where, for a hoie of B ∈ so(4) and θ ∈ S1, at (g, r, s) = ([p, ν, V1, V2], r, s) ∈ SO(4) × R

2,
Z,W ∈ X

(
SO(4)× R

2
) spanning the distribution are de�ned by

Z(g,r,s) :=


g




0 0 −e−r cos(θ) −e−r sin(θ)
0 0 er cos(θ) −er sin(θ)

e−r cos(θ) −er cos(θ) 0 −s
e−r sin(θ) er sin(θ) s 0


 ,

〈Bp, ν〉, cos(θ)〈BV2, e−rν − erp〉 − sin(θ)〈BV1, e−rν + erp〉)
W(g,r,s) :=


g




0 0 e−r sin(θ) −e−r cos(θ)
0 0 −er sin(θ) −er cos(θ)

−e−r sin(θ) er sin(θ) 0 〈Bp, ν〉
e−r cos(θ) er cos(θ) −〈Bp, ν〉 0


 ,(4.1)

s, e−2r − e2r − sin(θ)〈BV2, e−rν − erp〉 − cos(θ)〈BV1, e−rν + erp〉)The following theorem will be used to generate the desired family of minimal immersions, andprovides a family of solutions of the ellipti sinh-Gordon equation.Theorem 4.2. The vetor �elds Z and W ommute, and if we de�ne the map φ : R2 → SO(4)×R
2to be the immersion of the plane so that φ∗(∂/∂u) = Z, φ∗(∂/∂v) = W ,

φ(u, v) = (φ1(u, v), φ2(u, v), φ3(u, v)),where φ1 : R
2 → SO(4) and φ2, φ3 : R

2 → R, we have



MINIMAL TORI WITH LOW NULLITY 8(1) The �rst olumn of φ1(u, v), φ1(u, v)(e1), gives a minimal immersion of R2 into S3 withprinipal urvature funtion a = e2r.(2) The funtion r(u, v) = φ2(u, v) solves the equation ∆r + 2 sinh(2r) = 0.Remark 4.3. Not only will the �rst olumn of φ1 give a minimal immersion, but the Gauss map isthe seond olumn and the third and fourth olumns are the prinipal diretions V1 and V2. So,these immersions of the plane will also have the prinipal diretions globally de�ned, and a > 0,whether or not they are ompat.Proof. Commutativity of Z and W is a diret omputation. Using the de�nitions from (4.1)
[Z,W ] =


Z (g)




0 0 e−r sin(θ) −e−r cos(θ)
0 0 −er sin(θ) −er cos(θ)

−e−r sin(θ) er sin(θ) 0 〈Bp, ν〉
e−r cos(θ) er cos(θ) −〈Bp, ν〉 0




+gZ







0 0 e−r sin(θ) −e−r cos(θ)
0 0 −er sin(θ) −er cos(θ)

−e−r sin(θ) er sin(θ) 0 〈Bp, ν〉
e−r cos(θ) er cos(θ) −〈Bp, ν〉 0







−W (g)




0 0 −e−r cos(θ) −e−r sin(θ)
0 0 er cos(θ) −er sin(θ)

e−r cos(θ) −er cos(θ) 0 −s
e−r sin(θ) er sin(θ) s 0




−gW







0 0 −e−r cos(θ) −e−r sin(θ)
0 0 er cos(θ) −er sin(θ)

e−r cos(θ) −er cos(θ) 0 −s
e−r sin(θ) er sin(θ) s 0





 ,

Z (s)−W (〈Bp, ν〉) , Z
(e−2r − e2r − sin(θ)〈BV2, e−rν − erp〉 − cos(θ)〈BV1, e−rν + erp〉)

−W
(
cos(θ)〈BV2, e−rν − erp〉 − sin(θ)〈BV1, e−rν + erp〉)) .Continuing, noting that Z(g) = Z, W (g) = W , Z(p) = e−r cos(θ)V1+e−r sin(θ)V2, et., substitutingfor the various derivatives and aneling massively, [Z,W ] = 0.We now show that r(u, v) = φ2(u, v) is a solution of the ellipti sinh-Gordon equation. We havethat

∆r =
∂2r

∂u2
+

∂2r

∂v2
=

∂ 〈Bp, ν〉

∂u
+

∂s

∂v
= 〈B(e−r(cos(θ)V1 + sin(θ)V2)), ν〉+ 〈Bp, er(− cos(θ)V1 + sin(θ)V2)〉

−2 sinh(2r)− sin(θ)〈BV2, e−rν − erp〉 − cos(θ)〈BV1, e−rν + erp〉
= −2 sinh(2r).That φ1(u, v)(e1) is a minimal immersion of R2into S3 is straightforward. �Theorem 4.4. If ρ̃ : M → S3 be a minimal immersed torus in S3 suh that, for some angle θ andsome matrix B ∈ so(4), hθ = 2fB, then it is possible to hoose a overing map τ : R2 → M , maps

ρ : R2 → S3, ν : R2 → S3, V1, V2 : R2 → S3, and a funtion r : R2 → R using Theorem (2.4) andits orollaries, so that
φ(u, v) = (φ1(u, v), φ2(u, v), φ3(u, v)) =

(
(ρ(u, v), ν(u, v), V1(u, v), V2(u, v)) , r(u, v),

∂r

∂v
(u, v)

)



MINIMAL TORI WITH LOW NULLITY 9is a solution of the system (4.1) with matrix B and angle θ.Proof. We an rotate oordinates so that the maps ρ, ν, V1, and V2 in Theorem (2.4) and Corollary(2.6) satisfy
V1(u, v) = W1(τ(u, v)), V2(u, v) = W2(τ(u, v)), ν(u, v) = N(τ(u, v)) and α = θ,with a(τ(u, v)) = e2r. Sine α = θ,

V1 = er(cos(θ)∂ρ
∂u

− sin(θ)
∂ρ

∂v
) and V2 = er(sin(θ)∂ρ

∂u
+ cos(θ)

∂ρ

∂v
),if 2fB = hθ, then

2〈Bρ, ν〉 = cos(θ)e−3r(er(cos(θ)∂ρ
∂u

− sin(θ)
∂ρ

∂v
))(e2r)

+ sin(θ)e−3r(er(sin(θ)∂ρ
∂u

+ cos(θ)
∂ρ

∂v
))(e2r)

= 2
∂r

∂uso that(4.2) 2〈Bρ, ν〉 = 2
∂r

∂u
= hθand, similarly,(4.3) 2

∂r

∂v
= 2s = hθ+π

2

.From the formulas for V1 and V2 in Corollary (2.6), we have that
∂ρ

∂u
= e−r(V1 cos(θ) + sin(θ)V2) and ∂ρ

∂v
= e−r(−V1 sin(θ) + sin(θ)V2).Also, using the equation above and the formula for ∂ν

∂u and ∂ν
∂v in Theorem (2.4), we get that

∂ν

∂u
= er(− cos(θ)V1 + sin(θ)V2) and ∂ν

∂v
= er(sin(θ)V1 + cos(θ)V2).A diret omputation shows that derivatives of ∂Vi

∂u ombine with the above to satisfy the equationsfor φ1 to be an integral submanifold of the distribution. In order to omplete the proof of thistheorem, let us hek the equation for ∂s
∂v . We have that

∂s

∂v
=

∂2r

∂v2
= −2 sinh(2r)−

∂2r

∂u2

= −2 sinh(2r)−
∂

∂u
〈Bρ, ν〉

= −2 sinh(2r)− 〈B
∂ρ

∂u
, ν〉 − 〈Bρ,

∂ν

∂u
〉

= − sin(θ)〈BV2, e−rν − erp〉 − cos(θ)〈BV1, e−rν + erp〉,whih veri�es the equation in the system (4.1). The equation for ∂s
∂u is similar. �Remark 4.5. Arguing as in the proof of the previous theorem, if

φ(u, v) = (ρ(u, v), ν(u, v), V1(u, v), V2(u, v), r(u, v), s(u, v))is a doubly-periodi solution of the system (4.1) and M is the torus R
2

∼
, then,
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hθ(u, v) = 2

∂r

∂u
(u, v) and hθ+π

2

(u, v) = 2
∂r

∂v
(u, v) = 2s.Moreover, for any 4 × 4 skew-symmetri matrix B̃, fB̃(u, v) = 〈B̃ρ(u, v), ν(u, v)〉. Finally, sine φsatis�es the system (4.1), then hθ = 2fB .Note 4.6. It follows that doubly-periodi solutions of the system (4.1) indue minimal immersionsof tori with natural nullity less than 8, sine for the B and θ de�ning the distribution, 2fB = hθ.So far, the authors have not been able to �nd a method to determine whih solutions are doublyperiodi.The previous theorem shows that for any hoie of B ∈ so(4), θ ∈ S1 and x0 ∈ SO(4) × R

2 wehave a solution of the sinh-Gordon equation. The following theorem shows that this solution andits derivatives are de�ned in the whole plane and are bounded. Reall that ∂r
∂v = s and that ∂r

∂u isan algebrai funtion of the omponent funtions of (φ1(u, v), φ2(u, v), φ3(u, v)).Theorem 4.7. The funtions φ1(u, v), φ2(u, v) = r(u, v), and φ3(u, v) = s(u, v) are de�ned in thewhole plane and are bounded in T∗

(
SO(4)× R

2
).The proof of this result appears in an appendix.The main tool we use to study minimal tori with natural nullity less than 8 is that we have arepresentation of them in term of integral submanifolds of the distribution DB,θ (4.1). Reall thatby the Remark (4.1), for every torus M ⊂ S3 with nnt(M) < 8 there exist θ and B ∈ so(4) suhthat hθ = 2fB .4.2. Auxiliary identities. In order to simplify the study of the system (4.1) we give additionalrelationships among omponents of the solutions.Theorem 4.8. Let φ1 := (p, ν, V1, V2) : (−ǫ, ǫ) × (−ǫ, ǫ) → SO(4) and φ2, φ3 := r, s : (−ǫ, ǫ) ×

(−ǫ, ǫ) → R be a solution of the system (4.1), that is, an integral submanifold of DB,θ. If B̃ ∈ so(4)is any skew symmetri matrix, and if we de�ne the funtions
ξ1 = 〈B̃p, ν〉, ξ2 = 〈B̃V1, V2〉, ξ3 = 〈B̃V1, p〉, ξ4 = 〈B̃V2, p〉, ξ5 = 〈B̃V1, ν〉, ξ6 = 〈B̃V2, ν〉then, the following identities hold

∂

∂u




ξ1
ξ2
ξ3
ξ4
ξ5
ξ6




=




0 0 er cos(θ) −er sin(θ) e−r cos(θ) e−r sin(θ)
0 0 −e−r sin(θ) e−r cos(θ) −er sin(θ) −er cos(θ)

−er cos(θ) e−r sin(θ) 0 s 0 0
er sin(θ) −e−r cos(θ) −s 0 0 0

−e−r cos(θ) er sin(θ) 0 0 0 s
−e−r sin(θ) er cos(θ) 0 0 −s 0







ξ1
ξ2
ξ3
ξ4
ξ5
ξ6


and

∂

∂v




ξ1
ξ2
ξ3
ξ4
ξ5
ξ6




=




0 0 −er sin(θ) −er cos(θ) −e−r sin(θ) e−r cos(θ)
0 0 −e−r cos(θ) −e−r sin(θ) −er cos(θ) er sin(θ)

er sin(θ) e−r cos(θ) 0 −〈Bp, ν〉 0 0
er cos(θ) e−r sin(θ) 〈Bp, ν〉 0 0 0e−r sin(θ) er cos(θ) 0 0 0 −〈Bp, ν〉

−e−r cos(θ) −er sin(θ) 0 0 〈Bp, ν〉 0







ξ1
ξ2
ξ3
ξ4
ξ5
ξ6


Proof. This is a long diret omputation. �



MINIMAL TORI WITH LOW NULLITY 114.3. Solutions of the system with hn(M) < 2 and natural nullity of the Lawson-Hsiangexamples. The following theorem haraterizes the integral submanifolds of the system (4.1) thatontain every torus M with hn(M) < 2 in terms of the matrix B. Reall from equation (4.3) in theproof of Theorem (4.4) that s(u, v) = ∂r
∂v , so that s = 0 implies that hn(M) < 2.Theorem 4.9. Let φ : R2 → SO(4)×R

2, φ = (φ1, φ2, φ3), be an integral submanifold of DB,θ, andlet r(u, v) = φ2(u, v) and s(u, v) = φ3(u, v). Assume that φ(0, 0) = x0 = (I, r0, 0) and ∂r
∂u(0, 0) = 0.If

B =




0 b1 b2 b3
−b1 0 b4 b5
−b2 −b4 0 b6
−b3 −b5 −b6 0


 ,then, s vanishes, and so hn(M) < 2, if and only if b1 = b6 = 0 and(1) −er0 cos(θ)b2 + er0 sin(θ)b3 − e−r0 cos(θ)b4 − e−r0 sin(θ)b5 = 2 sinh(2r0),(2) −er0 sin(θ)b2 − er0 cos(θ)b3 − e−r0 sin(θ)b4 + e−r0 cos(θ)b5 = 0, and(3) −e−r0 cos(θ)b2 − e−r0 sin(θ)b3 − er0 cos(θ)b4 + er0 sin(θ)b5 = 0.Proof. We will use the identities of Theorem (4.8) with B̃ = B. Notie that

b1 = −ξ1(0, 0), b6 = −ξ2(0, 0), b2 = ξ3(0, 0), b3 = ξ4(0, 0), b4 = ξ5(0, 0), b3 = ξ6(0, 0).Assume that s(u, v) = 0 for every (u, v) ∈ R
2. The equation b1 = 0 follows beause we are assumingthat ∂r

∂u(0, 0) = ξ1(0, 0) = 0. Equation (1) in the statement of the theorem follows from the equation
∂s
∂v (0, 0) = 0. Equation (2) follows from the equation ∂s

∂u(0, 0) = 0. We now prove that s ≡ 0 alsoimplies that b6 = 0 and equation (3) in the statement of the theorem.A diret omputation shows the following two equations;
∂2s

∂v∂u
= ξ1

(
− 2 cosh(2r) + er(sin(θ)ξ4 − cos(θ)ξ3) + e−r(sin(θ)ξ6 + cos(θ)ξ5)

)

+s
(
− er(sin(θ)ξ3 + cos(θ)ξ4) + e−r(sin(θ)ξ5 − cos(θ)ξ6)

)
− 2 sin(2θ)ξ2and

∂2s

∂v2
= s

(
− 4 cosh(2r) + er(sin(θ)ξ4 − cos(θ)ξ3) + e−r(sin(θ)ξ6 + cos(θ)ξ5)

)

+ξ1
(er(sin(θ)ξ3 + cos(θ)ξ4) + e−r(cos(θ)ξ6 − sin(θ)ξ5)

)
− 2 cos(2θ)ξ2.From these equations we get that ξ2(0, 0) = −b6 = 0 and that ∂ξ2

∂v (0, 0) = 0 beause ξ1(0, 0) = 0,and
∂ξ1
∂v

(0, 0) =
∂s

∂u
(0, 0) = 0.A diret omputation shows that the equation (3) in the statement of the theorem is equivalent tothe equation ∂ξ2

∂v (0, 0) = 0. So we have shown one impliation in the theorem.We now show the other impliation. Assume that equations (1), (2) and (3) of the statement of thetheorem hold, and also b1 = b6 = 0. These 5 onditions are equivalent to the onditions
ξ1(0, 0) = 0, ξ2(0, 0) = 0,

∂ξ1
∂v

(0, 0) =
∂s

∂u
(0, 0) = 0,

∂s

∂v
(0, 0) = 0, and ∂ξ2

∂v
(0, 0) = 0.Notie also that by assumption s(0, 0) = 0. Using the identities of Theorem (4.8), the initialonditions above imply that(4.4) ∂ξi

∂u
(0, 0) =

∂ξi
∂v

(0, 0) = 0, for i = 2, 3, 5, 6,



MINIMAL TORI WITH LOW NULLITY 12and, also, by indution, given n ≥ 1, k and l non-negative integers suh that k+ l = n, there existsa polynomial P = P (t1, . . . , t9) suh that
∂nr

∂ul∂vk
= P (er, e−r, s, ξ1, . . . , ξ6).Along with the equations in (4.4), these equations imply that

∂ns

∂ul∂vk+1
(0, 0) =

∂( ∂nr
∂ul∂vk

)

∂v
(0, 0) =

∂P (er, e−r, s, ξ1, . . . , ξ6)

∂v
(0, 0) = 0.In the last equation we also used the hypothesis that ∂ξ1

∂v (0, 0) = ∂ξ2
∂v (0, 0) = 0. We should pointout that we have used the fat that the funtion r is real analyti, whih follows from the fat that

∆r + 2 sinh(2r) = 0. �The next theorem shows that for the Lawson-Hsiang examples not only is kn(M) = 5 but also
nnt(M) = 5 by showing that the spae NS ⊂ KS.Theorem 4.10. If M ⊂ S3 is an immersed minimal torus invariant under a one-parameter groupof isometries of S3, then nnt(M) = kn(M) and therefore the natural nullity nnt(M) ≤ 5.Proof. By Proposition (3.2) we know that for some angle θ, (cos(θ)V1 + sin(θ)V2)(a) = 0 where
a : M → R is a positive funtion suh that the prinipal urvatures of M at p are ±a(p). Withoutloss of generality, we an assume that

e1 ∈ M, ν(e1) = e2, V1(e1) = e3, V2(e1) = e4, ln a(e1) = 2r0, and ∇a(e1) = 0.Therefore, M de�nes a solution of the system (4.1) assoiated with the matrix B = 0 and θ. Callthis solution φ : R2 → SO(4)×R
2. Without loss of generality we an assume that φ(0, 0) = (I, r0, 0).De�ne φ̃ to be the solution of the system (4.1) assoiated with a matrix B = {bij} that satis�es theonditions in the previous lemma and θ̃ = θ − π

2 . Moreover we will take the initial solution thatsatis�es
φ̃(0, 0) = (I, r0, 0).Now onsider the map φ̂ : R2 → SO(4)× R

2 given by
φ̂(u, v) =

((
ρ̂(u, v), ν̂(u, v), V̂1(u, v), V̂2(u, v)

)
, r̂(u, v), ŝ(u, v)

)

=
((

ρ̃(−v, u), ν̃(−v, u), Ṽ1(−v, u), Ṽ2(−v, u)
)
, r̃(−v, u),−〈Bρ̃, ν̃〉

)
,where

φ̃(ũ, ṽ) =
((

ρ̃(ũ, ṽ), ν̃(ũ, ṽ), Ṽ1(ũ, ṽ), Ṽ2(ũ, ṽ)
)
, r̃(ũ, ṽ), s̃(ũ, ṽ)

)
.It is lear that φ̂(0, 0) = (I, r0, 0). Notie that, by the way B was hosen, we have that s̃ = 0 forevery (ũ, ṽ) ∈ R

2. Also, a diret omputation shows that φ̂ is a solution of the system (4.1) with
B = 0 and the angle θ, therefore, φ̂(u, v) = φ(u, v), and so

∂r

∂v
= −

∂r̃

∂ũ
= −〈Bρ, ν〉.This equality is equivalent to the fat that sin(θ)u1 − cos(θ)u2 = fB, where the funtions u1 =

h0, u2 = hπ/2, and fB are de�ned in the �rst setion. This last equation implies that hθ+π

2

= −fB,therefore, hθ, whih is identially zero, and hθ+π

2

are funtions in {fC : C ∈ so(4)}. Then, bothfuntions u1 and u2 are also generated by the funtions in the set {fC : C ∈ so(4)}, i.e., the naturalnullity is 5. Reall that the spae {uC : C ∈ so(4)} is 5-dimensional for any torus invariant undera 1-parameter group of isometries in S3. �



MINIMAL TORI WITH LOW NULLITY 13The results in Setion 3 show that for a torus, the ondition kn(M) < 6 is equivalent to the ondition
hn(M) < 2. Therefore, M is invariant under a group of isometries {etB : t ∈ R}, if and only if, thefuntion a : M → R is invariant under a onstant diretion with respet to the prinipal diretions.The following orollary establishes this relationship.Corollary 4.11. If M is a minimal immersed torus in S3, then nnt(M) ≤ 5 if and only if M isone of the examples of Hsiang and Lawson.Proof. If M has nnt(M) ≤ 5, then kn(M) ≤ 5. Therefore, for some nonzero skew-symmetri matrix
B, fB vanishes. By Proposition(3.1), M will be invariant under a 1-parameter subgroup of the rigidmotions of S3, whih, following [3℄, implies that M is one of Hsiang and Lawson's examples. On theother hand, sine any of the Hsiang-Lawson examples are preserved by a one-parameter subgroupof SO(4), there is a B ∈ so(4) for whih fB = 0. Then Theorem (4.10) implies nnt(M) ≤ 5. �4.4. Symmetry of tori with natural nullity less than 7. In this subsetion we will prove thatif the natural nullity of a torus is less than 7, then the group of isometries is not trivial. Let us startwith the following lemma.Lemma 4.12. If for any solution of the system (4.1), the funtions ξ1 . . . ξ6 de�ned in Theorem(4.8) satisfy r(0, 0) = r0, ξ1(0, 0) = s(0, 0) = ξ4(0, 0) = 0, then r(u, v) = r(−u,−v).Proof. A diret omputation using the identities of Theorem (4.8) shows that the onditions ξ1(0, 0) =
s(0, 0) = ξ2(0, 0) = 0 give

∂ξi
∂u

(0, 0) =
∂ξi
∂v

(0, 0) = 0 for i = 3, 4, 5, 6.Let Cω(R2) be the set of analyti funtions on R
2 and let P0 be the ideal of Cω(R2) generated bythe funtions {er, e−r, ξ2, ξ3, ξ5, ξ6}. Given a nonnegative integer k, de�ne Pk as the set of funtionsin Cω(R2) that an be written as a homogeneous polynomial of degree k in the variables s, ξ1 and

ξ2 with oe�ients in P0. A diret omputation using again the identities in Theorem (4.8) giveus that if f ∈ P0, then ∂f
∂u and ∂f

∂v are in P1. In the same way, if f ∈ Pk then ∂f
∂u and ∂f

∂v are in
Pk+1+Pk−1. Now with these observations in mind, we proeed to show that the funtion r satis�es
r(u, v) = r(−u,−v), by showing that all the partial derivatives of odd order of the funtion r vanishat (0, 0). To ahieve this we �rst notie that the �rst derivatives of r, the funtions ξ1 and s vanishat (0, 0). Then, notie that the seond derivatives of r, i.e. the �rst derivatives of s and ξ1, arefuntions in P0. The last statement implies that the third derivatives of r are in P1 and thereforevanish at (0, 0). One we know that the third derivatives of r are in P1 we get that the fourthderivatives or r are in P0+P2. If we ontinue with this proess we notie that if k is a positive eveninteger, then the k-th derivatives of r are funtions in P0 + P2 + · · · + Pk−2, and in the ase that
k is a odd integer greater that 1, then, the k-th derivatives of r are in P1 + P3 + · · ·+ Pk−2. Now,sine ξ1(0, 0) = s(0, 0) = ξ2(0, 0) = 0, the odd derivatives of the funtion r vanish at (0, 0). �Theorem 4.13. Let M be a minimal torus immersed in S3. If nnt(M) ≤ 6, then the group ofisometries of M is not trivial.Proof. Unless there is some nonzero B ∈ so(4) for whih fB = 0, in whih ase Proposition (3.1)implies the existene of a one-parameter group of isometries of S3 whih restrit to isometries of M ,then nnt(M) ≤ 6 implies that the span of {u1, u2}, u1 := a−

3

2W1(a) = h0 and u2 := a−
3

2W2(a) =
hπ

2

, will be ontained in the span of {fB |B ∈ so(4)}. Sine then u1 = 2fB for some B ∈ so(4),then M de�nes a solution φ of the system (4.1) assoiated with the matrix B and with θ = 0. Theondition u2 = 2fB̃ implies by Remark(4.5) that s = ξ̃1, for the identities of Theorem (4.8) assoiated



MINIMAL TORI WITH LOW NULLITY 14with two distint matries B, B̃ and θ = 0. As before, we will assume that ξ1(0, 0) = s(0, 0) = 0and r(0, 0) = r0. De�ne the funtion f = s − ξ̃1. The hypothesis in the theorem is equivalent tothe ondition that f is identially zero, in partiular, ξ̃1(0, 0) = 0, sine f(0, 0) = 0. The theoremis a onsequene of the previous lemma and will follow by showing that ξ2(0, 0) = 0. A diretomputation shows that
∂f

∂u
= e−rξ6 − erξ4 − e−r ξ̃5 − er ξ̃3and

∂2f

∂u2
= ξ1(−e−rξ6 − erξ4 + e−r ξ̃5 − er ξ̃3)

+e−r(−sξ5 + erξ2)− er(−sξ3 − e−rξ2)

−e−r(−sξ5 + erξ2)− er(−sξ3 − e−rξ2)

−er(sξ̃6 − e−rξ1)− er(sξ̃4 − er ξ̃1)
= ξ1(−e−rξ6 − erξ4 − e−r ξ̃5 − er ξ̃3)

+s(−e−rξ5 + erξ3 − e−rξ̃6 − er ξ̃4)
+2ξ2 + 2cosh(2r)ξ̃1.From the last equation, using the fat that s(0, 0) = ξ1(0, 0) = ξ̃1(0, 0) and ∂2f

∂u2 = 0, we onludethat ξ2(0, 0) = 0, whih implies, by the previous lemma, that r(u, v) = r(−u,−v). To �nish theproof of the theorem, we notie that the funtion A(u, v) = −(u, v) preserves the lattie in R
2 givenby the double-periodiity of the funtion φ and therefore indues a funtion in the torus τ(R2) = M ,sine the �rst fundamental form of M in the oordinates u and v is ce−2r(du2 + dv2) where c is apositive onstant, then, this funtion from M to M indued by A is an isometry. �5. Appendix: First integrals and existene of global solutionsIn this subsetion we prove Theorem (4.7), that the integral submanifolds of DB,θ are de�ned inthe whole of R2. The theorem will follow from the following lemmas.Lemma 5.1. For a given solution of the system (4.1), the funtions ξ1, . . . , ξ6 de�ned in Theorem(4.8) satisfy the ondition that

M =
1

2
{ξ21 + · · · + ξ26}is a onstant.Proof. A diret omputation using Theorem (4.8) gives us that

∂M

∂u
= ξ1

∂ξ1
∂u

+ · · ·+ ξ6
∂ξ6
∂u

= ξ1(er(cos(θ)ξ3 − sin(θ)ξ4) + e−r(cos(θ)ξ5 + sin(θ)ξ6))

+ξ3(sξ4 − er cos(θ)ξ1 + e−r sin(θ)ξ2)

+ξ4(−sξ3 + er sin(θ)ξ1 − e−r cos(θ)ξ2)

+ξ2(er(− sin(θ)ξ5 − cos(θ)ξ6) + e−r(cos(θ)ξ4 − sin(θ)ξ3))

+ξ5(sξ6 + er sin(θ)ξ2 − e−r cos(θ)ξ1)

+ξ6(−sξ5 + er cos(θ)ξ2 − e−r sin(θ)ξ1)

= 0.
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∂M

∂v
= ξ1

∂ξ1
∂v

+ · · ·+ ξ6
∂ξ6
∂v

= ξ1(−er(cos(θ)ξ4 + sin(θ)ξ3) + e−r(cos(θ)ξ6 − sin(θ)ξ5))

+ξ3(−ξ1ξ4 + er sin(θ)ξ1 + e−r cos(θ)ξ2)

+ξ4(ξ1ξ3 + er cos(θ)ξ1 + e−r sin(θ)ξ2)

+ξ2(e−r(− cos(θ)ξ3 − sin(θ)ξ4))

+ξ5(−ξ1ξ6 + er cos(θ)ξ2 + e−r sin(θ)ξ1)

+ξ6(ξ1ξ5 − er sin(θ)ξ2 − e−r cos(θ)ξ1)

= 0,therefore, M is a onstant. �Lemma 5.2. For a given solution of the system (4.1),
E =

1

2
{〈p, p〉+ 〈V1, V1〉+ 〈V2, V2〉+ 〈ν, ν〉}is a onstant.Proof. As in the proof of the previous lemma, a diret omputation shows that ∂E

∂u = ∂E
∂v = 0. �Lemma 5.3. For a given solution of the system (4.1), the funtions ξ1, . . . , ξ6 de�ned in Theorem(4.8) satisfy the identity that

A = er(cos(θ)ξ3 − sin(θ)ξ4)− e−r(cos(θ)ξ5 + sin(θ)ξ6) +
1

2
s2 + cosh(2r)−

1

2
(ξ1)

2is a onstant.Proof. Similarly to the previous two lemmas, we prove that ∂A
∂u = ∂A

∂v = 0.Denote by
B = er(cos(θ)ξ3 − sin(θ)ξ4)− e−r(cos(θ)ξ5 + sin(θ)ξ6) and
C =

∂ξ1
∂u

= er(cos(θ)ξ3 − sin(θ)ξ4) + e−r(cos(θ)ξ5 + sin(θ)ξ6).Notie that B + 1
2s

2 − 1
2ξ

2
1 + cosh(2r) = A. A diret omputation shows that

∂B

∂u
= ξ1C + er{cos(θ)(sξ4 − er cos(θ)ξ1 + e−r sin(θ)ξ2)

− sin(θ)(−sξ3 + er sin(θ)ξ1 − e−r cos(θ)ξ2)}

−e−r{cos(θ)(sξ6 + er sin(θ)ξ2 − e−r cos(θ)ξ1)

+ sin(θ)(−sξ5 + er cos(θ)ξ2 − e−r sin(θ)ξ1)}

= ξ1
∂ξ1
∂u

+ s(er cos(θ)ξ4 + er sin(θ)ξ3 − e−r cos(θ)ξ6 + e−r sin(θ)ξ5)

+ξ2(cos(θ) sin(θ) + cos(θ) sin(θ)− cos(θ) sin(θ)− cos(θ) sin(θ))

+ξ1(−e2r cos2(θ)ξ4 − e2r sin2(θ)ξ3 + e−2r cos2(θ) + e−2r sin2(θ))

= ξ1
∂ξ1
∂u

− s
∂s

∂u
− 2ξ1 sinh(2r)

=
1

2

∂ξ21
∂u

−
1

2

∂s2

∂u
−

∂ cosh(2r)

∂u
.
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∂u = 0. Similarly,
∂B

∂v
= sC + er{cos(θ)(−ξ1ξ4 + er sin(θ)ξ1 + e−r cos(θ)ξ2)

− sin(θ)(−ξ1ξ3 + er cos(θ)ξ1 + e−r sin(θ)ξ2)}

−e−r{cos(θ)(−ξ1ξ6 + er cos(θ)ξ2 + e−r sin(θ)ξ1)

+ sin(θ)(ξ1ξ5 − er sin(θ)ξ2 − e−r cos(θ)ξ1)}

= s(−2 sinh(2r)−
∂s

∂v
) + ξ1(−er cos(θ)ξ4 + e2r cos(θ) sin(θ)

−e2r sin(θ) cos(θ)− er sin(θ)ξ3)
+e−r cos(θ)ξ6 − e−2r cos(θ) sin(θ)− e−r sin(θ)ξ5 + e−2r sin(θ) cos(θ)

+ξ2(cos
2(θ)− sin2(θ) + cos2(θ) + sin2(θ))

= −
1

2

∂s2

∂v
−

∂ cosh(2r)

∂v
+

1

2

∂ξ21
∂v

.

�Lemma 5.4. Given a solution of the system (4.1). If M and A are the onstants given by Lemmas(5.1) and (5.3), respetively, if (u0, v0) is any point in the domain of the solution, and if R is a realnumber suh that
cosh(2R) > A+ 4M cosh(R) +

M2

2
and R > |r(u0, v0)|Then, |r(u, v)| < R and

1

2
s2(u, v) + cosh(2r(u, v)) ≤ A+

M2

2
+ cosh(2R)for any (u, v) in the domain of the solution.Proof. We have that

1

2
s2(u, v) + cosh(2r(u, v)) = A+

1

2
ξ21 + e−r(cos(θ)ξ5 + sin(θ)ξ6)− er(cos(θ)ξ3 − sin(θ)ξ4)

≤ A+
M2

2
+ 4M cosh(r).This inequality above shows that the result will follow one we prove that |r(u, v)| ≤ R. We provethat |r(u, v)| < R by ontradition. If, for some (u, v), |r(u, v)| = R, then, the inequality aboveimplies that at that (u, v),

cosh(2R) ≤ A+
M2

2
+ 4M cosh(R).This is a ontradition with the hoie of R given in the hypotheses. �Theorem (4.7) is a orollary of the previous lemmas, sine the solution of the system (4.1) remainsbounded in SO(4)× R

2 for all (u, v), guaranteeing the existene of the solution for all (u, v).Referenes[1℄ Abresh, U, Old and New Doubly Periodi Solution of the sinh-Gordon Equation, in New results in nonlinearpartial di�erential equations, Semin. Bonn/FRG 1984, Aspets. Math. E10, (1987) 37-73.[2℄ Lawson, H. B., Jr., Complete minimal surfaes in S
3, Ann. of Math. (2) 92 (1970), 335�374.[3℄ Hsiang, W-Y, and Lawson, H. B., Minimal submanifolds of low ohomogeneity, J. Di�erential Geom. 5, (1971)1-38.
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