
MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACESPABLO M. CHACÓN AND DAVID L. JOHNSONAbstra
t. For a 
ompa
t 3-manifold M whi
h is a 
ir
le bundle over a Riemann surfa
e Σ with even Eulernumber e(M), and with a Riemannian metri
 
ompatible with the bundle proje
tion, there exists a 
ompa
tminimal surfa
e S in M . S is embedded and is a se
tion of the restri
tion of the bundle to the 
omplementof a �nite number of points in Σ. If the Euler number is zero, a smooth minimal se
tion S exists, and forany nonzero Euler number a smooth minimal surfa
e exists whi
h is a double-se
tion over all but �nitelymany points of Σ. 1. Introdu
tionLet M be a 3-manifold whi
h is a 
ir
le bundle (to be spe
i�
, a prin
ipal U(1)-bundle) over a 
ompa
tRiemann surfa
e Σ, with proje
tion π : M → Σ. Assume that the metri
 on M is 
ompatible with thebundle proje
tion, that is, π is a Riemannian submersion and the �bers are geodesi
s. Assume that theEuler 
lass e(M) of the asso
iated rank-2 ve
tor bundle E over Σ is even. The goal of this paper is to showthe existen
e of a smooth minimal surfa
e in M , whi
h is a se
tion of the bundle ex
ept over a �nite set ofpoints, and is topologi
ally the Riemann surfa
e Σ with a �nite number of 
ross-
aps.An example of su
h a minimal surfa
e is des
ribed in [1℄. Consider M = T1(S
2), the unit tangent bundleof the standard 2-sphere. For any 
hoi
e of a unit tangent ve
tor v at p ∈ S2 , the Pontryagin 
y
le P , these
tion de�ned by parallel translation of v along ea
h longitude line from p, will be a smooth minimal surfa
ein M whi
h is a smooth se
tion ex
ept over −p. P is in this 
ase a totally-geodesi
 RP2 embedded in M .The authors thank Antonio Ros for suggesting this problem, and also Olga Gil Medrano for many helpfulsuggestions. The se
ond-named author thanks the Universidad de Granada and the Universidad de Sala-man
a for their support during his visits. The authors also thank the referee for many helpful suggestions.The last se
tion of the paper was added by the referee's suggestions, and a 
onstru
tion suggested by thereferee led to Corollary 3.9. 2. Minimal graphsLet X be a 
ompa
t, n-dimensional manifold, and let π : B → X be a �ber bundle over X with 
ompa
t�ber F of dimension k. Any su
h bundle admits a 
lass of Riemannian metri
s, due to Sasaki [11℄, for whi
hthe proje
tion π is a Riemannian submersion with totally-geodesi
 �bers isometri
 to F under in
lusion,determined by a 
hoi
e of 
onne
tion on the asso
iated prin
ipal bundle.De�nition 2.1. A re
ti�able se
tion T in B is a 
ountably-re
ti�able, integer-multipli
ity n-
urrent in Bso that,(1) 〈−→

T (q), e(q)
〉
≥ 0, ‖T ‖-almost everywhere; where e(q) is the unique horizontal (orthogonal to the�bers) n-plane at q whi
h maps onto T∗(X, π(q)) under π∗ (preserving orientation), and −→

T is theunit oriented n-ve
tor tangent plane of T at q.Date: July 26, 2010.2000 Mathemati
s Subje
t Classi�
ation. Primary: 53A10 Se
ondary 53C20.Key words and phrases. minimal surfa
es, re
ti�able se
tions, singularities.The �rst author was partially supported by MEC proje
t MTM2007-60017 and Funda
ión Séne
a proje
t 04540/GERM/06,and JCyL proje
t SA062A09, Spain. The se
ond author was partially supported by the Universitat de Valèn
ia during hissabbati
al stay in Spain. 1



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 2(2) The image 
urrent π#(T ) is the fundamental 
lass 1[X ] as an n-dimensional 
urrent on X withinteger 
oe�
ients.(3) If ∂X = ∅, ∂T ≡ 0(mod 2) as �at 
hains modulo 2 (If ∂X 6= ∅, ∂T must have support 
ontained in
π−1(∂X) = ∂B).The spa
e of all su
h re
ti�able se
tions of the bundle B over X will be denoted Γ̃(B).Remark 2.2. This de�nition di�ers slightly from that in [6℄, in that here the 
urrents are only required to berelative 
y
les mod-2. This is ne
essary be
ause the 
urrents 
onstru
ted will not be 
y
les as integral 
hains.As re
ti�able 
urrents they are by de�nition oriented, but 
urrents 
orresponding to smooth submanifoldsmay be non-orientable as manifolds, or, equivalently, may have interior boundaries as re
ti�able 
urrents.Compa
t non-orientable manifolds without boundary (as manifolds) are mod-2 
y
les as �at 
hains modulo2.In [6℄ it is shown that any homology 
lass of re
ti�able se
tions has a minimal-mass representative, whi
h isa 
ontinuous se
tion over an open, dense subset of X . As remarked in [8, 11.1℄ or [3, 4.2.26℄, the extensionfrom integer 
oe�
ients to Z/2Z 
oe�
ients, and 
onsidering the 
urrents as �at 
hains modulo 2 for theboundary 
ondition will not alter the arguments of [6℄.If σ is a C1 se
tion, then the mass of the image (usually 
alled the volume of the se
tion in this 
ase) isgiven by

V(σ) :=

∫

X

√

1 + ‖∇σ‖2 + · · ·+

∥∥∥∥∇σ ∧
min {n, k}

· · ·
∧ ∇σ

∥∥∥∥
2

dVX .Theorem 2.3. [6℄ Let X be a 
ompa
t manifold, and let B be a �ber bundle over X with 
ompa
t smooth�ber F and with an asso
iated Sasaki metri
. In any nonempty mod-2 homology 
lass of re
ti�able se
tions
σ : X → B, there is a mass-minimizing, re
ti�able se
tion whi
h is 
ontinuous ex
ept over a set S of measure0 in X.Remark 2.4. It should be noted that the original result shows the se
tion to be C1 on an open dense set;
ontinuity may hold on a slightly larger set. Also, the theorem does not say there will not be other mass-minimizers that may have worse regularity, only that there is one whi
h is this ni
ely-behaved. Finally,Proposition (2.5) below will imply that there is su
h a nonempty homology 
lass of re
ti�able se
tions in the
ases we need.Now, let M be a 3-manifold whi
h is a 
ir
le bundle π : M → Σ over a 
ompa
t Riemann surfa
e Σ, witha Sasaki metri
. The Euler 
lass e(M) of M is the Euler 
lass of the asso
iated orientable rank-2 ve
torbundle E → Σ. In order to show the existen
e of the 
laimed minimal surfa
e in M , we �rst have to showthat Γ̃(M) 6= ∅ when e(M) is even.Proposition 2.5. If M → Σ is a 
ir
le bundle over a 
ompa
t Riemann surfa
e, with even Euler 
lass
e(M), then Γ̃(M) 6= ∅.Proof. If k := |e(M)|/2, 
hoose k points {p1, . . . , pk} ⊂ Σ. Essentially by the Poin
aré-Bendixon theorem,there is a smooth se
tion of E with zeros only at the points pj , of index ±2 at all points, where the sign is thatof e(M). Equivalently, given ǫ > 0 su�
iently small, there is a smooth se
tion τ of M |Σ\{Bǫ(p1),...,Bǫ(pk)}with the following boundary 
onditions: for ea
h j, M |∂Bǫ(pj)

∼= S1 × S1, so the map z 7→ zn de�nes ase
tion on the boundary 
omponent M |∂Bǫ(pj)
with index n = ±2 for ea
h j ≤ k. A smooth se
tion τ existswith these boundary 
onditions, where we 
hoose the sign of n to mat
h the sign of e(M). This se
tion
an be 
onstru
ted to extend, for any 0 < δ < ǫ, to M |Σ\{Bδ(p1),...,Bδ(pk)}

with similar boundary 
onditions.The limit of these extensions, as δ → 0, has 
losure whi
h is a mod-2 
y
le in M , as in [1℄. This limit is are
ti�able se
tion, so the spa
e Γ̃(M) of re
ti�able se
tions is nonempty. �Following [6℄, with the slight modi�
ation to the boundary 
onditions, there is a mass-minimizing re
ti�ablese
tion σ in the mod-2 homology 
lass of any su
h τ above, whi
h is a 
ontinuous se
tion over an open densesubset. We show below that the ex
eptional set is a �nite 
olle
tion of �bers over points {x1, . . . , xn} ⊂ Σ,
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y
le whi
h is the 
losure of this se
tion is a smooth minimal surfa
e inM . We emphasizethat the ex
eptional points of the minimizer need not be the points used in Proposition (2.5); in parti
ular,the number n of points may be larger than k by an even number (sin
e the indi
es must 
an
el).The mod-2 homology 
lass [τ ] ∈ H2(M,Z/2Z) will proje
t to π∗([τ ]) = [Σ] ∈ H2(Σ,Z/2Z). Moreover, su
ha re
ti�able se
tion τ exists for ea
h 
lass α ∈ H2(M,Z/2Z) whi
h proje
ts to the generator, any elementof (π∗)
−1

([Σ]) ⊂ H2(M,Z/2Z). This is the 
ase sin
e, for any map α : Σ → S1, the produ
t τ · α, thinkingof M as an S1-prin
ipal bundle over Σ, will be de�ned by the right a
tion of S1 on M , and τ · α will beanother re
ti�able se
tion of M . These se
tions will be homologous whenever α is homotopi
 to 1, andthe homotopy 
lasses of τ · α will 
orrespond to the homotopy 
lasses of α in π1(Σ) ∼= H1(Σ,Z). Sin
e
H2(M,Z/2Z) ∼= H2(Σ,Z/2Z)⊕H1(Σ,Z/2Z) by the Gysin sequen
e (with the mod-2 redu
tion of the Euler
lass being 0), any element of (π∗)

−1
([Σ]) ⊂ H2(M,Z/2Z) has a representative of this form. Thus, theresults of [6℄ will imply that there will be a mass-minimizing representative re
ti�able se
tion in ea
h su
hhomology 
lass.In the 
ase of Euler 
lass 0, this des
ription gives a better pi
ture of the various 
omponents of the spa
eof re
ti�able se
tions, and the nature of the existen
e of a mass-minimizer within a homology 
lass. Inthat 
ase, arguing as above, there are re
ti�able se
tions in ea
h 
lass of (π∗)

−1
([Σ]) ⊂ H2(M,Z), whi
his bije
tive with H1(Σ,Z), and those lying within di�erent 
lasses are not homologous, so there would beat least a separate mass-minimizer for ea
h su
h homology 
lass of se
tions. We make no 
laim that thesevarious homology 
lasses will have distin
t minimum volumes, but it may be possible to show su
h a result,arguing as in [2℄. 3. SingularitiesConsider now a mass-minimizing re
ti�able se
tion T of a 
ir
le bundle M over a 
ompa
t Riemann surfa
e

Σ, with the metri
 as des
ribed earlier. An ex
eptional point, or a singular point x ∈ Σ is a point over whi
h
T is not a 
ontinuous se
tion. Sin
e π(Supp(T )) = Σ, this implies that there are two points, at least, in
π−1(x) ∩ Supp(T ) for an ex
eptional point x. Our �rst goal will be to show that the entire �ber is en
losedin T over any ex
eptional point. This step uses a basi
 
onstru
tion whi
h will be needed elsewhere as well,a horizontal sequen
e of stret
hes of the 
urrent.3.1. H-
ones. If S ∈ Γ̃(M) is a re
ti�able se
tion with �nite mass, and if x0 ∈ Σ is an arbitrary point,then for su�
iently small r > 0, and for all λ > 1, S de�nes a re
ti�able se
tion Sλ,R in B(0, R) × S1by Sλ,R =

[
(φλ)#

(
S|−π−1(B(0, r))

)]
|−B(0, R) × S1, if λr ≥ R, where x0 
orresponds with the 
enter 0of the 
oordinate system, φλ(x, y) = (λx, y), and π−1(B(0, R)) is identi�ed with B(0, R) × S1, having theRiemannian metri
 indu
ed fromM and the dilation φλ. B(0, λr)×S1 also has a spe
i�
 Riemannian metri
,the metri
 from M stret
hed horizontally by φλ. Clearly, for an arbitrary R > 0, if λ > 1 is su�
iently large,

Sλ,R will be well-de�ned in Γ̃(B(0, R)× S1).An h-
one H of S at x0 ∈ Σ, for a given sequen
e λi → ∞, is the limit, for ea
h R > 0, of the sequen
e ofrestri
ted stret
hes Sλi,R, if that limit exists as a re
ti�able se
tion (thinking of Sλ,R as re
ti�able se
tionsof B(0, R)× S1 in order to de�ne the limit), and if Hλ,R = H |−B(0, R)× S1 for all λ > 1. The limit will bea re
ti�able se
tion of B(0, R)× S1 with the �at Eu
lidean metri
.For a given point, 
urrent, and sequen
e of stret
hes, an h-
one may or may not exist, just as tangent 
onesfor re
ti�able 
urrents may or may not exist at a given point. In addition, we make no 
laim for uniqueness ofsu
h h-
ones (the h-
one may depend upon the sequen
e of stret
hes) even when they do exist. However, if Sis a mass-minimizing re
ti�able se
tion, then an h-
one will exist over ea
h base point. Over a regular point,h-
ones are simply horizontal planes, but over singular points they reveal some of the singular stru
ture.Theorem 3.1. Let S ∈ Γ̃(M) be mass-minimizing and 
ontinuous over an open dense subset, as in Theorem2.3. At ea
h point x0 ∈ Σ, there is an h-
one.



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 4Proof. Certainly there is nothing to prove unless x0 is a singular point. In that 
ase, the stret
hes satisfy,for λ > 1,
V(Sλ,R) =

∫

B(0,R)

√
1 +

1

λ2

∥∥∥∇u|x/λ

∥∥∥
2

dA

≤
1

λ

∫

B(0,R)

√
1 +

∥∥∥∇u|x/λ

∥∥∥
2

dA

≤ λ

∫

B(0,R/λ)

√
1 + ‖∇u‖2rdrdθ

= λf(R/λ)

= R
f(R/λ)

R/λ
,where f(t) = V(S|−B(0, t)×S1), and S is the graph of u a.e. Now, f is in
reasing, thus is almost-everywheredi�erentiable. We have that

d

dt

(
f(t)

t

)
=

tf ′(t)− f(t)

t2

≥ 0.To see this, let Ct be the horizontal 
one over S|−∂B(0, t)×S1 de�ned by extending rays inward horizontallyto the �ber over 0, that is, if S = graph(u), then Ct would be the graph of v(x) := u(tx/ ‖x‖). Then, sin
e
S is volume-minimizing, and f ′(t) is the mass of S|−∂B(0, t)× S1

tf ′(t) ≥ V(Ct)

≥ V(S|−B(0, t)× S1)

= f(t).Thus, f(t)
t is in
reasing, and so, for t < R, f(t)/t ≤ A, where A = f(R), or

R

(
f(R/λ)

R/λ

)
≤ RA,and the mass of Sλ,R is uniformly bounded (in λ) for all λ > 1 su�
iently large. Thus any sequen
e {λn}of stret
hes, as λ → ∞, is uniformly bounded in mass over a �xed R. In order to apply the 
ompa
tnesstheorem, we need to also show that the mod-2 boundaries ∂2Sλn

= Sλn
|−∂B(0, R)×S1 have bounded mass.But, by sli
ing, for any λ > 0,

∫ s

s/2

V
(
∂
(
Sλ|−B(0, r)

))
dr ≤ V

(
Sλ|−B(0, s)

)
≤ λf(s/λ) ≤ sA,following [8, Theorem 9.8℄ and [3, 5.4.3(6)℄, and so for some r, R/2 < r < R, V (

∂
(
Sλ|−B(0, r)

))
≤ RA

R/2 =

2A. Also, by sli
ing, almost-all su
h 
hoi
es of r have sli
es that are re
ti�able. Then, the further stret
h
S(λR/r),R has re
ti�able mod-2 boundary ∂ (

SλR/r|−B(0, R)
), with boundary volume V (

∂
(
SλR/r|−B(0, R)

))
≤

(
R
r

)
2A ≤ 4A, So, any sequen
e λn → ∞ 
an be modi�ed to one with a 
onvergent subsequen
e. Set S0,R tobe the limit of this subsequen
e, S0,R := limn Sλn

|−B(0, R) × S1. Taking a further subsequen
e, sin
e theboundaries ∂2Sλn,R are re
ti�able and have no boundary themselves, it 
an be assumed that ∂2Sλn,R also
onverges, to a re
ti�able se
tion B ∈ Γ̃(S1
R × S1).To see that S0 is an h-
one, we use the fa
t that at ea
h point of S there is an oriented tangent 
one [6,Prop. 4.1℄ in the usual sense. Any non-verti
al ray in the tangent 
one at a point p ∈ π−1(x0), under thesequen
e of horizontal stret
hes λn, will 
onverge to a horizontal ray in S0,R, and any point of S0,R is onsu
h a horizontal ray, so S0,R is an h-
one. �
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h element of a sequen
e Sλi
of horizontal stret
hes of a mass-minimizing re
ti�able se
tion S in turnminimizes a modi�ed fun
tional, Vλi

de�ned by
Vλi

(T ) := V

((
φ 1

λi

)

#
(T )

)
λi,where T ∈ Γ̃(B(0, R) × S1) with the metri
 indu
ed from M by the stret
h as before, and (

φ 1

λi

)

#
(T ) ∈

Γ̃(B(0, R
λi
)× S1) has the original metri
 from M . Sλi

will minimize Vλi
among all re
ti�able se
tions withthe same mod-2 boundary as ∂2Sλi

= Sλi
|−∂B(0, R)× S1.The fun
tionals Vλi

will 
onverge to a limiting fun
tional V0. If T is a graph of some smooth fun
tion
u : B(0, R) → S1, then V(u) =

∫
B(0,R)

√
1 + ‖∇u‖2dA, and

Vλi
(T ) :=

∫

B(0,R/λi)

√
1 + λ2

i

∥∥∇u|λix

∥∥2dAλi

=

∫

B(0,R)

√
1 + λ2

i ‖∇u‖2
1

λ2
i

dAλi

=

∫

B(0,R)

√
1

λ2
i

+ ‖∇u‖2dA,where the se
ond line is just 
hange of variables. On su
h a 
urrent, 
learly
V0(T ) =

∫

B(0,R)

‖∇u‖ dA.This fun
tional is 
alled the �twisting� of the 
urrent in [1℄, at least in the 
ase of the unit tangent bundle. Themain property of the limiting fun
tional is that it will be minimized by the h-
one of the volume-minimizer(the minimizer of the limit is the limit of the minimizers), among all re
ti�able se
tions in B(0, R)×S1 withthe same boundary as the h-
one. This property is of 
ourse not the general situation for arbitrary sequen
esof fun
tionals, but will hold in this 
ase.Proposition 3.2. If, for some sequen
e λi → ∞, the stret
hes Sλi

onverge in Γ̃(B(0, R)×S1) to S0, where

S minimizes V (and so Sλi
minimize Vλi

) among all su
h 
urrents with the same boundary in ∂B(0, R)×S1,then S0 minimizes V0 among all elements of Γ̃(B(0, R)× S1) with the same boundary as S0.Proof. Re
all that, taking an appropriate subsequen
e, the sequen
e of mod-2 boundaries
∂2Sλi

= Sλi
|−∂(B(0, R)× S1)
onverge to C := ∂2S0 = S0|−∂(B(0, R) × S1) in Γ̃(∂B(0, R) × S1). Then, for any ǫ > 0, there is an Isu�
iently large so that, if i > I, then there is a re
ti�able 
urrent Ti in ∂B(0, R) × S1 so that ∂2Ti =

(∂2Sλi
− ∂2S0) = (Sλi

− S0) |−∂(B(0, R)× S1) with mass M(Ti) < ǫ.Assume that S0 does not minimize V0 among all re
ti�able se
tions with the same boundary. Then, thereis some ǫ > 0, and a re
ti�able se
tion T ∈ Γ̃(B(0, R)× S1) with ∂2T = ∂2S0 so that V0(T ) < V0(S0)− 4ǫ.Choose I above for this ǫ. Sin
e the fun
tionals also 
onverge, 
hoose i > I su�
iently large so that
Vλi

(T ) < V0(T ) + ǫ, V0(S0) < Vλi
(S0) + ǫ, and Vλi

(S0) < Vλi
(Sλi

) + ǫ Then, ∂2 (T + Ti) = ∂2Sλi
, T + Ti ∈

Γ̃(B(0, R)× S1), and
Vλi

(T + Ti) ≤ Vλi
(T ) + Vλi

(Ti)

< V0(T ) + ǫ+M(Ti)

< V0(T ) + 2ǫ

< V0(S0)− 2ǫ

< Vλi
(S0)− ǫ

< Vλi
(Sλi

),



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 6whi
h 
ontradi
ts the fa
t that Sλi
minimizes Vλi

. �With this result. we 
an identify the kind of singular behavior that 
an o

ur.3.2. Index of singularities. A singular point x ∈ Σ of a mass-minimizing S ∈ Γ̃(M) as above determinesan index, an integer kx generalizing the index of ve
tor �elds.Let x ∈ Σ, and let S ∈ Γ̃(M) be mass-minimizing. For almost-all ǫ > 0 su�
iently small, the restri
tion
Sǫ := S|−π−1(∂B(x, ǫ)) determines a re
ti�able se
tion Sǫ ∈ Γ̃(S1 × S1). If P : S1 × S1 → S1 is theproje
tion onto the se
ond fa
tor (the �ber), then kǫ, de�ned by P#(Sǫ) = kǫ

[
S1

], is just the degree of themap. Choose a sequen
e λi → ∞ so that, on B(0, 1)× S1, Sλi

onverges to an h-
one H . De�ne the indexof S at x, kx, to be

kx := lim
i→∞

kλi
= kH ,whi
h 
an be viewed as either a limiting index, or, equivalently, the index of the h-
one. Of 
ourse, the indexis also de�ned for non-minimizing se
tions, but it does seem to require something like the existen
e of anh-
one to guarantee existen
e and boundedness of the limit.Proposition 3.3. If x has index 0, then x is a regular point.Proof. Assume that x is a singular point with index 0. Then, the h-
one H of S at x, in Γ̃(B(0, R)×S1), alsohas index 0, so that H |−∂B(0, R)× S1 is a re
ti�able se
tion of degree 0, represented as a map u : S1 → S1of degree 0, possibly with singularities or verti
al portions. Thus u = eif for some real-valued map f (ingeneral, re
ti�able se
tion of the trivial line bundle), and H is the graph of u(r, θ) = eif(θ). The h-
oneminimizes the fun
tional

V0(u) =

∫ ∫

B(0,R)

‖∇f‖ rdrdθ

=

∫ ∫

B(0,R)

∥∥∥∥
∂f

∂θ

∥∥∥∥ drdθ.For any fun
tion h(r, θ) with support in the interior of B(0, 1),
0 =

∂

∂t

∣∣∣∣
0

∫ ∫

B(0,R)

‖∇(f + th)‖ rdrdθ

=

∫ ∫

B(0,R)

1
r
∂f
∂θ

∂h
∂θ∥∥∥∂f

∂θ

∥∥∥
rdrdθ

=

∫ ∫

B(0,R)

∂f
∂θ

∂h
∂θ∥∥∥∂f

∂θ

∥∥∥
drdθ.For some small ǫ > 0, take h to be h(r, θ) := (M − ǫ(R− r)/R− f(θ))−, where by ()− we mean thenonpositive part of the fun
tion, (g)− (x) := inf {g(x), 0}, and M = sup {f(θ)}. Sin
e, in Supp(h), whi
hhas positive measure, ∂h/∂θ = −∂f/∂θ, ∂f

∂θ
∂h
∂θ

‖ ∂f
∂θ ‖

= −
∥∥∥∂f
∂θ

∥∥∥. Unless f is a.e. 
onstant, the integral will benegative, whi
h would 
ontradi
t minimality of S. Thus f must be 
onstant, and so the graph of S is
ontinuous at x. �As a 
orollary, we 
an now show that at any singular point, the entire �ber over the point is 
ontained inthe support of S.Corollary 3.4. If x ∈ Σ is a singular point for a mass-minimizing S ∈ Γ̃(M), then π−1(x) ⊂ Supp(S).Proof. The singularity has to have nonzero index, whi
h implies that the entire �ber is in the support. �Corollary 3.5. The singular points of a mass-minimizing S ∈ Γ̃(M) are isolated.



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 7Proof. If a singular point x0 is the limit of other singular points and is of index k, 
onsider the 
urrentde�ned in B(0, R)× S1 as Sv, where v(r, θ) = e−ikθ, whi
h has support
Supp(Sv) =

{
(x, yv(x)) ∈ B(0, R)× S1

∣∣ (x, y) ∈ S
}and has the obvious tangent planes and multipli
ities inherited from S. Clearly Sv has index 0 at x0.However, sin
e there is a sequen
e of singular points of S approa
hing x0, and for ea
h su
h point xi theentire �ber is 
ontained in the support of S, this will also be true for Sv sin
e v has only x0 as a singularpoint, so is regular at ea
h xi, and thus Sv is still singular at xi as 
laimed. Sin
e Supp(Sv) is 
losed, itmust 
ontain the entire �ber over x0, so x0 is a singular point of Sv, and is of index 0 at x0.

Sv does not minimize the volume, but it does minimize a twisted volume Vv de�ned for re
ti�able se
tionsof B(0, R)× S1 by Vv(T ) = V(Tv−1). Stret
hing as before, the h-
one Hv (where H is the h-
one of S fora spe
i�
 sequen
e of stret
hes) will minimize
Vv,0(w) =

∫ ∫

B(0,R)×S1

∥∥∇(wv−1)
∥∥ dA.Sin
e Hv, the minimizer of this fun
tional (with the boundary 
onditions inherited from S), is an h-
one,we have the variational 
ondition, as before, if w = eif ,

0 =
d

dt

∣∣∣∣
0

∫ R

0

∫ 2π

0

‖∇(f + th(r, θ) + kθ)‖ rdθdr

=

∫ R

0

∫ 2π

0

(
∂f
∂θ + k

)
∂h
∂θ∥∥∥∂f

∂θ + k
∥∥∥

dθdr.As with Proposition (3.3), taking h to be h(r, θ) := (M − ǫ(R− r)/R − f(θ)− kθ)−, where M is the maxi-mum of f , would provide a 
ontradi
tion unless ∂f
∂θ + k ≡ 0.Thus, the h-
one of S at x0 is that of v−1 itself, whi
h has only the singularity at 0. If S had a sequen
e ofsingularities approa
hing x0, the h-
one would also. Thus the singularities of S are isolated. �This result also shows:Corollary 3.6. Ea
h singularity is of index ±2.Proof. In [1℄, it is shown that only an isolated singularity of index ±2 
an be a re
ti�able se
tion. �We �nally are in a position to prove the main result, whi
h isTheorem 3.7. Let M be a 
ir
le bundle over a 
ompa
t Riemann surfa
e Σ, with the Sasaki metri
, so thatthe Euler number e(M) of the 
ir
le bundle is even. Then, there is a mass-minimizing re
ti�able se
tion Swhi
h is moreover a smooth, embedded minimal surfa
e in M . Topologi
ally, S is Σ with an �nite numberof 
ross-
aps.Proof. For a volume-minimizing se
tion S ∈ Γ̃(M) as shown to exist by Theorem 2.3, we have shown thatthere are a �nite number of pole points x ∈ Σ, over ea
h of whi
h S 
ontains the entire �ber, and the indexis ±2. On the 
omplement of those singular �bers, S is a 
ontinuous graph and is a minimal surfa
e, so itis smooth (sin
e it is 
odimension 1 in a 3-manifold.).In an ǫ-neighborhood of the singular �bers, the graph is asymptoti
ally that of u = e±2iθ, and so the 
urrentis C1 at these points. Sin
e it is of 
lass C1 and minimal (weak mean 
urvature vanishing), it is a smoothminimal surfa
e. That the stru
ture of the surfa
e in a neighborhood of a singularity is a 
ross-
ap 
an befound in [1℄. The topologi
al statement then follows. �Remark 3.8. While it seems 
lear that a volume-minimizing re
ti�able se
tion should have a minimal numberof pole points (
ross-
aps), sin
e singularities add to volume [2℄, we do not make that 
laim here. It maybe the 
ase that the smallest number of 
ross-
aps will depend on the homology 
lass of the se
tion, sin
efor "large" elements of π1(Σ), the se
tion 
onstru
ted by this theorem may manage to have less mass withadditional 
ross-
aps. If, however, the Euler 
lass of the bundle is 0, there will be a smooth minimizer whi
h
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tion, sin
e in that 
ase we 
an work with the 
lass of 
urrents whi
h are limits of smoothse
tions. All singularities would then be of index 0, and so 
ould not exist.A similar statement holds for bundles with odd Euler 
lass, and in fa
t for any nonzero Euler 
lass, ex
eptthat the minimizer will not be a se
tion, but will generi
ally be the double of a se
tion with a �nite numberof verti
al �bers. The Hopf �bration S3 → S2 provides a model for su
h double-se
tions, with the equatorial
S2 in S3 being the double-se
tion, meeting ea
h �ber at two points ex
ept for one �ber 
ontained in thesurfa
e. These surfa
es will then be 2-sided minimal surfa
es in M whi
h are 
overs of the base spa
e Σex
ept over �nitely many points.Corollary 3.9. Let M be a 
ir
le bundle over a 
ompa
t Riemann surfa
e Σ, with the Sasaki metri
, sothat the Euler number e(M) of the 
ir
le bundle is nonzero. Then, there is a smooth, embedded 2-sidedminimal surfa
e S in M whi
h interse
ts all but �nitely many �bers of π : M → Σ twi
e. Topologi
ally, S isa two-fold 
over of Σ ex
ept over a �nite number of rami�
ation points.Proof. The 
onstru
tion of su
h a se
tion is to take the proje
tion of M → Σ to M := M/x ∼ x · (−1)identifying "antipodal" points on ea
h �ber under the right U(1)-a
tion. M will again be a 
ir
le bundleover Σ, with double the Euler 
lass. The main theorem then shows the existen
e of a mass-minimizingre
ti�able se
tion σ of M whi
h is a smooth minimal submanifold with �nitely many 
ross-
aps. Pullingthat ba
k to M will no longer be a re
ti�able se
tion, but will be a minimal submanifold S of M so that allbut �nitely many �bers interse
t the submanifold at 2 points (antipodal points). The preimages of the 
ross
aps (
onne
ted sums with a proje
tive plane) be
ome a trivial 
onne
ted sum as in the example of M = S3above, and the minimal surfa
e S will be two-sided. �Remark 3.10. The "ex
eptional" points {x1, . . . , xn} of Σ over whi
h S is not a two-fold 
over satisfy
S ∩ π−1(xi) = π−1(xi) ∼= S1.4. Appli
ations to geometri
 stru
tures on 3-manifoldsThurston's geometrization 
onje
ture, famously proved by G. Perelman, is that any 
ompa
t oriented 3-manifold 
an be de
omposed into 
omponents, ea
h of whi
h have a spe
i�
 geometri
 stru
ture from a listof 8 possible types (
f. [13, 12℄). In this 
ontext a geometri
 stru
ture is a 
omplete, lo
ally-homogeneousmetri
. Of these 8 types of geometries, 4 o

ur as Sasaki metri
s on 
ir
le bundles over 
ompa
t Riemannsurfa
es with even Euler 
lass and 
onstant 
urvature, spe
i�
ally stru
tures of the types S3, H

2 × R,
S1 × S2, and R

3. In ea
h su
h 
lass, the main theorem of this paper asserts the existen
e of a smooth,minimal submanifold transverse to the �bers of the bundle ex
ept for �nitely many �bers 
ontained withinthe submanifold. The existen
e of su
h surfa
es is known in several of these 
ases, but this theorem providesan expli
it realization of the submanifold.One 
aution is that the Seifert �brations 
onsidered in these geometries often have ex
eptional �bers, so arenot 
ir
le bundles over a Riemann surfa
e (instead, over an orbifold). For example, the lens spa
es L(p, q)as Seifert �bered spa
es �bered by the image of the Hopf �bration have ex
eptional �bers, unless q = 1 [4,p. 87℄. Similarly, spa
es with the geometry of PSL(2,R) will have an ex
eptional �ber. The results of thispaper do not apply in that situation, although it should be possible to extend the result to this 
ase withsome modi�
ation.In the 
ase e(M) = 0, zero Euler 
lass, there will be smooth mass-minimizing se
tions of the bundle M → Σ.It was proved in [7℄ that su
h a minimal surfa
e exists; any in
ompressible horizontal 2-sided surfa
e isisotopi
 to a unique minimal surfa
e. In the present 
ase, for any homology 
lass of se
tions, there will beat least one smooth mass-minimizer by [6℄. Moreover, applying an argument of [5℄, used there only for theunit tangent bundle, ea
h su
h minimizing se
tion σ de�nes a �at 
onne
tion ω on M → Σ as a prin
ipal
S1-bundle, simply by taking the horizontal distribution to be the tangents to the se
tion and translates ofit. The unit normal �eld to this foliation will be divergen
e free pre
isely when the se
tion is minimal, andso the form ∗ω/ |ω| will be 
losed, hen
e a 
alibration, only when the se
tion is minimal. In that 
ase, theminimal se
tion is 
alibrated by this form, and so, any other se
tion in the same homology 
lass will have



MINIMAL SURFACES IN CIRCLE BUNDLES OVER RIEMANN SURFACES 9more volume than σ or its translates, showing uniqueness up to translation. The one-dimensional family oftranslations re�e
ts the one-dimensional nullity of the se
ond variation.If the Euler 
lass e(M) is nonzero and even, then the re
ti�able se
tion σ produ
ed by this theorem willbe one-sided, be
ause of the existen
e of 
ross-
aps. In [9℄, su
h surfa
es are shown to exist, the presentTheorem 3.7 provides an alternate 
onstru
tion of them.For the 
ase of the lens spa
es L(p, 1), sin
e the Euler 
hara
teristi
 of L(p, 1) as a 
ir
le bundle over S2is just p, whenever p is even then Γ̃(BL(p, 1)) 6= ∅, so there will be a mass-minimizing re
ti�able se
tionwith a �nite number of 
ross-
aps (at least p/2, of 
ourse, but not ne
essarily exa
tly p/2). This se
tion isneither horizontal nor verti
al in the sense of Seifert �brations (neither transverse to all �bers, nor a unionof �bers). They also are one-sided Heegaard splittings of the manifold [10℄. When p is odd we 
an applyCorollary 3.9 to show the existen
e of a minimal 2-sided minimal surfa
e. Again, these minimal surfa
es areneither horizontal nor verti
al. As a result, a

ording to [9℄, the surfa
e 
annot be stable. The example ofthe equatorial S2 in S3 shows all of these properties.Another interesting 
onsequen
e of this 
onstru
tion on the lens spa
es L(2p, 1) is that these minimal surfa
eswill then lift to be minimal surfa
es in S3, 
ontaining a �nite number of �bers of the Hopf �bration, butotherwise transverse to the �bers. However, neither the number of 
ross-
aps, nor the number of ex
eptionalpoints, is determined by the 
onditions we have, so it is not 
lear whi
h minimal surfa
es in S3 are representedin this way. Referen
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