
MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACESPABLO M. CHACÓN AND DAVID L. JOHNSONAbstrat. For a ompat 3-manifold M whih is a irle bundle over a Riemann surfae Σ with even Eulernumber e(M), and with a Riemannian metri ompatible with the bundle projetion, there exists a ompatminimal surfae S in M . S is embedded and is a setion of the restrition of the bundle to the omplementof a �nite number of points in Σ. If the Euler number is zero, a smooth minimal setion S exists, and forany nonzero Euler number a smooth minimal surfae exists whih is a double-setion over all but �nitelymany points of Σ. 1. IntrodutionLet M be a 3-manifold whih is a irle bundle (to be spei�, a prinipal U(1)-bundle) over a ompatRiemann surfae Σ, with projetion π : M → Σ. Assume that the metri on M is ompatible with thebundle projetion, that is, π is a Riemannian submersion and the �bers are geodesis. Assume that theEuler lass e(M) of the assoiated rank-2 vetor bundle E over Σ is even. The goal of this paper is to showthe existene of a smooth minimal surfae in M , whih is a setion of the bundle exept over a �nite set ofpoints, and is topologially the Riemann surfae Σ with a �nite number of ross-aps.An example of suh a minimal surfae is desribed in [1℄. Consider M = T1(S
2), the unit tangent bundleof the standard 2-sphere. For any hoie of a unit tangent vetor v at p ∈ S2 , the Pontryagin yle P , thesetion de�ned by parallel translation of v along eah longitude line from p, will be a smooth minimal surfaein M whih is a smooth setion exept over −p. P is in this ase a totally-geodesi RP2 embedded in M .The authors thank Antonio Ros for suggesting this problem, and also Olga Gil Medrano for many helpfulsuggestions. The seond-named author thanks the Universidad de Granada and the Universidad de Sala-mana for their support during his visits. The authors also thank the referee for many helpful suggestions.The last setion of the paper was added by the referee's suggestions, and a onstrution suggested by thereferee led to Corollary 3.9. 2. Minimal graphsLet X be a ompat, n-dimensional manifold, and let π : B → X be a �ber bundle over X with ompat�ber F of dimension k. Any suh bundle admits a lass of Riemannian metris, due to Sasaki [11℄, for whihthe projetion π is a Riemannian submersion with totally-geodesi �bers isometri to F under inlusion,determined by a hoie of onnetion on the assoiated prinipal bundle.De�nition 2.1. A reti�able setion T in B is a ountably-reti�able, integer-multipliity n-urrent in Bso that,(1) 〈−→

T (q), e(q)
〉
≥ 0, ‖T ‖-almost everywhere; where e(q) is the unique horizontal (orthogonal to the�bers) n-plane at q whih maps onto T∗(X, π(q)) under π∗ (preserving orientation), and −→

T is theunit oriented n-vetor tangent plane of T at q.Date: July 26, 2010.2000 Mathematis Subjet Classi�ation. Primary: 53A10 Seondary 53C20.Key words and phrases. minimal surfaes, reti�able setions, singularities.The �rst author was partially supported by MEC projet MTM2007-60017 and Fundaión Sénea projet 04540/GERM/06,and JCyL projet SA062A09, Spain. The seond author was partially supported by the Universitat de Valènia during hissabbatial stay in Spain. 1



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 2(2) The image urrent π#(T ) is the fundamental lass 1[X ] as an n-dimensional urrent on X withinteger oe�ients.(3) If ∂X = ∅, ∂T ≡ 0(mod 2) as �at hains modulo 2 (If ∂X 6= ∅, ∂T must have support ontained in
π−1(∂X) = ∂B).The spae of all suh reti�able setions of the bundle B over X will be denoted Γ̃(B).Remark 2.2. This de�nition di�ers slightly from that in [6℄, in that here the urrents are only required to berelative yles mod-2. This is neessary beause the urrents onstruted will not be yles as integral hains.As reti�able urrents they are by de�nition oriented, but urrents orresponding to smooth submanifoldsmay be non-orientable as manifolds, or, equivalently, may have interior boundaries as reti�able urrents.Compat non-orientable manifolds without boundary (as manifolds) are mod-2 yles as �at hains modulo2.In [6℄ it is shown that any homology lass of reti�able setions has a minimal-mass representative, whih isa ontinuous setion over an open, dense subset of X . As remarked in [8, 11.1℄ or [3, 4.2.26℄, the extensionfrom integer oe�ients to Z/2Z oe�ients, and onsidering the urrents as �at hains modulo 2 for theboundary ondition will not alter the arguments of [6℄.If σ is a C1 setion, then the mass of the image (usually alled the volume of the setion in this ase) isgiven by

V(σ) :=

∫

X

√

1 + ‖∇σ‖2 + · · ·+

∥∥∥∥∇σ ∧
min {n, k}

· · ·
∧ ∇σ

∥∥∥∥
2

dVX .Theorem 2.3. [6℄ Let X be a ompat manifold, and let B be a �ber bundle over X with ompat smooth�ber F and with an assoiated Sasaki metri. In any nonempty mod-2 homology lass of reti�able setions
σ : X → B, there is a mass-minimizing, reti�able setion whih is ontinuous exept over a set S of measure0 in X.Remark 2.4. It should be noted that the original result shows the setion to be C1 on an open dense set;ontinuity may hold on a slightly larger set. Also, the theorem does not say there will not be other mass-minimizers that may have worse regularity, only that there is one whih is this niely-behaved. Finally,Proposition (2.5) below will imply that there is suh a nonempty homology lass of reti�able setions in theases we need.Now, let M be a 3-manifold whih is a irle bundle π : M → Σ over a ompat Riemann surfae Σ, witha Sasaki metri. The Euler lass e(M) of M is the Euler lass of the assoiated orientable rank-2 vetorbundle E → Σ. In order to show the existene of the laimed minimal surfae in M , we �rst have to showthat Γ̃(M) 6= ∅ when e(M) is even.Proposition 2.5. If M → Σ is a irle bundle over a ompat Riemann surfae, with even Euler lass
e(M), then Γ̃(M) 6= ∅.Proof. If k := |e(M)|/2, hoose k points {p1, . . . , pk} ⊂ Σ. Essentially by the Poinaré-Bendixon theorem,there is a smooth setion of E with zeros only at the points pj , of index ±2 at all points, where the sign is thatof e(M). Equivalently, given ǫ > 0 su�iently small, there is a smooth setion τ of M |Σ\{Bǫ(p1),...,Bǫ(pk)}with the following boundary onditions: for eah j, M |∂Bǫ(pj)

∼= S1 × S1, so the map z 7→ zn de�nes asetion on the boundary omponent M |∂Bǫ(pj)
with index n = ±2 for eah j ≤ k. A smooth setion τ existswith these boundary onditions, where we hoose the sign of n to math the sign of e(M). This setionan be onstruted to extend, for any 0 < δ < ǫ, to M |Σ\{Bδ(p1),...,Bδ(pk)}

with similar boundary onditions.The limit of these extensions, as δ → 0, has losure whih is a mod-2 yle in M , as in [1℄. This limit is areti�able setion, so the spae Γ̃(M) of reti�able setions is nonempty. �Following [6℄, with the slight modi�ation to the boundary onditions, there is a mass-minimizing reti�ablesetion σ in the mod-2 homology lass of any suh τ above, whih is a ontinuous setion over an open densesubset. We show below that the exeptional set is a �nite olletion of �bers over points {x1, . . . , xn} ⊂ Σ,



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 3and that the mod-2 yle whih is the losure of this setion is a smooth minimal surfae inM . We emphasizethat the exeptional points of the minimizer need not be the points used in Proposition (2.5); in partiular,the number n of points may be larger than k by an even number (sine the indies must anel).The mod-2 homology lass [τ ] ∈ H2(M,Z/2Z) will projet to π∗([τ ]) = [Σ] ∈ H2(Σ,Z/2Z). Moreover, suha reti�able setion τ exists for eah lass α ∈ H2(M,Z/2Z) whih projets to the generator, any elementof (π∗)
−1

([Σ]) ⊂ H2(M,Z/2Z). This is the ase sine, for any map α : Σ → S1, the produt τ · α, thinkingof M as an S1-prinipal bundle over Σ, will be de�ned by the right ation of S1 on M , and τ · α will beanother reti�able setion of M . These setions will be homologous whenever α is homotopi to 1, andthe homotopy lasses of τ · α will orrespond to the homotopy lasses of α in π1(Σ) ∼= H1(Σ,Z). Sine
H2(M,Z/2Z) ∼= H2(Σ,Z/2Z)⊕H1(Σ,Z/2Z) by the Gysin sequene (with the mod-2 redution of the Eulerlass being 0), any element of (π∗)

−1
([Σ]) ⊂ H2(M,Z/2Z) has a representative of this form. Thus, theresults of [6℄ will imply that there will be a mass-minimizing representative reti�able setion in eah suhhomology lass.In the ase of Euler lass 0, this desription gives a better piture of the various omponents of the spaeof reti�able setions, and the nature of the existene of a mass-minimizer within a homology lass. Inthat ase, arguing as above, there are reti�able setions in eah lass of (π∗)

−1
([Σ]) ⊂ H2(M,Z), whihis bijetive with H1(Σ,Z), and those lying within di�erent lasses are not homologous, so there would beat least a separate mass-minimizer for eah suh homology lass of setions. We make no laim that thesevarious homology lasses will have distint minimum volumes, but it may be possible to show suh a result,arguing as in [2℄. 3. SingularitiesConsider now a mass-minimizing reti�able setion T of a irle bundle M over a ompat Riemann surfae

Σ, with the metri as desribed earlier. An exeptional point, or a singular point x ∈ Σ is a point over whih
T is not a ontinuous setion. Sine π(Supp(T )) = Σ, this implies that there are two points, at least, in
π−1(x) ∩ Supp(T ) for an exeptional point x. Our �rst goal will be to show that the entire �ber is enlosedin T over any exeptional point. This step uses a basi onstrution whih will be needed elsewhere as well,a horizontal sequene of strethes of the urrent.3.1. H-ones. If S ∈ Γ̃(M) is a reti�able setion with �nite mass, and if x0 ∈ Σ is an arbitrary point,then for su�iently small r > 0, and for all λ > 1, S de�nes a reti�able setion Sλ,R in B(0, R) × S1by Sλ,R =

[
(φλ)#

(
S|−π−1(B(0, r))

)]
|−B(0, R) × S1, if λr ≥ R, where x0 orresponds with the enter 0of the oordinate system, φλ(x, y) = (λx, y), and π−1(B(0, R)) is identi�ed with B(0, R) × S1, having theRiemannian metri indued fromM and the dilation φλ. B(0, λr)×S1 also has a spei� Riemannian metri,the metri from M strethed horizontally by φλ. Clearly, for an arbitrary R > 0, if λ > 1 is su�iently large,

Sλ,R will be well-de�ned in Γ̃(B(0, R)× S1).An h-one H of S at x0 ∈ Σ, for a given sequene λi → ∞, is the limit, for eah R > 0, of the sequene ofrestrited strethes Sλi,R, if that limit exists as a reti�able setion (thinking of Sλ,R as reti�able setionsof B(0, R)× S1 in order to de�ne the limit), and if Hλ,R = H |−B(0, R)× S1 for all λ > 1. The limit will bea reti�able setion of B(0, R)× S1 with the �at Eulidean metri.For a given point, urrent, and sequene of strethes, an h-one may or may not exist, just as tangent onesfor reti�able urrents may or may not exist at a given point. In addition, we make no laim for uniqueness ofsuh h-ones (the h-one may depend upon the sequene of strethes) even when they do exist. However, if Sis a mass-minimizing reti�able setion, then an h-one will exist over eah base point. Over a regular point,h-ones are simply horizontal planes, but over singular points they reveal some of the singular struture.Theorem 3.1. Let S ∈ Γ̃(M) be mass-minimizing and ontinuous over an open dense subset, as in Theorem2.3. At eah point x0 ∈ Σ, there is an h-one.



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 4Proof. Certainly there is nothing to prove unless x0 is a singular point. In that ase, the strethes satisfy,for λ > 1,
V(Sλ,R) =

∫

B(0,R)

√
1 +

1

λ2

∥∥∥∇u|x/λ

∥∥∥
2

dA

≤
1

λ

∫

B(0,R)

√
1 +

∥∥∥∇u|x/λ

∥∥∥
2

dA

≤ λ

∫

B(0,R/λ)

√
1 + ‖∇u‖2rdrdθ

= λf(R/λ)

= R
f(R/λ)

R/λ
,where f(t) = V(S|−B(0, t)×S1), and S is the graph of u a.e. Now, f is inreasing, thus is almost-everywheredi�erentiable. We have that

d

dt

(
f(t)

t

)
=

tf ′(t)− f(t)

t2

≥ 0.To see this, let Ct be the horizontal one over S|−∂B(0, t)×S1 de�ned by extending rays inward horizontallyto the �ber over 0, that is, if S = graph(u), then Ct would be the graph of v(x) := u(tx/ ‖x‖). Then, sine
S is volume-minimizing, and f ′(t) is the mass of S|−∂B(0, t)× S1

tf ′(t) ≥ V(Ct)

≥ V(S|−B(0, t)× S1)

= f(t).Thus, f(t)
t is inreasing, and so, for t < R, f(t)/t ≤ A, where A = f(R), or

R

(
f(R/λ)

R/λ

)
≤ RA,and the mass of Sλ,R is uniformly bounded (in λ) for all λ > 1 su�iently large. Thus any sequene {λn}of strethes, as λ → ∞, is uniformly bounded in mass over a �xed R. In order to apply the ompatnesstheorem, we need to also show that the mod-2 boundaries ∂2Sλn

= Sλn
|−∂B(0, R)×S1 have bounded mass.But, by sliing, for any λ > 0,

∫ s

s/2

V
(
∂
(
Sλ|−B(0, r)

))
dr ≤ V

(
Sλ|−B(0, s)

)
≤ λf(s/λ) ≤ sA,following [8, Theorem 9.8℄ and [3, 5.4.3(6)℄, and so for some r, R/2 < r < R, V (

∂
(
Sλ|−B(0, r)

))
≤ RA

R/2 =

2A. Also, by sliing, almost-all suh hoies of r have slies that are reti�able. Then, the further streth
S(λR/r),R has reti�able mod-2 boundary ∂ (

SλR/r|−B(0, R)
), with boundary volume V (

∂
(
SλR/r|−B(0, R)

))
≤

(
R
r

)
2A ≤ 4A, So, any sequene λn → ∞ an be modi�ed to one with a onvergent subsequene. Set S0,R tobe the limit of this subsequene, S0,R := limn Sλn

|−B(0, R) × S1. Taking a further subsequene, sine theboundaries ∂2Sλn,R are reti�able and have no boundary themselves, it an be assumed that ∂2Sλn,R alsoonverges, to a reti�able setion B ∈ Γ̃(S1
R × S1).To see that S0 is an h-one, we use the fat that at eah point of S there is an oriented tangent one [6,Prop. 4.1℄ in the usual sense. Any non-vertial ray in the tangent one at a point p ∈ π−1(x0), under thesequene of horizontal strethes λn, will onverge to a horizontal ray in S0,R, and any point of S0,R is onsuh a horizontal ray, so S0,R is an h-one. �



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 5Eah element of a sequene Sλi
of horizontal strethes of a mass-minimizing reti�able setion S in turnminimizes a modi�ed funtional, Vλi

de�ned by
Vλi

(T ) := V

((
φ 1

λi

)

#
(T )

)
λi,where T ∈ Γ̃(B(0, R) × S1) with the metri indued from M by the streth as before, and (

φ 1

λi

)

#
(T ) ∈

Γ̃(B(0, R
λi
)× S1) has the original metri from M . Sλi

will minimize Vλi
among all reti�able setions withthe same mod-2 boundary as ∂2Sλi

= Sλi
|−∂B(0, R)× S1.The funtionals Vλi

will onverge to a limiting funtional V0. If T is a graph of some smooth funtion
u : B(0, R) → S1, then V(u) =

∫
B(0,R)

√
1 + ‖∇u‖2dA, and

Vλi
(T ) :=

∫

B(0,R/λi)

√
1 + λ2

i

∥∥∇u|λix

∥∥2dAλi

=

∫

B(0,R)

√
1 + λ2

i ‖∇u‖2
1

λ2
i

dAλi

=

∫

B(0,R)

√
1

λ2
i

+ ‖∇u‖2dA,where the seond line is just hange of variables. On suh a urrent, learly
V0(T ) =

∫

B(0,R)

‖∇u‖ dA.This funtional is alled the �twisting� of the urrent in [1℄, at least in the ase of the unit tangent bundle. Themain property of the limiting funtional is that it will be minimized by the h-one of the volume-minimizer(the minimizer of the limit is the limit of the minimizers), among all reti�able setions in B(0, R)×S1 withthe same boundary as the h-one. This property is of ourse not the general situation for arbitrary sequenesof funtionals, but will hold in this ase.Proposition 3.2. If, for some sequene λi → ∞, the strethes Sλi
onverge in Γ̃(B(0, R)×S1) to S0, where

S minimizes V (and so Sλi
minimize Vλi

) among all suh urrents with the same boundary in ∂B(0, R)×S1,then S0 minimizes V0 among all elements of Γ̃(B(0, R)× S1) with the same boundary as S0.Proof. Reall that, taking an appropriate subsequene, the sequene of mod-2 boundaries
∂2Sλi

= Sλi
|−∂(B(0, R)× S1)onverge to C := ∂2S0 = S0|−∂(B(0, R) × S1) in Γ̃(∂B(0, R) × S1). Then, for any ǫ > 0, there is an Isu�iently large so that, if i > I, then there is a reti�able urrent Ti in ∂B(0, R) × S1 so that ∂2Ti =

(∂2Sλi
− ∂2S0) = (Sλi

− S0) |−∂(B(0, R)× S1) with mass M(Ti) < ǫ.Assume that S0 does not minimize V0 among all reti�able setions with the same boundary. Then, thereis some ǫ > 0, and a reti�able setion T ∈ Γ̃(B(0, R)× S1) with ∂2T = ∂2S0 so that V0(T ) < V0(S0)− 4ǫ.Choose I above for this ǫ. Sine the funtionals also onverge, hoose i > I su�iently large so that
Vλi

(T ) < V0(T ) + ǫ, V0(S0) < Vλi
(S0) + ǫ, and Vλi

(S0) < Vλi
(Sλi

) + ǫ Then, ∂2 (T + Ti) = ∂2Sλi
, T + Ti ∈

Γ̃(B(0, R)× S1), and
Vλi

(T + Ti) ≤ Vλi
(T ) + Vλi

(Ti)

< V0(T ) + ǫ+M(Ti)

< V0(T ) + 2ǫ

< V0(S0)− 2ǫ

< Vλi
(S0)− ǫ

< Vλi
(Sλi

),



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 6whih ontradits the fat that Sλi
minimizes Vλi

. �With this result. we an identify the kind of singular behavior that an our.3.2. Index of singularities. A singular point x ∈ Σ of a mass-minimizing S ∈ Γ̃(M) as above determinesan index, an integer kx generalizing the index of vetor �elds.Let x ∈ Σ, and let S ∈ Γ̃(M) be mass-minimizing. For almost-all ǫ > 0 su�iently small, the restrition
Sǫ := S|−π−1(∂B(x, ǫ)) determines a reti�able setion Sǫ ∈ Γ̃(S1 × S1). If P : S1 × S1 → S1 is theprojetion onto the seond fator (the �ber), then kǫ, de�ned by P#(Sǫ) = kǫ

[
S1

], is just the degree of themap. Choose a sequene λi → ∞ so that, on B(0, 1)× S1, Sλi
onverges to an h-one H . De�ne the indexof S at x, kx, to be

kx := lim
i→∞

kλi
= kH ,whih an be viewed as either a limiting index, or, equivalently, the index of the h-one. Of ourse, the indexis also de�ned for non-minimizing setions, but it does seem to require something like the existene of anh-one to guarantee existene and boundedness of the limit.Proposition 3.3. If x has index 0, then x is a regular point.Proof. Assume that x is a singular point with index 0. Then, the h-one H of S at x, in Γ̃(B(0, R)×S1), alsohas index 0, so that H |−∂B(0, R)× S1 is a reti�able setion of degree 0, represented as a map u : S1 → S1of degree 0, possibly with singularities or vertial portions. Thus u = eif for some real-valued map f (ingeneral, reti�able setion of the trivial line bundle), and H is the graph of u(r, θ) = eif(θ). The h-oneminimizes the funtional

V0(u) =

∫ ∫

B(0,R)

‖∇f‖ rdrdθ

=

∫ ∫

B(0,R)

∥∥∥∥
∂f

∂θ

∥∥∥∥ drdθ.For any funtion h(r, θ) with support in the interior of B(0, 1),
0 =

∂

∂t

∣∣∣∣
0

∫ ∫

B(0,R)

‖∇(f + th)‖ rdrdθ

=

∫ ∫

B(0,R)

1
r
∂f
∂θ

∂h
∂θ∥∥∥∂f

∂θ

∥∥∥
rdrdθ

=

∫ ∫

B(0,R)

∂f
∂θ

∂h
∂θ∥∥∥∂f

∂θ

∥∥∥
drdθ.For some small ǫ > 0, take h to be h(r, θ) := (M − ǫ(R− r)/R− f(θ))−, where by ()− we mean thenonpositive part of the funtion, (g)− (x) := inf {g(x), 0}, and M = sup {f(θ)}. Sine, in Supp(h), whihhas positive measure, ∂h/∂θ = −∂f/∂θ, ∂f

∂θ
∂h
∂θ

‖ ∂f
∂θ ‖

= −
∥∥∥∂f
∂θ

∥∥∥. Unless f is a.e. onstant, the integral will benegative, whih would ontradit minimality of S. Thus f must be onstant, and so the graph of S isontinuous at x. �As a orollary, we an now show that at any singular point, the entire �ber over the point is ontained inthe support of S.Corollary 3.4. If x ∈ Σ is a singular point for a mass-minimizing S ∈ Γ̃(M), then π−1(x) ⊂ Supp(S).Proof. The singularity has to have nonzero index, whih implies that the entire �ber is in the support. �Corollary 3.5. The singular points of a mass-minimizing S ∈ Γ̃(M) are isolated.



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 7Proof. If a singular point x0 is the limit of other singular points and is of index k, onsider the urrentde�ned in B(0, R)× S1 as Sv, where v(r, θ) = e−ikθ, whih has support
Supp(Sv) =

{
(x, yv(x)) ∈ B(0, R)× S1

∣∣ (x, y) ∈ S
}and has the obvious tangent planes and multipliities inherited from S. Clearly Sv has index 0 at x0.However, sine there is a sequene of singular points of S approahing x0, and for eah suh point xi theentire �ber is ontained in the support of S, this will also be true for Sv sine v has only x0 as a singularpoint, so is regular at eah xi, and thus Sv is still singular at xi as laimed. Sine Supp(Sv) is losed, itmust ontain the entire �ber over x0, so x0 is a singular point of Sv, and is of index 0 at x0.

Sv does not minimize the volume, but it does minimize a twisted volume Vv de�ned for reti�able setionsof B(0, R)× S1 by Vv(T ) = V(Tv−1). Strething as before, the h-one Hv (where H is the h-one of S fora spei� sequene of strethes) will minimize
Vv,0(w) =

∫ ∫

B(0,R)×S1

∥∥∇(wv−1)
∥∥ dA.Sine Hv, the minimizer of this funtional (with the boundary onditions inherited from S), is an h-one,we have the variational ondition, as before, if w = eif ,

0 =
d

dt

∣∣∣∣
0

∫ R

0

∫ 2π

0

‖∇(f + th(r, θ) + kθ)‖ rdθdr

=

∫ R

0

∫ 2π

0

(
∂f
∂θ + k

)
∂h
∂θ∥∥∥∂f

∂θ + k
∥∥∥

dθdr.As with Proposition (3.3), taking h to be h(r, θ) := (M − ǫ(R− r)/R − f(θ)− kθ)−, where M is the maxi-mum of f , would provide a ontradition unless ∂f
∂θ + k ≡ 0.Thus, the h-one of S at x0 is that of v−1 itself, whih has only the singularity at 0. If S had a sequene ofsingularities approahing x0, the h-one would also. Thus the singularities of S are isolated. �This result also shows:Corollary 3.6. Eah singularity is of index ±2.Proof. In [1℄, it is shown that only an isolated singularity of index ±2 an be a reti�able setion. �We �nally are in a position to prove the main result, whih isTheorem 3.7. Let M be a irle bundle over a ompat Riemann surfae Σ, with the Sasaki metri, so thatthe Euler number e(M) of the irle bundle is even. Then, there is a mass-minimizing reti�able setion Swhih is moreover a smooth, embedded minimal surfae in M . Topologially, S is Σ with an �nite numberof ross-aps.Proof. For a volume-minimizing setion S ∈ Γ̃(M) as shown to exist by Theorem 2.3, we have shown thatthere are a �nite number of pole points x ∈ Σ, over eah of whih S ontains the entire �ber, and the indexis ±2. On the omplement of those singular �bers, S is a ontinuous graph and is a minimal surfae, so itis smooth (sine it is odimension 1 in a 3-manifold.).In an ǫ-neighborhood of the singular �bers, the graph is asymptotially that of u = e±2iθ, and so the urrentis C1 at these points. Sine it is of lass C1 and minimal (weak mean urvature vanishing), it is a smoothminimal surfae. That the struture of the surfae in a neighborhood of a singularity is a ross-ap an befound in [1℄. The topologial statement then follows. �Remark 3.8. While it seems lear that a volume-minimizing reti�able setion should have a minimal numberof pole points (ross-aps), sine singularities add to volume [2℄, we do not make that laim here. It maybe the ase that the smallest number of ross-aps will depend on the homology lass of the setion, sinefor "large" elements of π1(Σ), the setion onstruted by this theorem may manage to have less mass withadditional ross-aps. If, however, the Euler lass of the bundle is 0, there will be a smooth minimizer whih



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 8is a global setion, sine in that ase we an work with the lass of urrents whih are limits of smoothsetions. All singularities would then be of index 0, and so ould not exist.A similar statement holds for bundles with odd Euler lass, and in fat for any nonzero Euler lass, exeptthat the minimizer will not be a setion, but will generially be the double of a setion with a �nite numberof vertial �bers. The Hopf �bration S3 → S2 provides a model for suh double-setions, with the equatorial
S2 in S3 being the double-setion, meeting eah �ber at two points exept for one �ber ontained in thesurfae. These surfaes will then be 2-sided minimal surfaes in M whih are overs of the base spae Σexept over �nitely many points.Corollary 3.9. Let M be a irle bundle over a ompat Riemann surfae Σ, with the Sasaki metri, sothat the Euler number e(M) of the irle bundle is nonzero. Then, there is a smooth, embedded 2-sidedminimal surfae S in M whih intersets all but �nitely many �bers of π : M → Σ twie. Topologially, S isa two-fold over of Σ exept over a �nite number of rami�ation points.Proof. The onstrution of suh a setion is to take the projetion of M → Σ to M := M/x ∼ x · (−1)identifying "antipodal" points on eah �ber under the right U(1)-ation. M will again be a irle bundleover Σ, with double the Euler lass. The main theorem then shows the existene of a mass-minimizingreti�able setion σ of M whih is a smooth minimal submanifold with �nitely many ross-aps. Pullingthat bak to M will no longer be a reti�able setion, but will be a minimal submanifold S of M so that allbut �nitely many �bers interset the submanifold at 2 points (antipodal points). The preimages of the rossaps (onneted sums with a projetive plane) beome a trivial onneted sum as in the example of M = S3above, and the minimal surfae S will be two-sided. �Remark 3.10. The "exeptional" points {x1, . . . , xn} of Σ over whih S is not a two-fold over satisfy
S ∩ π−1(xi) = π−1(xi) ∼= S1.4. Appliations to geometri strutures on 3-manifoldsThurston's geometrization onjeture, famously proved by G. Perelman, is that any ompat oriented 3-manifold an be deomposed into omponents, eah of whih have a spei� geometri struture from a listof 8 possible types (f. [13, 12℄). In this ontext a geometri struture is a omplete, loally-homogeneousmetri. Of these 8 types of geometries, 4 our as Sasaki metris on irle bundles over ompat Riemannsurfaes with even Euler lass and onstant urvature, spei�ally strutures of the types S3, H

2 × R,
S1 × S2, and R

3. In eah suh lass, the main theorem of this paper asserts the existene of a smooth,minimal submanifold transverse to the �bers of the bundle exept for �nitely many �bers ontained withinthe submanifold. The existene of suh surfaes is known in several of these ases, but this theorem providesan expliit realization of the submanifold.One aution is that the Seifert �brations onsidered in these geometries often have exeptional �bers, so arenot irle bundles over a Riemann surfae (instead, over an orbifold). For example, the lens spaes L(p, q)as Seifert �bered spaes �bered by the image of the Hopf �bration have exeptional �bers, unless q = 1 [4,p. 87℄. Similarly, spaes with the geometry of PSL(2,R) will have an exeptional �ber. The results of thispaper do not apply in that situation, although it should be possible to extend the result to this ase withsome modi�ation.In the ase e(M) = 0, zero Euler lass, there will be smooth mass-minimizing setions of the bundle M → Σ.It was proved in [7℄ that suh a minimal surfae exists; any inompressible horizontal 2-sided surfae isisotopi to a unique minimal surfae. In the present ase, for any homology lass of setions, there will beat least one smooth mass-minimizer by [6℄. Moreover, applying an argument of [5℄, used there only for theunit tangent bundle, eah suh minimizing setion σ de�nes a �at onnetion ω on M → Σ as a prinipal
S1-bundle, simply by taking the horizontal distribution to be the tangents to the setion and translates ofit. The unit normal �eld to this foliation will be divergene free preisely when the setion is minimal, andso the form ∗ω/ |ω| will be losed, hene a alibration, only when the setion is minimal. In that ase, theminimal setion is alibrated by this form, and so, any other setion in the same homology lass will have



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 9more volume than σ or its translates, showing uniqueness up to translation. The one-dimensional family oftranslations re�ets the one-dimensional nullity of the seond variation.If the Euler lass e(M) is nonzero and even, then the reti�able setion σ produed by this theorem willbe one-sided, beause of the existene of ross-aps. In [9℄, suh surfaes are shown to exist, the presentTheorem 3.7 provides an alternate onstrution of them.For the ase of the lens spaes L(p, 1), sine the Euler harateristi of L(p, 1) as a irle bundle over S2is just p, whenever p is even then Γ̃(BL(p, 1)) 6= ∅, so there will be a mass-minimizing reti�able setionwith a �nite number of ross-aps (at least p/2, of ourse, but not neessarily exatly p/2). This setion isneither horizontal nor vertial in the sense of Seifert �brations (neither transverse to all �bers, nor a unionof �bers). They also are one-sided Heegaard splittings of the manifold [10℄. When p is odd we an applyCorollary 3.9 to show the existene of a minimal 2-sided minimal surfae. Again, these minimal surfaes areneither horizontal nor vertial. As a result, aording to [9℄, the surfae annot be stable. The example ofthe equatorial S2 in S3 shows all of these properties.Another interesting onsequene of this onstrution on the lens spaes L(2p, 1) is that these minimal surfaeswill then lift to be minimal surfaes in S3, ontaining a �nite number of �bers of the Hopf �bration, butotherwise transverse to the �bers. However, neither the number of ross-aps, nor the number of exeptionalpoints, is determined by the onditions we have, so it is not lear whih minimal surfaes in S3 are representedin this way. Referenes[1℄ V. Borrelli and O. Gil Medrano, Area-minimizing vetor �elds on round 2-spheres, Journal für die reine und angewandteMathematik (Crelles Journal). 2010, (2010), 85�-99.[2℄ F. G. B. Brito, P. M. Chaón, and D. L. Johnson, Unit �elds on puntured spheres, Bulletin de la Soiété Mathématiquede Frane, 136 (1) (2008), 147�157.[3℄ H. Federer, Geometri Measure Theory, Springer-Verlag 1969.[4℄ W. Jao, Letures on Three-Manifold Topology, CBMS Regional Conferene Series in Mathematis, n. 42, 1979.[5℄ D. L. Johnson, Volumes of �ows, Pro. Amer. Math. So. 104 (1988), 923-931.[6℄ D. L. Johnson and P. Smith, Partial regularity of mass-minimizing reti�able setions, Annals of Global Analysis andGeometry 30 (2006), 239�287.[7℄ W. Meeks III, L. Simon, and S.-T. Yau, Exoti spheres, and manifolds with positive Rii urvature, Ann. Math., 116(1982), 621-659.[8℄ F. Morgan, Geometri Measure Theory, A Beginner's Guide, Aademi Press, fourth edition, 2008.[9℄ J. T. Pitts and J. H. Rubinstein, The topology of minimal surfaes in Seifert �bered spaes, Mihigan Math. J. 42, (1995),525-535.[10℄ J. H. Rubinstein, One-sided Heegaard splittings of 3-manifolds, Pai� J. Math 76 (1978), 185-200.[11℄ T. Sasaki, On the di�erential geometry of tangent bundles of Riemannian manifolds, T�hoku Math. J. 10 (1958), 338�354.[12℄ P. Sott, Geometries of 3-manifolds, Bulletin of the London Math. So., 15 (1983), 401�487.[13℄ W. Thurston, Three-dimensional manifolds, Kleinian groups and hyperboli geometry. Bull. Amer. Math. So. (N.S.) 6(1982), no. 3, 357-381.Current address: Pablo M. Chaón, Departamento de Matemátias, Universidad de Salamana, Plaza de la Mered, 1-4, 37008,Salamana, SpainCurrent address: David L. Johnson, Department of Mathematis, Lehigh University, Bethlehem, Pennsylvania 18015-3174 USAE-mail address: pmhaon�usal.es, david.johnson�lehigh.edu


