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VOLUME-MINIMIZING FOLIATIONS ON SPHERESFABIANO BRITO AND DAVID L. JOHNSONAbstra
t. The volume of a k-dimensional foliation F in a Riemannian manifold Mn is de�ned asthe mass of image of the Gauss map, whi
h is a map from M to the Grassmann bundle of k-planesin the tangent bundle. Generalizing the 
onstru
tion by Glu
k and Ziller in [4℄, \singular" foliationsby 3-spheres are 
onstru
ted on round spheres S4n+3, as well as a singular foliation by 7-sphereson S15, whi
h minimize volume within their respe
tive relative homology 
lasses. These singularexamples provide lower bounds for volumes of regular 3-dimensional foliations of S4n+3 and regular7-dimensional foliations of S15. 0. Introdu
tionIn [4℄, Herman Glu
k and Wolfgang Ziller asked whi
h foliations were \best-organized", in that anenergy fun
tional they 
alled the volume was minimized. The volume of a foliation is the mass ofthe image of the Gauss map, whi
h in the 
ase of a one-dimensional foliation is the mass of theunit tangent 
ow �eld in T1(M).They were able to show that the standard one-dimensional foliation (or 
ow, in their terminology)of S3 by the �bers of the Hopf �bration S3 ! S2 minimized volume among all foliations of theround S3. Their method of proof, involving 
alibrations, did not generalize, however.It is not the 
ase that even the most obvious generalization of Glu
k and Ziller's example to higherdimensions, the Hopf �bration S5 ! CP2, is volume-minimizing [5℄. Sharon Pedersen showed in herthesis that there was a foliation of S5 with mu
h less volume than the Hopf �bration, although herexample is singular [8℄. It may well be that the volume-minimizing one-dimensional foliations onS5 is be singular, although it is not 
lear whether Pedersen's example is that minimizer. Glu
k andZiller did des
ribe a \singular foliation" on S2n+1 that minimizes the volume fun
tional, but theirsingular minimum is of a di�erent sort than Pedersen's. Pedersen's foliation is a smooth foliationon all but one point in S5, and is a limit of smooth foliations, while Glu
k and Ziller's example isnot homologous to a foliation ex
ept on S3.There is, then, something pe
uliar about the Hopf �bration on S3 whi
h enables the 
alibrationargument that Glu
k and Ziller used to show the minimization of the volume of that foliation,beyond the evident geometri
 properties for the Hopf �brations in general.In this arti
le we expand the method used by Glu
k and Ziller to 3-dimensional foliations of S4n+3and 7-dimensional foliations of S15. What we �nd is that the generi
 situation Glu
k and Zillerdes
ribed for 
ows on S2n+1 holds; that is, there are singular foliations whi
h minimize volume inthese 
ases, but that it does not appear that the Hopf �brations will minimize volume.1991 Mathemati
s Subje
t Classi�
ation. 53C12, 53C38.The se
ond author was supported during this resear
h by grants from the Universidade de S�ao Paulo, FAPESPPro
.1999/02684-5, and Lehigh University, and thanks those institutions for enabling the 
ollaboration involved inthis work. 1



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 21. Definitions and the minimization questionThe original question 
onsidered by Glu
k and Ziller in [4℄, extended by a number of authors, is to�nd the dimension-k foliation F on a 
ompa
t Riemannian manifold M , 
onsidered as a se
tion�F :M ! Go(k;M)of the bundle of oriented k-planes tangent to M , whi
h is \most eÆ
ient" or \best-organized" inthat its volume is minimized, where the volume is de�ned as the Hausdor� n-dimensional measureof the image �F(M) � Go(k;M), where the Grassmann bundle has a natural Sasaki metri
 indu
edfrom the original metri
 on M . Volume-minimization should be 
onsidered within ea
h homology
lass of foliations, and it is possible for one homology 
lass to admit a smooth minimizer, but forothers to have no smooth minimizer.Remark 1.1. It may seem more appropriate to 
onsider homotopy 
lasses of su
h foliations ratherthan homology 
lasses, but a simple 
onstru
tion shows that two homotopy 
lasses of one-dimensionalfoliations on S3 
an be 
onstru
ted (within one homology 
lass, of 
ourse), one of whi
h has a smoothvolume-minimizer, but the other does not, sin
e there is a sequen
e within the one homotopy 
lasswhose volume 
onverges to the minimum of the other 
lass. Sin
e the only foliations a
hievingthat minimum are within the �rst homotopy 
lass (see, for example, [4℄), there 
an be no smoothminimizer within the �rst.As mentioned in the Introdu
tion, Glu
k and Ziller showed that the natural 
andidate, the �bersof the Hopf �bration from S3 to S2, is volume-minimizing among all (smooth) one-dimensionalfoliations on the (round) 3-sphere.Several authors [5, 8℄ showed that this natural 
andidate volume-minimizer did not extend evento the next simplest 
ase of the �bers of the Hopf �bration S5 ! CP2. Pedersen's example, inparti
ular, is singular in the sense that there is one point of S5 whi
h must be removed in order forher example to be a smooth foliation. It is the 
ase, however, that Pedersen's example is the limitof smooth foliations (it is the limit of the sequen
e of geodesi
 
ows stret
hing away from one poletowards the other, applied to any smooth one-dimensional foliation).Be
ause of Pedersen's example, it seems ne
essary to 
onsider singular foliations in general.De�nition 1.2. An oriented singular k-dimensional distribution on a manifold M is de�ned asan n-dimensional re
ti�able 
urrent D � Go(k;M) of the bundle of k-dimensional subspa
es ofT�(M), so that on an open dense subset U �M , Dj��1(U) is a smooth, k-dimensional distributionon U , that is, a smooth 
ross-se
tion of G(k; U)! U (resp., Go(k; U)! U). The distribution D isintegrable, or is a singular foliation, if Dj��1(U) is integrable.As an example, any unit ve
tor �eld on a manifold M with �nitely many singularities, ea
h with�nite index, is an oriented singular foliation in this sense. Note that these 
urrents need not be
y
les, in general; for example in the 
ase of a unit ve
tor �eld with some point singularity of odddegree.This notion of a singular foliation is similar to, but more general than, that studied by the se
ond-named author and Smith in [6℄. In that arti
le, the singular se
tions of arbitrary ve
tor bundles thatare 
onsidered are those in the weak 
losure of the spa
e of smooth se
tions. Many of the singularfoliations 
onsidered here are not in the 
losure of the spa
e of smooth se
tions, by topologi
al
onsiderations.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 32. 1-dimensional singular foliations of S2n+12.1. The 
alibration. The bundle of oriented 1-planes tangent to S2n+1, the unit tangent bundleT1(S2n+1), is isomorphi
 to the 
ag manifold of oriented lines in oriented 2-planes in R2n+2, whi
his the Stie�el manifold of 2-frames in R2n+2.This gives rise to the following diagram:T1(S2n+1) �! Fo(1; 2;R2n+2)hx??�??y �??yS7 Go(2;R2n+2) :Go(2; 2n + 2) has two universal bundles, the universal 2-plane bundle U(2; 2n + 2) and the dual2n-plane bundle V (2n; 2n+ 2), de�ned byU(2; 2n+ 2) := [x2Go(2;2n+2)xV (2n; 2n+ 2) := [x2Go(2;2n+2)x?:The respe
tive Euler 
lasses E(U) and E(V ) satisfy E(U)[E(V ) = 0 in H2n(Go(2; 2n+ 2)), sin
eU�V is trivial. In parti
ular, if ! is the universal 
onne
tion on U(2; 2n+2) de�ned by Narasimhanand Ramanan (
f. [7℄), and !� is the \dual" 
onne
tion on V (2n; 2n+2), then the asso
iated Eulerforms, e(
) and e(
�), satisfy e(
)^ e(
�) = 0. Consider the form� := C Te(!) ^ e(
�);whi
h is well-de�ned on Fo(1; 2;R2n+2) sin
e that is the frame bundle FU(2; 2n + 2) of orientedorthonormal frames on U(2; 2n + 2), whi
h is an SO(2)-prin
ipal bundle. Here, Te(!) is thetransgressive Chern-Simons form 
orresponding to the Euler form e(
) of U(2; 2n+2) [3℄. Be
aused(Te(!)) = e(
), we have that d� = 0. The 
onstant C is simply 
hosen so that the 
omass of �is one. This is the same 
alibration de�ned in [4℄.2.2. Cal
ulations. We will 
onsider Go(2; 2n+2) as SO(2n+2)=SO(2)�SO(2n), and the prin
ipalbundle FU(2; 2n+ 2) as SO(2n+ 2)=I2 � SO(2n). The universal 
onne
tion ! on FU(2; 2n+ 2)
an be de�ned as the trun
ation of the restri
tion of the Maurer-Cartan form on o(2n+2), denoted� = [�ij ℄, to the tangents to FU(2; 2n + 2). That is, the 
omponents of the 
onne
tion !ij arede�ned for i; j 2 f1; 2g by !ij(A) = Aij , for anyA 2 T�(FU(2; 2n+ 2); (U0; fe1; e2g)) = �A 2 o(2n+ 2)jA = � R S�St 0 � ; R 2 o(2)� ;if U0 = R2� 0 � R2n+2, with basis fe1; e2g. By homogeneity, all 
al
ulations in FU(2; 2n+ 2) 
anbe taken to be at this point.The 
urvature 
 of this 
onne
tion is given by 
ij(X; Y ) = �!ij([X; Y ℄) for left-invariant ve
tor�elds that are horizontal at U0, that is, of the form � 0 S�St 0 �. In terms of the Maurer-Cartanform, 
ij = +P2n+2k=2 �ik ^ �jk , for i; j 2 f1; 2g.Similarly, the 
onne
tion !� on the dual prin
ipal bundle FV (2n; 2n+2) = SO(2n+2)=SO(2)� Iat U0 = R2�0 � R2n+2 is the restri
tion of the same Maurer-Cartan form � to the other blo
k, andthe 
urvature 
�kl =P2i=1 �ik ^ �il, for k; l 2 f3; : : : ; 2n+ 2g. Either of the tangent spa
es to theseprin
ipal bundles 
an be 
anoni
ally embedded into the tangent spa
e o(2n+ 2) of SO(2n+ 2) atthe identity.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 4The Euler form e(
) of FU(2; 2n+ 2) is the forme(
) := 12� (
12)= 12�2 (�1k ^ �2k) ;where the sum is taken over all k 2 f3; : : : ; 2n+ 2g. Dually, the Euler form e(
�) of FV (2n; 2n+2)is the forme(
�) := C0� X�2S2n(�1)�
�(3)�(4) ^ � � � ^ 
�(2n+1)�(2n+2)1A= C0� X�2S2n;i1;:::;in(�1)���(3)i1 ^ ��(4)i1 ^ � � � ^ ��(2n+1)in ^ ��(2n+2)in1A ;where the sum is taken over all � 2 S2nas permutations of f3; : : : ; 2n+ 2g, i1; : : : ; in 2 f1; 2g, andthe 
onstant depends just on the dimension.Proposition 2.1. e(
)^ e(
�) � 0.Proof. Ea
h monomial in this produ
t is of the form�1k ^ �2k ^ �3i1 ^ �4i1 ^ � � � ^ �(2n+1)in ^ �(2n+2)inor a permutation thereof. k 
an be in 3; : : : ; 2n+ 2. No matter what k is, sin
e i1; : : :in are either1 or 2, then this form must be 0. �Thus, the form � := C Te(!) ^ e(
�) is indeed 
losed.It remains to �nd the maximum of �(W ) for 2n+1-planesW in the total spa
e of �F (1; 2;R2n+2)!G(2; 2n+ 2).Certainly the verti
al dire
tion will be a maximum for Te(!); whi
h is (up to s
ale) exa
tly thevolume form of the �bers. Thus the maximum is a
hieved only when one dire
tion of the (2n+1)-plane is verti
al.It is interesting to note that, sin
e the maximum of � must ne
essarily have a verti
al dire
tion atea
h point, any 
urrent 
alibrated by � must be a 
ontained in a union of �bers of the proje
tion� : F (1; 2;R2n+2) ! G(2; 2n + 2), so must be of the form ��1(M) \ U for some 
urrent M �G(2; 2n+ 2). Sin
e, for W 2 G(2; 2n+ 2), the preimage��1(W ) = fx jx 2 W; jxj = 1g = ffe1; e2g jfe1; e2g is a basis ofW gis, as a subset of T1(S2n+1), the unit velo
ity �eld of the great 
ir
le S2n+1 \W with orientationdetermined by W . In terms of the foliations determined by these 
alibrated 
urrents, they mustthen 
onsist of ar
s of great 
ir
les, and must be great 
ir
le foliations if they are regular.To see what 
urrents � 
alibrates, we now need only �nd those 2n-plane dire
tions maximizinge(
�).Sin
e e(
�) := C0� X�2S2n(�1)�
�(3)�(4) ^ � � � ^ 
�(2n+1)�(2n+2)1A= C0� X�2S2n;i1;:::in(�1)���(3)i1 ^ ��(4)i1 ^ � � � ^ ��(2n+1)in ^ ��(2n+2)in1A ;



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 5if Eij is the basis of tangent ve
tors dual to �ij , for any �xed permutation � 2 S2n,e(
�)(E1�(3); E1�(4); : : : ; E1�(2n+2)) = (�1)�(2n)!C = e(
�)(E2�(3); : : : ; E2�(2n+2)):It is straightforward to see that, if ij1 6= ij2 , then some permutations in the sum will evaluate to 0,so that ��e(
�)(Ei1�(3); Ei2�(4); : : : ; Ei2n�(2n+2))�� < (2n)!C:Finally, if fi1; : : : ; i2ng does not have at least n pairs of values, or if fk1; : : : ; k2ng does not 
onsistof some permutation of f3; : : : ; 2n+ 2g; then e(
�)(Ei1k1 ; : : : ; Ei2nk2n) = 0.For any de
omposable, unit � 2 �2n(G(2; 2n+ 2);W0) whi
h is tangent to the variety G(2; 2n+ 2)at W0, � = Xi1;:::;i2n;k1�����k2n �i1;:::;i2n;k1;:::;k2nEi1k1 ^ � � � ^Ei2nk2n :Sin
e � is de
omposable, � satis�es the Pl�u
ker 
ondition � ^ � = 0, implying that, in parti
ular(restri
ting to the 
ase where fk1; : : : ; k2ng = f3; : : : ; 2n + 2g sin
e otherwise e(
�) = 0), anddenoting �i1;:::;i2n ;3;:::;(2n+2) by �i1;:::;i2n ,�1;:::;1�2;:::;2 � �2;1;:::;1�1;2;:::;2 � �1;2;1;:::;1�2;1;2;:::;2 + � � � = 0;and similarly for all other su
h 
ombinations. Thus,(�1;:::;1 + �2;:::;2)2 = �21;:::;1 + �22;:::;2 + 2�1;:::;1�2;:::;2= �21;:::;1 + �22;:::;2 + 2�2;1;:::;1�1;2;:::;2 + 2�1;2;1;:::;1�2;1;2;:::;2 � � � �� �21;1;1;1+ �22;2;2;2+ �22;1;:::;1 + �21;2;:::;2 + �21;2;1;:::;1 + �22;1;2;:::;2 + � � �� 1;sin
e � is a unit. Thus, on any su
h �, e(
�)(�) � (2n)!C;the maximum being a
hieved on those � so that (�1;:::;1;3;:::;(2n+2)+ �2;:::;2;3;:::;(2n+2)) = 1 whi
h havethe proper orientation. Those 2n-planes are, ex
ept where n = 1, not those whi
h are 
omplex2n-planes in T�(G(2n; 2n+ 2);W0) under some 
omplex stru
ture on that spa
e indu
ed from oneof R2n+2 for whi
h W0 is 
omplex.Theorem 2.2. The standard foliation H of S3 by the �bers of the Hopf �bration S3 ! S2 forsome 
omplex stru
ture on R4 � S3 minimizes the volume of one-dimensional foliations of S3. Thesingular foliation NS of S2n+1, n > 1 
onsisting of all great 
ir
les through a pair of antipodal pointswith indi
es �1 minimizes volume of all singular foliations on S2n+1 with those singular points andindi
es, and provides a lower bound for the volume of all one-dimensional oriented foliations ofS2n+1.Remark 2.3. The minimization of the Hopf �bration in the 
ase n = 1 is due to Glu
k and Ziller in[4℄. They also showed a bound on the minimum-volume 
ow in higher dimensions by 
onstru
tinga spe
i�
 
y
le in twi
e the homology of a 
ow. The �rst-named author, along with P. Cha
�on andA. M. Naveira, in [1℄, showed that this bound is attained by the spe
i�
 singular foliation NS, andis a stri
t lower bound for volumes of smooth foliations. The notation NS (\north-south") refersto the fa
t that this foliation is by longitude lines from one pole to the other.Proof.Case 1. n = 1



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 6In the 
ase n = 1 any 
omplex 2-plane will maximize e(
�), sin
e T�(G(2; 4);W0) is C 2 and a real2-plane � in C 2 is 
omplex (for a given 
omplex stru
ture) if and only if < �; � > + < �; � >= 1for any orthogonal pair �; � of 
omplex lines, where the inner produ
t is the standard indu
edinner produ
t on �2(C 2) indu
ed from the inner produ
t on C 2 itself. Using 
oordinate planesand the standard 
omplex stru
ture on G(2; 4) (whi
h is as the proje
tive variety in CP3 de�nedby z20 + z21 + z22 + z23 = 0), this 
ondition is equivalent to (�1;1;3;4 + �2;2;3;4) = 1: So any 
omplexsubmanifold M � G(2; 4) will be 
alibrated by e(
�).Not every su
h 
omplex submanifold 
orresponds to a foliation of S3, however, not even a singularone. For any W 2 M , the preimage ��1(W ) � F (1; 2; 4) = T1(S3) 
orresponds to the image inT1(S3) of the interse
tion of S3 with the 2-plane W via the tangent map, a great 
ir
le on S3. So,if M (
omplex or not) 
orresponds to a smooth or singular foliation of S3, it is a foliation by great
ir
les. If all su
h W are 
omplex lines in R4 = C 2 for some 
omplex stru
ture on the R4 in whi
hS3 is embedded, then all of these great 
ir
les are disjoint, M is the standard embedding of CP1 inG0(2; 4), and the foliation is a Hopf �bration, and the 
orresponding 
urve M in G0(2; 4) � CP3 isde�ned by z0 = iz1 in addition to z20 + z21 + z22 + z23 = 0. Other 
omplex submanifolds of G0(2; 4)do not 
orrespond to even a singular foliation of S3. For example, the 
urve z0 = 0, whi
h is also ahyperplane se
tion of G0(2; 4) and whi
h is G0(2; 3) �= CP1, lifts to F0(1; 2; 3) = T1(S2) � T1(S3),so does not 
orrespond to a se
tion over a dense subset of S3.The manifold M = fW 2 G0(2; 4)je1 2 Wg, whi
h is dual to the previous submanifold, will alsobe 
alibrated by �, sin
e atW0 2M , with basis 
hosen so that W0 = e1^ e2 2 �2(R4), the tangentplane satis�es �2;2;3;4 = 1. The 
urrent NS 
orresponding to a singular foliation will not be all of��1(M), sin
e that will be a double of the singular foliation by all great 
ir
les passing through �e1.Instead, the 
urrent NS is formed from semi
ir
ular �bers of this bundle, from the �ber of T1(S3)over �e1 to that over +e1. This 
urrent would minimize volume over all singular foliations of S3with two point singularities at �e1, �e1 having index �1 and e1 having index 1. The minimumvolume of su
h singular foliations is the same as that of the Hopf �brations.Case 2. n > 1For n > 1 if M is the manifoldM := fW 2 G0(2; 2n+ 2)j e1 2 Wg := fe1 ^ xjx ? fe1g; kxk = 1g ;then M �= S2n is not the spa
e of 
omplex 2n-planes in R2n+2 for any 
omplex stru
ture, and the
orresponding \foliation" on S2n+1 will be singular. The tangent planes toM at ea
h point 
learlymaximize the value of e(
�). Note also that, in this 
ase 
omplex submanifolds of G(2; 2n+ 2) arenot 
alibrated by e(
�).In general, this singular distribution will indeed be 
alibrated by this form, so minimizes volumeamong all singular foliations with the same singular set; in this 
ase, an antipodal pair of singularpoints, with indi
es �1 that are in ea
h leaf of the singular foliation. Sin
e the 
urrent in T1(S2n+1)a
tually de�ned byM 
onsists of the unit tangent �eld to oriented semi-
ir
les, longitudes, from�e1to +e1 in S2n+1, whi
h has as a 2-fold 
over the submanifold S2n�S1 = ��1(M) � F0(1; 2;R2n+2) =T1(S2n+1), the mass-minimization property of the 
alibration 
ompares the mass of this 
urrent,NS, to all other 
urrents S with the same boundary (the two tangent �bers over �e1, suitablyoriented), whi
h are homologous in that NS � S is a boundary. This 
an be easily extended to allother 
urrents with the same singular points and the same indi
es at those singular points, sin
eany su
h 
urrent 
an be modi�ed within the singular �bers to mat
h the boundary of NS. �



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 73. 3-dimensional foliations of S73.1. The 
alibration. Note that the Grassmann bundle G(3; S7) of oriented 3-planes tangent toS7 is isomorphi
 to the 
ag manifold of oriented lines within oriented 4-planes in R8, similarly to([4℄). This gives rise to the following diagram:Go(3; S7) �! Fo(1; 4;R8)hx??�??y �??yS7 G(4;R8) :Go(4; 8) has two universal 4-plane bundles, U(4; 8) and V (4; 8), de�ned byU(4; 8) := [x2Go(4;8)xV (4; 8) := [x2Go(4;8)x?:The respe
tive Euler 
lasses E(U) and E(V ) satisfy E(U)[E(V ) = 0 inH8(Go(4; 8)). Similarly, therespe
tive �rst Pontryagin 
lasses P1(U)and P1(V ) satisfy the same relationship, P1(U)[P1(V ) = 0.In parti
ular, if ! is the universal 
onne
tion on U(4; 8) de�ned by Narasimhan and Ramanan (
f.[7℄), and !� is the \dual" 
onne
tion on V (4; 8), then the asso
iated Euler forms, e(
) and e(
�),satisfy e(
)^ e(
�) = 0 (respe
tively, the �rst Pontryagin forms). Then, 
onsider the form� := C Te(!) ^ e(
�);whi
h is well-de�ned on Fo(1; 4;R8) as well as on the frame bundle FU(4; 8) of oriented orthonor-mal frames on U(4; 8), whi
h is an SO(3)-prin
ipal bundle over Fo(1; 4;R8). Here, Te(!) is thetransgressive Chern-Simons form 
orresponding to the Euler form e(
) of U(4; 8) [3℄. Be
aused(Te(!)) = e(
) (again, either as a form on the frame bundle, or on the asso
iated bundleFo(1; 4;R8)), we have that d� = 0. The 
onstant C is simply 
hosen so that the 
omass of �is one.That � is well-de�ned on Fo(1; 4;R8) is perhaps not obvious. However, the original version of thetransgressive form Te(!) was de�ned by Chern on the sphere bundle, not the frame bundle [2℄.That same 
onstru
tion applies here. When restri
ted to verti
al dire
tions, those tangent to the3-sphere �ber of Fo(1; 4;R8)! Go(4; 8), Te(!) is the volume form of the �bers.3.2. Cal
ulations. We will 
onsider Go(4; 8) as SO(8)=SO(4)� SO(4), and the prin
ipal bundleFU(4; 8) as SO(8)=I � SO(4). The universal 
onne
tion ! on FU(4; 8) 
an be de�ned as thetrun
ation of the restri
tion of the Maurer-Cartan form on o(8), denoted � = [�ij ℄, to the tangentsto FU(4; 8). That is, the 
omponents of the 
onne
tion !ij are de�ned for i; j 2 f1; : : : ; 4g and!ij(A) = Aij for anyA 2 T�(U(4; 8); (U0; fe1; : : : ; e4g)) = �A 2 o(8)jA = � R S�St 0 � ; R 2 o(4)� ;if U0 = R4� 0 � R8, with basis fe1; : : : ; e4g. By homogeneity, all 
al
ulations in FU(4; 8) 
an betaken to be at this point.The 
urvature 
 of this 
onne
tion is given by 
ij(X; Y ) = �!ij([X; Y ℄) for left-invariant ve
tor�elds that are horizontal at U0, that is, of the form � 0 S�St 0 �. In terms of the Maurer-Cartanform, 
ij = +P8k=5 �ik ^ �jk , for i; j 2 f1; : : : ; 4g.Similarly, the 
onne
tion !� on the dual prin
ipal bundle FV (4; 8) = SO(8)=SO(4)� I at U0 =R4� 0 � R8 is the restri
tion of the same Maurer-Cartan form � to the other 4� 4 blo
k, and the
urvature 
�kl =P4i=1 �ik ^ �il, for k; l 2 f5; : : : ; 8g. Either of the tangent spa
es to these prin
ipalbundles 
an be 
anoni
ally embedded into the tangent spa
e o(8) of SO(8) at the identity.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 8The Euler form e(
) of FU(4; 8) is the forme(
) := 12�2 (
12 ^ 
34 � 
13 ^ 
24 + 
14 ^ 
23)= 12�2 (�1k ^ �2k ^ �3l ^ �4l � �1k ^ �3k ^ �2l ^ �4l + �1k ^ �4k ^ �2l ^ �3l) ;where the sum is taken over all k; l 2 f5; : : : ; 8g. Dually, the Euler form e(
�) of FV (4; 8) is theform e(
�) := 12�2 (
56 ^ 
78 � 
57 ^ 
68 + 
58 ^ 
67)= 12�2 (�5i ^ �6i ^ �7j ^ �8j � �5i ^ �7i ^ �6j ^ �8j + �5i ^ �8i ^ �6j ^ �7j) ;where the sum is taken over all i; j 2 f1; : : : ; 4g.Proposition 3.1. e(
)^ e(
�) � 0.Proof. Ea
h monomial in this produ
t is of the form�1k ^ �2k ^ �3l ^ �4l ^ �5i ^ �6i ^ �7j ^ �8jor a permutation thereof. k 
an be either 5; 6; 7 or 8. If k is, say, 5; then i 
annot be 1 or 2;thus must be i = 3 or 4. Thus l 6= 5; 6, so l = 7 or8, and �nally, j = 1 or 2. No matter whi
h
hoi
es are made, two of the indi
es between 1 and 4 will o

ur on
e, and the other two will o

urthree times, and similarly for the indi
es from 5 to 8. Thus, ea
h monomial is determined by themulti-indi
es that o

ur with one index singly. For example, 2; 4; 6; and 8 o

ur singly, paired as25; 47; 36; and 18 in exa
tly two terms,+�15 ^ �25 ^ �37 ^ �47 ^ �53 ^ �63 ^ �71 ^ �81; and+�17 ^ �47 ^ �25 ^ �35 ^ �51 ^ �81 ^ �63 ^ �73:However, using the fa
t that �ik = ��ki and the exterior produ
t, these terms 
an
el. Sin
e allterms are permutations of these, all terms 
an
el in pairs. �Thus, the form � := C Te(!) ^ e(
�) is indeed 
losed. That it is well-de�ned 
an be tra
ed ba
kto early versions of the Chern-Simons theory, su
h as [2℄. Alternately, it 
an be dire
tly veri�edfrom the lo
al expression for Te(!) in terms of the Maurer-Cartan form �. That is, as a form onFo(1; 4;R8), at the point x0 := (e1;W ), e1 2 W = R4 � f0g � R8, sin
e all the !ij tangent toFo(1; 4;R8) have one of i = 1 or j = 1,Te(!) := 12�2 (!12
34 � !13
24 + !14
23�16 (!12 ([!; !℄)34 � !13 ([!; !℄)24 + !14 ([!; !℄)23)�= 12�2 (�12 ^ �3k ^ �4k � �13 ^ �2k ^ �4k + �14 ^ �2k ^ �3k+13 (�12 ^ �13 ^ �14 � �13 ^ �12 ^ �14 + �14 ^ �12 ^ �13)�= 12�2 (�12 ^ �13 ^ �14 + �12 ^ �3k ^ �4k � �13 ^ �2k ^ �4k + �14 ^ �2k ^ �3k) ;where the sum is over k from 5 to 8. As a left-invariant form on SO(8), it is straightforward to seethat it is invariant under the adjoint a
tion of the isotropy subgroup 1 � SO(3)� I4 � SO(8), sodes
ends to a form on F (1; 4;R8).It remains to �nd the maximum of �(W ) for 7-planesW in the total spa
e of �F (1; 4;R8)! G(4; 8).
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al dire
tions (those in the 3-sphere �ber of �) and 
ombinations within �3(T�(F (1; 4;R8)))are dete
ted by the form � above. That is, let W � T�(F (1; 4;R8)) be a 7-dimensional subspa
e.Then, for some basis of T�(F (1; 4;R8)), with verti
al dire
tions v1; v2; v3 and horizontal basisfe1; : : : ; e16g, W = (a1v1 + h1) ^ (a2v2 + h2) ^ (a3v3 + h3) ^ (e1 ^ � � � ^ e4) as a unit element of�7 �T�(F (1; 4;R8))�. khik = bi = q1� a2i . This simply states that no more than 3 dire
tions 
anhave independent verti
al 
omponents. At the point x0, if we denote ai = 
os(�i) and bi = sin(�i),�(W ) � C ja1a2a3 + a1b2b3 � b1a2b3 + b1b2a3j je(
�)(e1 ^ � � � ^ e4)j� C j
os(�1) (
os(�2) 
os(�3) + sin(�2) sin(�3))� sin(�1) (
os(�2) sin(�3)� sin(�2) 
os(�3))j �� je(
�)(e1 ^ � � � ^ e4)j= C j
os(�1 + (�2 � �3))j je(
�)(e1 ^ � � � ^ e4)j� C je(
�)(e1 ^ � � � ^ e4)j ;Thus the maximum is a
hieved when (among other values) all three �i are 0, as long as the remainingve
tors form a 4-plane maximizing e(
�). It is not 
lear whether other values of �i will a
hievethis maximum, sin
e the mixed parts of Te(
) are only bounded by those values. However, themaximum is 
learly a
hieved when all �i = 0.Let �U : Fo(1; 4;R8) ! Go(4; 8) be the �bration asso
iated with the unit sphere bundle of theuniversal bundle U , so that (x;W ), where x 2 W is a unit ve
tor in the 4-plane W , is mapped to�u(x;W ) := W 2 Go(4; 8). The other �bration �V : Fo(1; 4;R8) ! Go(4; 8), asso
iated with thedual bundle V , maps the same (x;W ) onto �V (x;W ) := W?. e(
�), as a form on Fo(1; 4;R8), isthe �V -horizontal lift of the form e(
�) on Go(4; 8). That is 
learly maximized on some 
olle
tionof �V -horizontal 4-planes tangent to Go(4; 8) at W . Te(!) is maximized on the 3-sphere �bers ofW , that is f(x;W )jx 2Wg, as des
ribed above. Sin
e these two spa
es are orthogonal, then� := C Te(!) ^ e(
�)will be maximized on any 7-plane whi
h is the sum of a �V -horizontal lift of a 4-plane maximizinge(
�) (perpendi
ular to W ) and the 3-plane tangent to the unit sphere in W at x. However, notall 4-planes orthogonal to W will maximize �.Sin
e e(
�) := 12�2 (
56 ^ 
78 � 
57 ^ 
68 + 
58 ^ 
67)= 12�2 (�5i ^ �6i ^ �7j ^ �8j � �5i ^ �7i ^ �6j ^ �8j + �5i ^ �8i ^ �6j ^ �7j) ;if Eij is the basis of tangent ve
tors dual to �ij , e(
�)(E15; E16; E17; E18) = 3=2�2. It is straightfor-ward to see that e(
�)(Ei5; Ei6; Ei7; Ei8) = 3=2�2 for any i = 1 : : :4, and e(
�)(Ei5; Ei6; Ej7; Ej8) =1=2�2 for i 6= j, or, more generally, if k1; : : : ; k4 are a permutation of 5; : : : ; 9, then when i 6= j,e(
�)(Eik1 ; Eik2 ; Ejk3; Ejk4) = �1=2�2, where the sign is the sign of the permutation. Finally,if fi1; i2; i3; i4g 
onsist of more than two distin
t values (and not two pairs of values), or iffk1; k2; k3; k4g does not 
onsist of some permutation of f5; 6; 7; 8g; thene(
�)(Ei1k1 ; Ei2k2 ; Ei3k3 ; Ei4k4) = 0:Theorem 3.2. The singular foliation NS of S7 
onsisting of all great 3-spheres 
ontaining a
ommon great 2-sphere minimizes volume of all three-dimensional singular foliations on S7 withthat singular lo
us and limiting behavior, and provides a lower bound for the volume of all regularthree-dimensional oriented foliations of S7.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 10Proof. For any de
omposable, unit � 2 �4(G(4; 8);W0) whi
h is tangent to the variety G(4; 8) atW0, � = Xi1 ;��� ;i4;k1�����k4 �i1;:::;i4;k1 ;:::;k4Ei1k1 ^ � � � ^Ei4k4 :Sin
e � is de
omposable, � satis�es the Pl�u
ker 
ondition � ^ � = 0, implying that, in parti
ular(restri
ting to the 
ase where fk1; : : : ; k4g = f5; 6; 7; 8g sin
e otherwise e(
�) = 0), and denoting�i;j;k;l;5;6;7;8 by �i;j;k;l,�1;1;1;1�2;2;2;2� �2;1;1;1�1;2;2;2� �1;2;1;1�2;1;2;2� �1;1;2;1�2;2;1;2��1;1;1;2�2;2;2;1+ �1;1;2;2�2;2;1;1+ �1;2;1;2�2;1;2;1+ �1;2;2;1�2;1;1;2 = 0:and similarly for all other su
h 
ombinations. Thus,(�1;1;1;1+ �2;2;2;2+ �3;3;3;3+ �4;4;4;4)2= �21;1;1;1+ �22;2;2;2+ 2�1;1;1;1�2;2;2;2+ � � �= �21;1;1;1+ �22;2;2;2+ 2�2;1;1;1�1;2;2;2+ 2�1;2;1;1�2;1;2;2+ 2�1;1;2;1�2;2;1;2+2�1;1;1;2�2;2;2;1� 2�1;1;2;2�2;2;1;1� 2�1;2;1;2�2;1;2;1� 2�1;2;2;1�2;1;1;2+ � � �� �21;1;1;1+ �22;2;2;2+ �22;1;1;1+ �21;2;2;2+ �21;2;1;1+ �22;1;2;2+ �21;1;2;1+ �22;2;1;2+�21;1;1;2+ �22;2;2;1+ �21;1;2;2+ �22;2;1;1+ �21;2;1;2+ �22;1;2;1+�21;2;2;1+ �22;1;1;2+ � � �� 1;sin
e � is a unit. Thus, on any su
h �, e(
�)(�) � 3=2�2;the maximum being a
hieved on those � so that (�1;1;1;1;5;6;7;8 + �2;2;2;2;5;6;7;8 + �3;3;3;3;5;6;7;8 +�4;4;4;4;5;6;7;8) = 1: Those 4-planes, in 
ontrast to the 
omplex 
ase studied by Glu
k and Ziller,are not those whi
h are tangent 4-planes in T�(G(4; 8);W0) to the quaternioni
 proje
tive spa
eHP1 under any quaternioni
 stru
ture on R8 for whi
h W0 is quaternioni
. Those 4-planes 
an beeasily shown to evaluate to half the maximum possible value.In fa
t, if M is the manifoldM := fx ^ e2 ^ e3 ^ e4jx ? fe2; e3; e4g; kxk = 1g ;then M �= S4, and the 
orresponding \foliation" on S7 will be singular. The tangent planes toM at ea
h point 
learly maximize the value of e(
�). The 
orresponding singular foliation on S7is the set of all great 3-spheres that are interse
tions of S7 with a plane W = spanfx; e2; e3; e4gfor some unit x ? fe2; e3; e4g, whi
h is singular on the S2 
ommon to all leaves. However, thissingular distribution will indeed be 
alibrated by this form, so minimizes volume among, at least,all singular foliations with the same singular set; in this 
ase, a totally-geodesi
 S2 whi
h is theinterse
tion of any two leaves of the foliation.As with the 
ase for one-dimensional leaves, this singular foliation a
tually 
orresponds to half of the
urrent ��1(M) � F0(1; 4; 8)�= G(3; S7), sin
e the leaf 
orresponding to the 4-plane x^ e2 ^ e3 ^ e4is the same set as that leaf 
orresponding to (�x)^e2^e3^e4 with the opposite orientation. The 3-plane 
ommon to all 4-planes separates ea
h into two half-spa
es. Choose the half-spa
e 
onsistentwith a 
hosen orientation on the 
ommon 3-plane, whi
h then restri
ts the �bers to hemisphereswhi
h still provides a singular foliation of S7. Sin
e this (non-
y
le) 
urrent NS � Go(3; S7) hasboundary S2 � S4 � Go(3; S7)��S2 �= S2 � Go(3; 7); whi
h is not itself a boundary, NS does notextend to a 
y
le. Thus, the fa
t that � 
alibrated NS only implies that NS represents a singularfoliation on S7 whi
h is volume minimizing among foliations with the same singular lo
us.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 11However, similarly to [4℄, it follows that the full preimage S := ��1(M), whi
h is also 
alibratedby � and is a 
y
le, minimizes mass among 
urrents homologous to twi
e the homology 
lass ofa foliation (all foliations by 3-manifolds are homologous as maps into Go(3; S7)). If there were a(singular or regular) volume-minimizing foliation represented by a 
y
le C, then the mass of 2C
ould not be less than the mass of S, so that the mass of NS does represent a lower bound ofvolumes of foliations of dimension 3 on S7. �It remains an open question whether the Hopf �bration minimizes volume among 3-dimensionalregular foliations of S7. However, the Hopf �bration (a regular foliation) does have twi
e the volumeof the singular foliation NS. 4. GeneralizationsIt is a straightforward generalization of these 
omputations to show that the 
orresponding sphereM maximizes the 
orresponding form e(
�) in Go(4; 4n+4), showing that similar singular foliationsby 3-manifolds minimize volume among all (singular) foliations of S4n+3 with the given singularset.Theorem 4.1. The singular foliation of S4n+3 
onsisting of all great 3-spheres 
ontaining a 
om-mon great 2-sphere minimizes volume of all three-dimensional singular foliations on S4n+3 withthat singular lo
us and limiting behavior, and provides a lower bound for the volume of all regularthree-dimensional oriented foliations of S4n+3.Similarly, the same methods will show that the Hopf �bration of S15 by great 7-spheres, the �bersof the Cayley proje
tive plane, the �bers of the �brationS7 ! S15#S8 ;will not minimize volume among all singular foliations of that spa
e as well, but rather the \lon-gitudes", great 7-spheres foliating S15 ex
ept for a great 6-sphere 
ommon to all leaves, will be avolume-minimizing singular foliation.Theorem 4.2. The singular foliation NS of S15 
onsisting of all great 7-spheres 
ontaining a
ommon great 6-sphere minimizes volume of all 7-dimensional singular foliations on S15 with thatsingular lo
us and limiting behavior, and provides a lower bound for the volume of all regular three-dimensional oriented foliations of S15. Referen
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