
CHERN-SIMONS FORMS ON ASSOCIATED BUNDLES, AND BOUNDARYTERMSDAVID L. JOHNSONAbstrat. Let E be a priniple bundle over a ompat manifold M with ompat strutural group
G. For any G-invariant polynomial P , The transgressive forms TP (ω) de�ned by Chern and Simonsin [4℄ are shown to extend to forms ΦP (ω) on assoiated bundles B with �ber a quotient F = G/Hof the group. These forms satisfy a heteroti formula

dΦP (ω) = P (Ω) − P (Ψ),relating the harateristi form P (Ω) to a �ber-urvature harateristi form. For ertain naturalbundles B, P (Ψ) = 0, giving a true transgressive form on the assoiated bundle, whih leads to thestandard obstrution properties of harateristi lasses as well as natural expressions for boundaryterms.
IntrodutionIn their groundbreaking paper [4℄, S-S Chern and James Simons explain that their theory of whatare now known as Chern-Simons lassesgrew out of an attempt to derive a purely ombinatorial formula for the �rst Pon-tryagin number of a 4-manifold. ... This proess got stuk by the emergene of aboundary term whih did not yield to a simple ombinatorial analysis. The boundaryterm seemed interesting in its own right and ....Their �boundary term� was in fat a geometri realization of the transgression o-hains whihappear in the Leray-Serre spetral sequene of a prinipal bundle [1℄, and their importane hasgrown out of the fat that, on the base manifold, they measure �ner geometri information thanthe primary harateristi lasses of the bundle. The main result of this artile is the naturalextension of the Chern-Simons forms to forms on assoiated bundles B → M rather than on theprinipal bundle, whose di�erentials give a orrespondene between the harateristi lasses of thebundle and a harateristi form involving the urvature of the �bers. In ertain ases, when the�ber-urvature term vanishes, these Chern-Simons forms on the assoiated bundle serve as truetransgressions, and not only give similar seondary harateristi lasses for the bundle, but alsoprodue natural boundary terms for the traditional harateristi forms, providing simple proofs ofthe primary obstrution properties of these harateristi lasses. Interestingly, one of the resultsestablished below re-onstruts a form in the unit tangent bundle originally onstruted by Chern in1944, in onjuntion with his version of the generalized Gauss-Bonnet theorem [3℄, whih pre-datesthe topologial interpertation by Borel. That onstrution of Chern is interpreted here in terms ofhis and Simons' later work in a broader ontext.Date: Deember 2, 2009.2000 Mathematis Subjet Classi�ation. 53C05, 57R20, 55R25 53A55.Key words and phrases. Charateristi lasses, Chern-Simons invariants.1



2 DAVID L. JOHNSON1. Assoiated bundles and Chern-Simons formsLet M be a ompat, n-dimensional manifold, and let π : E → M be a prinipal bundle over Mwith ompat strutural group G. Real harateristi lasses of E an be determined by forms
P (Ω), where P ∈ I(g) is an adjoint-invariant polynomial on the Lie algebra g of G, and Ω is theurvature form of a onnetion ω on E. Suh forms P (Ω) are horizontal, invariant forms on E, soare naturally de�ned as forms on M itself.Invariane properties of these polynomial forms, along with the Bianhi identity, traditionally areused to show that these forms are losed onM (f. [7℄). Moreover, the forms P (Ω) in the ohomologyof E itself are exat, whih not only veri�es that P (Ω) are losed onM but also implies the existeneof forms TP (ω) on E, primitives of the harateristi forms P (Ω). Given a onnetion ω on E,Chern and Simons derive in [4℄ an expliit formula for these transgressive forms.Theorem 1. [Chern-Simons℄. Let π : E →M be a prinipal bundle over a ompat n-manifold Mwith ompat strutural group G. If P ∈ Ik(g) is

TP (ω) :=

k−1∑

i=0

AiP (ω, [ω, ω]i,Ωk−i−1)is a G-invariant form on E satisfying dTP (ω) = P (Ω), where Ai := (−1)ik!(k − 1)!/2i(k + 1)!(k −
1− i)! a degree-k, adjoint-invariant polynomial on the Lie algebra g of G, and if ω is a onnetionon E, then the (2k − 1)-form

TP (ω) :=
k−1∑

i=0

AiP (ω, [ω, ω]i,Ωk−i−1)is a G-invariant form on E satisfying dTP (ω) = P (Ω), where Ai := (−1)ik!(k − 1)!/2i(k + i)!(k −
1− i)! and P is realized as a symmetri, multilinear funtional P : g× · · · × g→ R by polarization.Let now π2 : B → M be an assoiated bundle to the prinipal bundle π : E → M as before,with �bers F whih are homogeneous spaes, quotients of the strutural group G by the isotropysubgroup H of the right ation of G on F . The primary example of this situation is when E is thebundle of oriented frames of an oriented Riemannian manifold M , and B the unit tangent bundleof M . In that ase G = SO(n) and H = SO(n− 1).Note. It is not stritly neessary to restrit to bundles with homogeneous �bers, but the onstrutionof these lasses does depend upon all isotropy subgroups of the ation of G on F being onjugate.The two bundles are related, and in fat the total spae of E is a prinipal bundle with group Hover B:(1.1) E

π1

−→ B

π
y π2

y

M = MDeompose the onnetion ω in terms of the G-equivariant distribution h := ker((π1)∗) on E,
ω = φ + ψ, where ψ = ω|ker((π1)∗). ψ is the onnetion indued from ω on the prinipal bundle
π1 : E → B with strutural group H. Sine H is a redutive subgroup, if (by hoie of bases) at
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p ∈ E ω|ker((π1)∗) : ker((π1)∗) → h, then φ takes values in a redutive omplement p to h. Also,
[ψ,ψ] has values in h, and [ψ, φ] takes values in p.If H represents the ψ-horizontal projetion (and subspae), the urvature of the two onnetionsare related by Ψ = dψ + 1

2 [ψ,ψ] and
Ω = dω +

1

2
[ω, ω]

= dφ+ [ψ, φ] +
1

2
[φ, φ] + Ψ(1.2)

= dHφ+ Ψ +
1

2
[φ, φ].In partiular, restriting to the subalgebra h, Ωh = Ψ + 1

2 [φ, φ]h. The ψ-ovariant di�erential
dHφ := dφ + [ψ, φ] is the restrition of dφ to ψ-horizontal tangents. Similarly, by the Bianhiidentity,

dHΩ = dΩ + [ψ,Ω]

= [Ω, ω] + [ψ,Ω]

= [Ω, ω]− [Ω, ψ]

= [Ω, φ].Theorem 2. Let π : E → M be a prinipal bundle over a ompat n-manifold M with ompatstrutural group G. Let P ∈ Ik(g) be a degree-k, adjoint-invariant polynomial on the Lie algebra gof G, and let ω be a onnetion on E. For an assoiated bundle π2 : B → M with �ber G/H asabove, the form
ΦP (ω) :=

k−1∑

i=0

k−1−i∑

j=0

AijP (φ, [φ, φ]i,Ψj ,Ωk−i−j−1),where Aij := (−1)i (i+j)!(k−j−1)!k!
2i(k−i−j−1)!i!(k+i)!j!

, is a π1-horizontal, AdH -invariant form on E, thus representsa form on B. In addition,(1.3) dΦP (ω) = P (Ω)− P (Ψ).Proof. That ΦP (ω) is π1-horizontal and AdH -invariant, and so is a form on B, follows by thede�nitions of φ and Ψ, and the fat that P is invariant under AdG. Also, for any invariant poly-nomial P and equivariant, ψ-horizontal forms α1, . . . , αk of degrees p1, . . . , pk, respetively, it isstraightforward (f. [4℄) that, on B,
dP (α1, . . . , αk) =

∑

i

(−1)p1+···+pi−1P (α1, . . . , αi−1, dHαi, αi+1, . . . , αk).



4 DAVID L. JOHNSONWe now show that there are onstants Aij satisfying 1.3, and that they are well-de�ned. For anyhoies of Aij ,
dΦP (ω) =

k−1∑

i=0

k−1−i∑

j=0

AijdP (φ, [φ, φ]i,Ψj ,Ωk−i−j−1)

=
k−1∑

i=0

k−1−i∑

j=0

AijP (dHφ, [φ, φ]i,Ψj ,Ωk−i−j−1)

−iAijP (φ, 2[dHφ, φ], [φ, φ]i−1,Ψj ,Ωk−i−j−1)

−jAijP (φ, [φ, φ]i, dHΨ,Ψj−1,Ωk−i−j−1)

−(k − i− j − 1)AijP (φ, [φ, φ]i,Ψj, dHΩ,Ωk−i−j−2)

=

k−1∑

i=0

k−1−i∑

j=0

AijP (Ω−Ψ−
1

2
[φ, φ], [φ, φ]i,Ψj,Ωk−i−j−1)

−iAijP (φ, 2[Ω −Ψ−
1

2
[φ, φ], φ], [φ, φ]i−1 ,Ψj,Ωk−i−j−1)

−jAijP (φ, [φ, φ]i, 0,Ψj−1,Ωk−i−j−1)

−(k − i− j − 1)AijP (φ, [φ, φ]i,Ψj, [Ω, φ],Ωk−i−j−2)

=

k−1∑

i=0

k−1−i∑

j=0

AijP ([φ, φ]i,Ψj ,Ωk−i−j)

−AijP ([φ, φ]i,Ψj+1,Ωk−i−j−1)−
1

2
AijP ([φ, φ]i+1,Ψj ,Ωk−i−j−1)

−2iAijP (φ, [Ω, φ], [φ, φ]i−1,Ψj ,Ωk−i−j−1)

+2iAijP (φ, [Ψ, φ], [φ, φ]i−1,Ψj ,Ωk−i−j−1)

−(k − i− j − 1)AijP (φ, [φ, φ]i,Ψj, [Ω, φ],Ωk−i−j−2).Re-grouping by the powers of [φ, φ] and Ψ, and using the identity from [4℄ whih omes frominvariane of the polynomial,
0 = (−1)p1P ([α1, φ], α2, . . . , αk) + · · ·+ (−1)p1+···+pkP (α1, . . . , [αk, φ]),so that, in partiular,
P ([φ, φ]i,Ψj,Ωk−i−j) = −jP (φ, [φ, φ]i−1, [Ψ, φ],Ψj−1,Ωk−i−j)

−(k − i− j)P (φ, [φ, φ]i−1 ,Ψj, [Ω, φ],Ωk−i−j−1)



CHERN-SIMONS FORMS ON ASSOCIATED BUNDLES, AND BOUNDARY TERMS 5for φ a g-valued 1-form, (setting Ai,j = 0 if either i or j is negative, or if i+ j > k − 1)
dΦP (ω) =

k−1∑

i=0

k−1−i∑

j=0

(Aij −Ai,j−1 −
1

2
Ai−1,j)P ([φ, φ]i,Ψj ,Ωk−i−j)

−(2iAij + (k − i− j)Ai−1,j)P (φ, [φ, φ]i−1,Ψj , [Ω, φ],Ωk−i−j−1)

+2iAi,j−1P (φ, [φ, φ]i−1, [Ψ, φ],Ψj−1,Ωk−i−j)

=

k−1∑

i=0

k−1−i∑

j=0

(Aij −Ai,j−1 −
1

2
Ai−1,j)P ([φ, φ]i,Ψj ,Ωk−i−j)

−(2iAij + (k − i− j)Ai−1,j)P (φ, [φ, φ]i−1,Ψj , [Ω, φ],Ωk−i−j−1)

−2iAi,j−1
1

j

(
P ([φ, φ]i,Ψj,Ωk−i−j) + (k − i− j)P (φ, [φ, φ]i−1,Ψj , [Ω, φ],Ωk−i−j−1)

)

=
k−1∑

i=0

k−1−i∑

j=0

(Aij −Ai,j−1 −
1

2
Ai−1,j − 2

i

j
Ai,j−1)P ([φ, φ]i,Ψj,Ωk−i−j)

−(2iAij + (k − i− j)Ai−1,j + 2
i(k − i− j)

j
Ai,j−1)P (φ, [φ, φ]i−1,Ψj, [Ω, φ],Ωk−i−j−1).We will have dΦP (ω) = P (Ω)−P (Ψ) if the oe�ient of P ([φ, φ]i,Ψj ,Ωk−i−j) is 1 for i = j = 0 and-1 for i = 0, j = k, and 0 otherwise, as well as the oe�ients of P (φ, [φ, φ]i−1,Ψj, [Ω, φ],Ωk−i−j−1)vanishing. That is, for (i, j) 6= (0, 0),

0 = Aij − (
j + 2i

j
)Ai,j−1 −

1

2
Ai−1,j

0 = 2iAij + (k − i− j)Ai−1,j + 2
i(k − i− j)

j
Ai,j−1or

Ai,j−1 = −
j(k − j)

2i(k + i)
Ai−1,j

Aij =

(
(i+ j)(i+ j − k)

2i(k + i)

)
Ai−1,j.There is a neessary onsisteny ondition, in that two reursive formulas must be onsistent, thatis

Ai+1,j−1 =

(
(i+ j)(i + j − k)

2(i+ 1)(k + i+ 1)

)
Ai,j−1 =

(
(i+ j)(i + j − k)

2(i+ 1)(k + i+ 1)

) (
−
j(k − j)

2i(k + i)

)
Ai−1,jversus

Ai+1,j−1 = −
j(k − j)

2(i+ 1)(k + i+ 1)
Ai,j = −

j(k − j)

2(i+ 1)(k + i+ 1)

(
(i+ j)(i + j − k)

2i(k + i)

)
Ai−1,j,whih indeed do give the same expression, so that the double reursion de�ning Aij is onsistent.From the seond reursion, setting A0,0 = 1, we obtain

Ai,0 =

(
(i− k)

2(k + i)

)
Ai−1,0

=

(
(i− k)

2(k + i)

)(
(i− 1− k)

2(k + i− 1)

)
Ai−2,0

=
(−1)ik!(k − 1)!

2i(k − i− 1)!(k + i)!
,



6 DAVID L. JOHNSONexatly agreeing with the terms Ai of [4℄, as expeted. Now, using the �rst reursion,
Ai,j = −

2(i+ 1)(k + i+ 1)

j(k − j)
Ai+1,j−1

= (−1)2
(

2(i + 1)(k + i+ 1)

j(k − j)

)(
2(i+ 2)(k + i+ 2)

(j − 1)(k − j + 1)

)
Ai+2,j−2

= (−1)2
(

22(i+ 1)(i + 2)(k + i+ 1)(k + i+ 2)

j(j − 1)(k − j)(k − j + 1)

)
Ai+2,j−2

= (−1)j
2j(i+ j)!(k + i+ j)!(k − j − 1)!

i!(k + i)!j!(k − 1)!
Ai+j,0

= (−1)j
2j(i+ j)!(k + i+ j)!(k − j − 1)!

i!(k + i)!j!(k − 1)!

(−1)i+jk!(k − 1)!

2i+j(k − i− j − 1)!(k + i+ j)!

= (−1)i
(i+ j)!(k − j − 1)!k!

2i(k − i− j − 1)!i!(k + i)!j!
,whih is of ourse the general term.The nature of the reursion will guarantee that the oe�ients of P ([φ, φ]i,Ψj ,Ωk−i−j) will be 0exept when i = j = 0, or j = k, and that the oe�ient of P (Ωk) will be 1, beause Aij = 0 ifeither i or j is negative. Also, the oe�ient of P (Ψk) will be −A0,k−1 (realling that Aij = 0 if

i+ j > k − 1). Now,
−A0,k−1 = −

(k − 1)!k!

(k)!(k − 1)!
= −1,as laimed. �The right-hand side of (1.3) is not, unfortunately, exatly the harateristi form P (Ω) that onemight hope for. Fortunately, though, in ertain irumstanes it an be shown that P (Ψ) = 0, forwhih bundles B the form ΦP (ω) will represent a seondary harateristi form of P (Ω) on theassoiated bundle. This ours in partiular for the Gauss-Bonnet integrand on the unit tangentbundle, whih gives the onnetion between the Chern-Simons lass Te(ω) of the Riemannian on-netion of an even-dimensional Riemannian manifold M and the formulas for the boundary termdesribed by Chern in [3℄.It is not the ase that ΦP (ω) is the ψ-horizontal part of TP (ω), whih instead is only the terms in

ΦP (ω) with j = 0. The additional terms, those involving the urvature Ψ of ψ, an be expressedin terms of Ω, φ, as explained below.Remark 3. The formula (1.3) of Theorem (2)
dΦP (ω) = P (Ω)− P (Ψ)is a general version of the heteroti formula dH = Tr(F ∧ F ) − Tr(R ∧ R) of [10℄, in that, in thease of a tensorial bundle, the urvature term Ω is related to the urvature of the base manifold,and the urvature Ψ is a urvature of the �bers.2. ObstrutionsFor spei� bundles, the harateristi lasses P (Ω) are obstrutions to the existene of globalsetions. Using the forms ΦP (ω), following Chern's original onstrution, the harateristi lasses

P (Ω) an be expliitly omputed as obstrutions. The same proof, applied to integration over hainsrather than yles, gives relative versions of eah of these lasses. The boundary term in generalwill depend upon a hoie of setion on the boundary. In the ase of the Euler lass of the tangent



CHERN-SIMONS FORMS ON ASSOCIATED BUNDLES, AND BOUNDARY TERMS 7bundle, however, the normal �eld of the boundary gives a anonial setion of the tangent bundleover the boundary.
2.1. The Euler lass. This �rst result, in the ase of a yle, is of ourse lassial, and the methodof proof is essentially that of [3℄. In the general ase, the result does follow from Chern's result,but was not stated as suh by him. Several authors have presented proofs of the general result,usually just for the tangent bundle of a manifold-with-boundary, suh as [5, 6, 9℄. The formulationsdi�er from ase to ase, but eah basially reovers Chern's transgression form, as does the urrentversion.Proposition 4. Let ξ be a rank-2k, oriented vetor bundle over a ompat manifold M , with asmooth metri. Let ω be a metri-ompatible onnetion on ξ. Let α be a smooth singular 2k-hainin M , and let σ be a generi setion of ξ. Then

∫

α

e(Ω) =

m∑

j=1

aj +

∫

∂α

s∗(Φe(ω)),where {p1, . . . , pm} are the zeros of σ|α, with aj the index of the zero of σ at pj, and s := σ/ ‖σ‖.
Proof. For an oriented, rank-2k vetor bundle ξ over M , and for ω a metri-ompatible onnetionon ξ, the naturally-assoiated intermediate bundle B is of ourse the unit (2k − 1)-sphere bundle
S(ξ) of ξ. Within S(ξ), dΦe(ω) = e(Ω), sine e(Ψ) = 0, Ψ lying in so(2k − 1).Sine σ is generi, we an assume that the zero-setion of σ will have intersetion with α a �-nite olletion of points {p1, . . . , pm} in the interiors of 2k-simplies of α, with nonzero, �nite-degree singularities. Then, for any ǫ > 0 su�iently small, s := σ/ ‖σ‖ de�nes a setion over
Supp(α)\{B(p1, ǫ)∪ · · · ∪B(pm, ǫ)}, where B(p1, ǫ) is the ǫ-ball within the appropriate 2k-simplex,and

∫

α

e(Ω) = lim
ǫ↓0

∫

α\B(p1,ǫ)∪···∪B(pm,ǫ)
s∗(dΦe(ω))

= lim
ǫ↓0

m∑

j=1

∫

s∗(∂B(pj ,ǫ))
Φe(ω) +

∫

∂α

s∗(Φe(ω)).Sine eah singularity of σ is of �nite, nonzero degree aj , limǫ↓0 s∗(∂B(pj , ǫ)) ∼ ajπ
−1(pj) (homolo-gous) where π : S(ξ)→M is the bundle projetion. Sine Ω is π : S(ξ)→M horizontal, using the



8 DAVID L. JOHNSONform of Ψ above in equation (1.2) and the fat that [φ, φ] has image ontained in h in this ase,
lim
ǫ↓0

m∑

j=1

∫

s∗(∂B(pj ,ǫ))
Φe(ω) =

m∑

j=1

aj

∫

π−1(pj)
Φe(ω)

=

m∑

j=1

aj

∫

π−1(pj)

k−1∑

i=0

Ai,k−1−ie(φ, [φ, φ]i,Ψk−1−i)

=
m∑

j=1

aj

∫

π−1(pj)

k−1∑

i=0

Ai,k−1−i
(−1)k−1−i

2k−1−i
e(φ, [φ, φ]k−1)

=
m∑

j=1

aj

∫

π−1(pj)

k−1∑

i=0

(−1)k−1 (k − 1)!k!

2k−1(k + i)!(k − 1− i)!
e(φ, [φ, φ]k−1)

=

m∑

j=1

aj

∫

π−1(pj)

(−1)k−1k

(2k − 1)2k−1
e(φ, [φ, φ]k−1)

=

m∑

j=1

aj,sine the integral, being restrited to a �ber on whih the behavior of φ is independent of M , anbe normalized by applying it to the singularities of the longitudinal �ow on the sphere S2k. �If ξ = T∗(M) and M is a 2k-manifold with boundary ∂M , then the usual Gauss-Bonnet-Cherntheorem, with boundary, an be reovered by taking σ to be the unit normal �eld to ∂M ⊂M , andof ourse the Poinaré-Hopf theorem.2.2. Chern Classes. Sine Chern lasses are de�ned, by the splitting priniple, from the Eulerlass [7℄, the situation is quite similar for Chern lasses as for the Euler lass. For a omplex rank-kvetor bundle ξ → M , the transgression of the the jth Chern lass cj(ξ) will be naturally-de�nedon the Stiefel bundle B := Vk−j+1(ξ) of (k − j + 1)-frames on ξ, with �ber U(k)/U(j − 1). Within
Vk−j+1(ξ), dΦcj(ω) = cj(Ω), sine cj(Ψ) = 0 for Ψ lying in u(j − 1).Proposition 5. Let ξ be a rank-k, omplex vetor bundle over a ompat manifold M , with asmooth hermitian metri. Let ω be a metri-ompatible onnetion on ξ. Let α be a smooth singular
2j-hain in M , and let (σ1, . . . , σk−j) be a unitary (k − j)-frame of ξ|Supp(α). Let σ be a generisetion of ξ/SpanC{σ1, . . . , σk−j} ∼= ξ⊥ with no zeros on ∂α. Then

∫

α

cj(Ω) =

m∑

l=1

al +

∫

∂α

s∗Φcj(ω),where {p1, . . . , pm} are the singularities of s := (σ1, . . . , σk−j, σ/ ‖σ‖) as a setion of the Stiefelbundle Vk−j+1(ξ)|α, with al the index of the singularity of σ at pl.Proof. Let α be a smooth singular 2j-yle in M . Sine rankR(ξ) > 2j, there is a unitary (k −
j)-frame (σ1, . . . , σk−j) of ξ|Supp(α). Let σ be a generi setion of the orthogonal omplement
ξ⊥ ∼= ξ/Span{σ1, . . . , σk−j}. Sine σ is generi, we an assume that the zero-setion of σ willhave intersetion with Supp(α) a �nite olletion of points {p1, . . . , pm} in the interiors of 2j-simplies of α, with nonzero, �nite-degree singularities. Then, for any ǫ > 0 su�iently small, s :=
(σ1, . . . , σk−j+1), with σk−j+1 := σ/ ‖σ‖, de�nes a setion of Vk−j+1(ξ) over Supp(α)\{B(p1, ǫ)∪· · ·∪
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B(pm, ǫ)}, where B(p1, ǫ) is the ǫ-ball within the appropriate 2j-simplex, and, sine dΦcj(ω) = cj(Ω)on B = Vk−j+1(ξ),

∫

α

cj(Ω) = lim
ǫ↓0

∫

α\B(p1,ǫ)∪···∪B(pm,ǫ)
s∗(dΦcj(ω))

= lim
ǫ↓0

m∑

l=1

∫

s∗(∂B(pl,ǫ))
Φcj(ω) +

∫

∂α

s∗Φcj(ω).Sine eah singularity of σk−j+1 is of �nite, nonzero degree al as a setion of the unit spherebundle in ξ/Span{σ1, . . . , σk−j}, limǫ↓0 s∗(∂B(pl, ǫ)) = alS(pl) where S(pl) is the (2j − 1)-spherein Vk−j+1(ξ)|pl
de�ned by �xing σ1, . . . , σk−j at pl, and varying σk−j+1(pl) among all unit vetorsorthogonal to the span of {σ1, . . . , σk−j}. Sine Ω is π : Vk−j+1(ξ)→M horizontal, using the formof Ψ above in equation (1.2),

lim
ǫ↓0

m∑

l=1

∫

s∗(∂B(pl,ǫ))
Φcj(ω) =

m∑

l=1

al

∫

π−1(pl)
Φcj(ω)

=

m∑

l=1

al

∫

π−1(pl)

j−1∑

i=0

Ai,j−1−icj(φ, [φ, φ]i,Ψj−1−i)

=

m∑

l=1

al

∫

π−1(pl)

k−1∑

i=0

Ai,j−1−i
(−1)j−i−1

2j−i−1
cj(φ, [φ, φ]i, [φ, φ]j−i−1

h )

=

m∑

l=1

al,again by normalizing the integral on a test ase, suh as the sum O(1) ⊕ · · · ⊕ O(1) of j opies ofthe line bundle with c1 = 1 on CPn, whih has cj = 1, the standard generator of H2j(CPn). �2.3. Pontryagin lasses. Sine the jth Pontryagin lass Pj of a real, rank-k vetor bundle ξ isjust the 2jth Chern lass of ξ ⊗ C [7℄, the form ΦPj(ω) will be de�ned on the Stiefel bundle
B = Vk−2j+1(ξ⊗C) of omplex (k−2j+1)-frames of ξ⊗C as the form Φc2j(ωC), using the naturalextension of the onnetion ω to F (ξ ⊗ C). However, there is an interpretation of the Pontryaginlasses in at least one ase, P1, whih is independent of a omplexi�ation of ξ.Let ξ be a real, oriented, rank-4 vetor bundle over M . Then, ξ is a rank-one, quaternioni vetorbundle over M , that is, the bundle F (ξ) of oriented frames of ξ de�nes a bundle of (non-integrable)quaternioni strutures on ξ. Eah frame, that is, eah quaternioni struture of ξx, determines 3omplex struture tensors on ξx, I, J , and K, with IK = −J . I is de�ned by I(e1) = e2, I(e3) = e4,and of ourse I(e2) = −e1and I(e4) = −e3. Similarly, K is de�ned at the same frame by K(e1) = e3and K(e2) = e4, and J is de�ned by J = KI. This bundle of quaternioni strutures produes 2omplementary bundles of omplex strutures (orresponding to I and K, to be spei�). If H1and H2 are the two subgroups of SO(4) orresponding to the omplex-linear automorphisms withomplex determinant 1 with respet to I andK, respetively, eah being a representation of SU(2) in
SO(4), then the assoiated bundles B1 := F (ξ)×SO(4) SO(4)/H1 and B2 := F (ξ)×SO(4) SO(4)/H2are eah RP3-bundles over M . In general, of ourse, the omplex-struture tensors I and K will notbe well-de�ned on all of M , but if so, suh as for the tangent bundle of a hyperkähler manifold ofreal dimension 4, then they would give two dual omplex strutures on ξ. Suh omplex strutureswould orrespond to global setions of B1 and B2.



10 DAVID L. JOHNSONNow, it will not be the ase that, for either bundle, the term P1(Ψ,Ψ) = 0 as was the ase in theprevious situations. However, sine
P1(Ω,Ω) =

−1

8π2
Tr(Ω ∧Ω)

=
1

8π2
(Ω12Ω12 + · · · + Ω34Ω34)

=
1

8π2

∑

i<j

Ωij ∧ Ωijfor Ω ∈ so(4), and sine, in this situation, the deomposition so(4) = h1 ⊕ p1 = p2 ⊕ h2 =
su(2) ⊕ su(2) splits as Lie algebras rather than just as a redutive omplement, then, for either
B1 or B2 the deomposition ω = φi + ψi of the onnetion satis�es [φi, φi] ⊂ pi (that is, the formtakes values in pi) and [ψi, ψi] ⊂ hi. Thus, by the deomposition of Ψi = Ωhi

− 1
2 [φi, φi]hi

= Ωhi
, so

P1(Ψi,Ψi) = P1(Ωhi
,Ωhi

), denoting by Ψi, i = 1, 2, the orresponding urvature forms, for B1and
B2 (both of whih an be viewed as forms in F (ξ) having values in so(4)), then

P1(Ψ1,Ψ1) + P1(Ψ2,Ψ2) = P1(Ω,Ω),so that while neither one of the transgressive forms has di�erential the Pontryagin lass, their sumdoes,
dΦP1(ω1) + dΦP1(ω2) = P1(Ω),where of ourse ω1 and ω2 refer to the two distint deompositions of the bundle of frames intoassoiated bundles (even though ω is the same in both ases).Proposition 6. Let ξ be a real, oriented, rank-4 vetor bundle over a ompat manifold M . Let B1and B2 be given by B1 := F (ξ) ×SO(4) SO(4)/H1 and B2 := F (ξ) ×SO(4) SO(4)/H2 as above. Let

α be a smooth singular 4-hain in M . Choose generi setions σ1 of B1 and σ2 of B2 with a �niteset of singular points {pj}, singular for either σ1 or σ2, or both, interior to 4-simplies in α, withnondegenerate singularities of indies a1l and a2l at pl. Then,
∫

α

P1(Ω) =

m∑

l=1

(a1l + a2l) +

∫

∂α

σ∗1(ΦP1(ω1)) + σ∗2(ΦP1(ω2)).

Proof. Let α be a smooth singular 4-yle inM . B1 and B2 give rise to two R4-bundles onM , whihas above will have generi setions with a disrete set of nondegenerate zeros on α, orrespondingto setions σ1 of B1 and σ2 of B2 with a �nite set of singular points {pj}, singular for either σ1or σ2, or both, interior to 4-simplies in α, whih are limits of maps σi : ∂B(pj, ǫ) → RP3 of�nite degree when lifted to σ̃i : ∂B(pj, ǫ) → S3, i = 1, 2, that is, for ǫ > 0 su�iently small,(
σ̃i|∂B(pj ,ǫ)

)
∗

: H3(∂B(pj , ǫ)) → H3( ˜π−1(pj)) given by [∂B(pj , ǫ)] 7→ ai,j[ ˜π−1(pj)], aij ∈ Z. As



CHERN-SIMONS FORMS ON ASSOCIATED BUNDLES, AND BOUNDARY TERMS 11above, with the projetions π1 : B1 →M and π2 : B2 →M ,
∫

α

P1(Ω) = lim
ǫ↓0

∫

α\B(p1,ǫ)∪···∪B(pm,ǫ)
σ∗1(dΦP1(ω1)) + σ∗2(dΦP1(ω2))

= lim
ǫ↓0

m∑

l=1

∫

(σ1)∗(∂B(pl,ǫ))
ΦP1(ω1) +

∫

(σ2)∗(∂B(pl,ǫ))
ΦP1(ω2)

+

∫

∂α

σ∗1(ΦP1(ω1)) + σ∗2(ΦP1(ω2))

=

m∑

l=1

a1l

∫

π−1

1
(pl)

ΦP1(ω1) + a2l

∫

π−1

2
(pl)

ΦP1(ω2)

+

∫

∂α

σ∗1(ΦP1(ω1)) + σ∗2(ΦP1(ω2))

=
m∑

l=1

a1l

∫

π−1

1
(pl)

1∑

i=0

Ai,1−iP1(φ1, [φ1, φ1]
i,Ψ1−i

1 ) +

+a2l

∫

π−1

2
(pl)

1∑

i=0

Ai,1−iP1(φ2, [φ2, φ2]
i,Ψ1−i

2 )

+

∫

∂α

σ∗1(ΦP1(ω1)) + σ∗2(ΦP1(ω2))

=

m∑

l=1

a1l

∫

π−1

1
(pl)

A0,1P1(φ1, [φ1, φ1]) + a2l

∫

π−1

2
(pl)

A0,1P1(φ2, [φ2, φ2])

+

m∑

l=1

a1l

∫

π−1

1
(pl)

A1,0P1(φ1,Ωh1
) + a2l

∫

π−1

2
(pl)

A1,0P1(φ1,Ωh2
)

+

∫

∂α

σ∗1(ΦP1(ω1)) + σ∗2(ΦP1(ω2))

=

m∑

l=1

a1l

∫

π−1

1
(pl)

P1(φ1, [φ1, φ1]) + a2l

∫

π−1

2
(pl)

P1(φ2, [φ2, φ2])

+0

+

∫

∂α

σ∗1(ΦP1(ω1)) + σ∗2(ΦP1(ω2)),sine the integration is over π−1
i (pl), and Ω is πi-horizontal.Sine the form P1(ω, [ω, ω]) has integral periods and generates the transgressive �rst Pontryaginform of H3(SO(4),R) = H3(SU(2),R) ⊕H3(SU(2),R), the projetion SO(4) → SO(4)/H1 pullsthe generator of H3(SO(4)/H1,R), whih is P1(φ1, [φ1, φ1]), bak to P1(ω, [ω, ω]), and so

∫

π−1

1
(pl)

P1(φ1, [φ1, φ1]) = 1;similarly with the other projetion as well. Thus
∫

α

P1(Ω) =
m∑

l=1

a1l + a2l +

∫

∂α

σ∗1(ΦP1(ω1)) + σ∗2(ΦP1(ω2)).

�



12 DAVID L. JOHNSONExample 7. As an example of this deomposition, let ξ be the tangent bundle to S4. Sine
S4 = HP1, S4 admits a global quaternioni struture, though it admits no global almost-omplexstrutures. However, if p is the South pole, p = (−1, 0, 0, 0, 0), on S4\{p}, there are ertainly globalalmost-omplex strutures. The standard omplex strutures an be desribed by parallel transportof a given pair of omplex strutures at the North pole n := −p, orresponding to the anonialframe, along longitudes. For these setions σ1 of B1 and σ2 of B2, there is only one singular point,for both setions, at p. The setion σ1|x1=−

√
1−ǫ2 : S3

ǫ → B1|S3
ǫ

∼= S3
ǫ ×RP3, as a map σ1S

3 → RP3,lifts to a map σ̃1 : S3
ǫ → S3 of degree 2, and σ2 similarly lifts to a map of degree −2.Remark 8. An eventual goal of these relative lasses would be to onstrut a ombinatorial proedureto determine the Pontryagin lasses of a losed manifold, sine it is well-known that they aretopologial invariants [8℄. It is possible to begin the proedure for an oriented 4-manifold M basedon this result, but the details are not apparent. Given suh a manifold M4, eah 4-simplex ofa �xed triangulation of M admits a standard hyperkähler struture, with presribed behavior atthe boundary (given as that of the boundary of the 4-ball in quaternioni 1-spae), so that theomputation redues to the 3-skeleton. The boundary terms anel on the interiors of the 3-simpliesdue to reversal of orientation of the setions, so the remaining alulations should lie on the 2-skeleton. 3. Seondary harateristi lassesOne of the most extensive uses whih has been made with the onstrution of [4℄ has been theonstrution of seondary harateristi lasses. If P is a polynomial of degree k so that P (Ω) isintegral for all Ω, that is, if it has integral periods, then when ω is a onnetion for whih P (Ω) = 0(as a form, not just as a ohomology lass), the Chern-Simons transgression TP (ω) will be losed,generating a ohomology lass in H2k−1(E,R). Of more interest is the onstrution, from thatlass, of a ohomology lass in the base M modulo integral lasses. In the ase of a prinipal bundlethe existene of suh a lass follows by passing to the universal bundle, where every oyle is aoboundary on the total spae, and so the mod-Z redution of TP (ω) will be a lift of a oyle onthe base.The forms ΦP (ω) an, in some ases, be more diretly seen to be lifts, using the obstrutioninformation determined by the harateristi lass P (Ω). Note that the method of proof used byChern and Simons will not work in this situation, and that the forms ΦP (ω), and so the seondaryharateristi lasses determined by them, are not always the same as the Chern-Simons lasses.Theorem 9. If ξ is either a rank-2k real oriented vetor bundle, or a rank-k omplex vetor bundle,over a ompat manifold M , and if, respetively, the form e(Ω) = 0 (resp., cj(Ω) = 0 for some j),then the orresponding form Φe(ω) (resp., Φcj(ω)) is well-de�ned as an element of H2k−1(M,R/Z)(resp., H2j−1(M,R/Z)).Proof. For the Euler lass of an oriented rank-2k vetor bundle, where B is the sphere bundle: if

e(Ω) = 0 as a form, of ourse Φe(ω) will be losed, and for any setion σ over the 2k-skeleton,
σ∗(Φe(ω)) will be a losed form on M whih lifts to Φe(ω), de�ning a seondary harateristi lasson M modulo the hoie of setion σ.The Gysin sequene of the (2k − 1)-sphere bundle π : B →M ,

· · ·
π∗
→ Hr(M,R)

e∧
→ Hr+2k(M,R)

π∗

→ Hr+2k(B,R)
π∗
→ Hr+1(M,R)

e∧
→ ,



CHERN-SIMONS FORMS ON ASSOCIATED BUNDLES, AND BOUNDARY TERMS 13for r = −1 yields the split short exat sequene (for any setion σ)
0 → H2k−1(M,R)

π∗

→
←
σ∗

H2k−1(B,R)
π∗
→ R.The map π∗ is integration over the �ber [2, p. 178℄, so in the ase that R = R the image σ∗(Φe(ω))is well-de�ned modulo π∗(Φe(ω)) = [f ], where f(x) =

∫
π−1(x) Φe(ω) is an integer-valued (heneonstant, sine it is ontinuous) funtion by the fat that the integrand over eah �ber is integral,sine Φe(ω)|ker(π∗)

is the (normalized) volume form on the �bers. Then, with the oe�ient ring
R = R/Z, Φe(ω) ∈ ker(π∗), thus there is a unique U ∈ H2k−1(M,R/Z) so that π∗(U) = Φe(ω),and sine πσ = 1, U = σ∗π∗(U) = σ∗(Φe(ω)), independent of hoie of σ.In the ase of a rank-k omplex vetor bundle, if the form cj(Ω) = 0 then, as for the Euler lass,there will be a setion σ : M (2j) → Vk−j+1(ξ) of the Stiefel bundle of unitary (k − j + 1)-frames of
ξ over the 2j-skeleton of M . The Stiefel bundle splits as a tower of sphere bundles

Vk−j+1(ξ)→ · · · → V2(ξ) ∼= S(π∗(v⊥))→ S(ξ)→M,where V2(ξ) is the sphere bundle of the orthogonal omplement bundle v⊥ → S(ξ) with �ber over
v ∈ S(ξ) the orthogonal omplement of {v, iv} in the �ber ξπ(v). The �ber at eah stage is S2k−2l−1,
l = 0, . . . , k− j. Applying the Gysin sequene at eah stage, with r = 2(j − k)− 1 in the �rst stagethrough r = −1 at the last, gives

H2j−1(M,R) ∼= H2j−1(S(ξ), R) ∼= · · · ∼= H2j−1(Vk−j(ξ), R),and a split exat sequene (using H2j−1(Vk−j(ξ), R) ∼= H2j−1(M,R)) for any setion σ over the
2j-skeleton of M :

0 → H2j−1(M,R)

π∗

→
←
σ∗

H2j−1(Vk−j+1(ξ), R)
π∗
→ R.The proof then proeeds as in the �rst ase, noting that π∗ an still be viewed as integration overthe �ber, but over the �ber of the S2j−1-bundle Vk−j+1(ξ)→ Vk−j(ξ). �3.1. Invariants of odd-dimensional manifolds. For a ompat 3-manifold M , one of the moreintriguing results in [4℄ is the equivalene of the existene of a ritial onnetion (or metri) forthe funtional ω 7→ ∫

M
1
2TP1(ω) as an R/Z-valued form on the spae of Riemannian metris on M ,to the Poinaré onjeture. While we do not draw suh onnetions for the forms ΦP1(ω) (whih,in partiular, may not be onformal invariants, a key property used by Chern and Simons), we anshow that, as a seondary harateristi lass ΦPk(ω) on the sphere bundle of the tangent bundleof a ompat (4k − 1)-manifold M will de�ne a ohomology lass in H2k−1(M,R/Z).For a ompat, oriented (4k − 1)-manifold M , sine the Euler lass vanishes there will always bea setion σ : M → T1(M) of the tangent sphere bundle. By simple dimension, rather than anyassumptions on the harateristi forms or Theorem (2), the pullbak σ∗(ΦPk(ω)) from the spherebundle will satisfy dσ∗(ΦPk(ω)) = 0, so will de�ne a ohomology lass depending upon the setion

σ. Sine dΦPk(ω) = −Pk(Ψ) in the sphere bundle, then the mod-Z redution δΦ̃Pk(ω) = 0 beausethe di�erential has integral periods. Apply the Gysin sequene again with R/Z oe�ients:
· · ·

π∗
→ Hr(M,R/Z)

e∧
→ Hr+4k−1(M,R/Z)

π∗

→
←
σ∗

Hr+4k−1(B,R/Z)
π∗
→ Hr+1(M,R/Z)

e∧
→ .



14 DAVID L. JOHNSONIn this ase the Euler lass will be 0, leading to, for r = 0, the split short exat sequene
0 → H4k−1(M,R/Z)

π∗

→
←
σ∗

H4k−1(B,R/Z)
π∗
→ H1(M,R/Z) → 0 ,indiating that, in partiular, the lass σ∗(Φ̃Pk(ω)) will be independent of the setion σ for a simply-onneted manifold M , so that, a priori, for these manifolds there is a H4k−1(M,R/Z)-seondarylass. More generally, again sine the form ΦPk(ω)|ker(π∗)
restrits to (an integral multiple of) thevolume form on the �bers π−1(x) for x ∈ M , then Φ̃Pk(ω) will lie in the kernel of the map π∗,whih is integration over the �ber (in R/Z oe�ients). By the short exat sequene, that impliesthat Φ̃Pk(ω) is in the image of the pullbak map π∗. However, any σ∗ will be a left inverse of π∗,so on this subgroup (the image of π∗), σ∗ will indeed be the inverse of π∗, so that σ∗(Φ̃Pk(ω)) willbe independent of the hoie of σ. This establishes the following fat.Proposition 10. If M4k−1 is a ompat, oriented manifold, with B → M the unit tangent bundleof M , and if ω is the Riemannian onnetion of a given Riemannian metri on M , then the forms

σ∗(Φ̃Pk(ω)) are well-de�ned as seondary harateristi lasses in H4k−1(M,R/Z), depending onlyupon the metri.3.2. Examples. As a simple example of the kind of information that an be measured by theseseondary harateristi lasses, and how they di�er from the original lasses of Chern and Simons,onsider a ompat 3-manifold M . Sine the tangent bundle is trivial, both the Chern-Simonslasses TP1(ω) and the forms ΦP1(ω) determine seondary harateristi lasses in H3(M,R/Z).Start with the trivial (�at) onnetion ω0 on M × SO(3), whih is simply the Maurer-Cartan formon the �bers, ω0|(x,g) = g−1dg, where g : SO(3) → M(3 × 3,R) is essentially the identity mapreognizing g ∈ SO(3) as a matrix. In this notation, any onnetion ω on M × SO(3) an be givenas ω = ω0 +g−1π∗(α)g, where α ∈ E1(M,o(3)) is arbitrary. It is a simple omputation to show thatthe urvature Ω is given by Ω = g−1π∗(dα+α∧α) g. If o(3) = p⊕ h is the standard deompositionof o(3) orresponding to the projetion SO(3) → S2, with h = I ⊕ SO(2) ⊂ SO(3), then theonnetion deomposes as above into ω = φ+ψ where φ = g−1πp(π
∗(α)) g and ψ = g−1πh(π

∗(α)) g.Sine the polarized �rst Pontryagin polynomial is P1(A,B) = −1
8π2Tr(AB), P1(p, h) = 0, and so, for

σ : M →M × SO(3) the obvious map x 7→ (x, e),
σ∗(ΦP1(ω)) = σ∗ (A00P1(φ,Ω) +A01P1(φ,Ψ) +A10P1(φ, [φ, φ]))

=
−1

8π2

(
Tr(πpα ∧ (dα+ α ∧ α)) + Tr(πpα ∧Ψ)−

1

6
Tr(πpα ∧ [πpα, πpα])

)

=
−1

8π2

(
Tr(πpα ∧ (dα+ α ∧ α)) + 0−

1

6
Tr(πpα ∧ [πpα, πpα])

)
.In addition, sine πp(α) is a 1-form with values in an R2, the last term will vanish. Writing

α =




0 a1 a2

−a1 0 b
−a2 −b 0


 ,we have

πpα =




0 a1 a2

−a1 0 0
−a2 0 0


 ,
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σ∗(ΦP1(ω)) =

1

4π2
(a1 ∧ da1 + a2 ∧ da2 − 2a1 ∧ a2 ∧ b) .On the other hand, the Chern-Simons form of this same onnetion will be

σ∗(TP1(ω)) = σ∗ (A0P1(ω,Ω) +A1P1(ω, [ω, ω]))

=
−1

8π2

(
Tr(α ∧ (dα+ α ∧ α))−

1

6
Tr(α ∧ [α,α])

)

=
−1

8π2

(
Tr(α ∧ dα) +

2

3
Tr(α ∧ (α ∧ α))

)

=
1

4π2
(a1 ∧ da1 + a2 ∧ da2 + b ∧ db− 2a1 ∧ a2 ∧ b) .These an learly be seen to di�er modulo forms of integral periods, if, for example, b is non-losedwith ˜b ∧ db/4π2 6= 0 in H3(M,R/Z).3.3. Conformal metris. If gt = e2tλg0 is a onformal family of metris on an arbitrary n-manifold

M , for some λ : M → R, then the Riemannian onnetions ωt of the family of metris, as aonnetion form on the orthonormal frame bundle F (M), varies aording to the following Lemma.Note that this di�ers somewhat from Chern and Simons' formula [4℄, but their version is as a formon the full bundle of bases, relative to a �xed loal basis, whereas this version uses a family ofmoving frames {ei(t)} = {e−tλ
ei}.Lemma 11. Let M be an arbitrary Riemannian manifold, with metri g =<,>, and let gt := e2tλgbe any onformal family of metris. Then, if ωj

i (t) is the Riemannian onnetion one-form of thefamily of metris gt, relative to the moving frame {ei(t)} = {e−tλ
ei}, we have

ωj
i (t) = ωj

i + tei(π
∗λ)θj − tej(π

∗λ)θi,where π : F (M)→M is the bundle projetion and {θj} are the solder forms.Proof. By a diret omputation, identifying λ onM with the pull-bak π∗(λ) on F (M), and X withan arbitrary lift of X under π∗,
ωj

i (t)(X) = 〈∇(t)Xei(t), ej(t)〉t

=
1

2

(
X 〈ei(t), ej(t)〉t + ei(t) 〈X, ej(t)〉t − ej(t) 〈X, ei(t)〉t

+ 〈[X, ei(t)] , ej(t)〉t − 〈[X, ej(t)] , ei(t)〉t − 〈[ei(t), ej(t)] ,X〉t
)

=
1

2
(X 〈ei, ej〉+ tei(λ) 〈X, ej〉+ ei (〈X, ej〉)− tej(λ) 〈X, ei〉 − ej (〈X, ei〉)

−tX(λ) (〈ei, ej〉) + 〈[X, ei] , ej〉+ tX(λ) 〈[X, ej ] , ei〉 − 〈[X, ej ] , ei〉

+tei(λ) 〈ej,X〉 − tej(λ) 〈ei,X〉 − 〈[ei, ej ] ,X〉)

= ωj
i (X) + tei(λ)θj(X)− tej(λ)θi(X).The result follows. �Now onsider a more spei� situation, where M is the 3-manifold S1 × S1 × S1 with g being the�at metri. If now ΦP1(ω(t)) is the orresponding family of transgressive forms on the unit spherebundle, from the previous subsetion and Lemma (11) we have that ω(t) = ω0 + g−1π∗(α)g where,with respet to the standard frame {e1, e2, e3} being the unit tangent �elds to the fators, with



16 DAVID L. JOHNSONoordinates {x, y, z} and λ = λ(x, y, z) being any triply-periodi funtion with periods 2π in eahvariable,
α =




0 t∂λ
∂x
dy − t∂λ

∂y
dx t∂λ

∂x
dz − t∂λ

∂z
dx

−t∂λ
∂x
dy + t∂λ

∂y
dx 0 t∂λ

∂y
dz − t∂λ

∂z
dy

−t∂λ
∂x
dz + t∂λ

∂z
dx −t∂λ

∂y
dz + t∂λ

∂z
dy 0


 ,so that

σ∗(ΦP1(ω)) =
1

4π2

(
t2

(
∂λ

∂x
dy −

∂λ

∂y
dx

)
∧ d

(
∂λ

∂x
dy −

∂λ

∂y
dx

)

+t2
(
∂λ

∂x
dz −

∂λ

∂z
dx

)
∧ d

(
∂λ

∂x
dz −

∂λ

∂z
dx

)

−2t3
(
∂λ

∂x
dy −

∂λ

∂y
dx

)
∧

(
∂λ

∂x
dz −

∂λ

∂z
dx

)
∧

(
∂λ

∂y
dz −

∂λ

∂z
dy

))

=
1

4π2

(
t2

(
∂λ

∂x
dy −

∂λ

∂y
dx

)
∧

(
∂2λ

∂x2
dx ∧ dy −

∂2λ

∂x∂z
dy ∧ dz +

∂2λ

∂y2
dx ∧ dy +

∂2λ

∂y∂z
dx ∧ dz

)

+t2
(
∂λ

∂x
dz −

∂λ

∂z
dx

)
∧

(
∂2λ

∂x2
dx ∧ dz +

∂2λ

∂x∂y
dy ∧ dz +

∂2λ

∂z2
dx ∧ dz +

∂2λ

∂z∂y
dx ∧ dy

)

−2t3
(
∂λ

∂x
dy −

∂λ

∂y
dx

)
∧

(
∂λ

∂x
dz −

∂λ

∂z
dx

)
∧

(
∂λ

∂y
dz −

∂λ

∂z
dy

))

=
t2

4π2

(
∂λ

∂y

∂2λ

∂x∂z
−
∂λ

∂x

∂2λ

∂y∂z
−
∂λ

∂z

∂2λ

∂x∂y
+
∂λ

∂x

∂2λ

∂z∂y
− 2t

(
∂λ

∂x

∂λ

∂z

∂λ

∂y
−
∂λ

∂y

∂λ

∂x

∂λ

∂z

))
dx ∧ dy ∧ dz

=
t2

4π2

(
∂λ

∂y

∂2λ

∂x∂z
−
∂λ

∂z

∂2λ

∂x∂y

)
dx ∧ dy ∧ dz,and ∫

M

σ∗(ΦP1(ω)) =

∫

M

t2

4π2

(
∂λ

∂y

∂2λ

∂x∂z
−
∂λ

∂z

∂2λ

∂x∂y

)
dxdydz

=

∫

M

t2

2π2

(
∂λ

∂y

∂2λ

∂x∂z

)
dxdydz

= 0,whih follows from writing λ in terms of its Fourier series, λ =
∑

n,m,p an,m,pe
i(mx+ny+pz).This leads to the following onlusion:Proposition 12. If g is a onformally-�at metri on a ompat 3-manifold M , then σ∗(Φ̃P1(ω)) =

0.Remark 13. It an similarly be shown, by a diret alulation, that d
dt

∣∣
0
σ∗( ˜ΦP1(ω(t))) will be exat,if ω(0) is the standard Riemannian onnetion on the round 3-sphere, so that at least in�nitesimally

σ∗(Φ̃P1(ω)) will be onformally invariant there as well.Referenes[1℄ A. Borel, Sur la ohomologie des espaes �brés prinipaux et des espaes homogènes de groupes de Lie ompats,Annals of Mathematis, 57 (1953), 115-207.[2℄ Raul Bott and Loring W. Tu, Di�erential forms in algebrai topology, Springer GTM # 82, 1982.[3℄ Shiing-Shen Chern, A simple intrinsi proof of the Gauss-Bonnet formula for losed Riemannian manifolds,Annals of Mathematis, 45 (1944), 747-752.[4℄ Shiing-Shen Chern and James Simons, Charateristi forms and geometri invariants, Annals of Mathematis,99 (1974), 48-69.
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