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mTOR and nutrient sensors control
Autophagy processes in all of our cells;
Dozens of proteins must play each their role
To enable engulfment of bad organelles.

Those who are young may mistakenly think one
Is safe and immune to the dangers of aging
But if you are lacking in proper PINK1
Mitochondrial fires are already raging.

For insight and knowledge some turn to the fly;
Drosophila’s genes can help us discover
The causes of aggregates seen in the eye,
And even find drugs to help us recover.

Ubiquitin’s role in degeneration
Is to set out red flags on relevant cargo
Marking the junk that needs degradation
At a pace that is presto rather than largo.

Mitochondria fear Parkin known as PARK2
Whose ubiquitin tags on two mitofusins
Determine the fate of one or a slew,
For a lonely short life of network exclusion.

Their fate is ensured by sequestosome 1
Who recruits membranes rich with LC3-II
Autophagosome to lysosome a perfect home run
Cellular housekeeping momentarily through.

But the work isn’t over and the job isn’t done
Unless Paris is tagged with ubiquitin too
Then repression is lifted from PGC1
So biogenesis starts and mitos renew!

Mitophagy and Biogenesis

Roberta A. Gottlieb
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Life in the Balance, Longevity the Goal

Self-eating, recycling, cash-for-your clunkers:

Trade up to the mitochondrial equivalent Prius.

The road to rejuvenation is paved with destruction

For clearing the rubble precedes reconstruction

But remember that life’s circular dance

Depends on opposite forces in balance

Excess destruction, too much biogenesis,

Brings heart failure, cancer or neurodegeneries.

Roberta A. Gottlieb
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When speaking of cancer, autophagy’s good
By culling mitochondria and clearing deadwood

Autophagy limits the radical chain
That breaks DNA and mutates a gene

That makes a cell double, so careless and mean
In order for cells to malignant transform
They lose mitochondria except for a few

Using glycolysis as the source of their fuel
How they achieve mitochondrial decimation
Is nothing more than autophagic elimination

Then one cell is many, an ominous mass
Demanding more glucose, hungry and crass,

Directing formation of artery and vein
’Til capsular fibers give way under strain

Then cancer cells spread so far and so wide
They demand blood vessels the body provide

But until those are patent the tumor cells strive
To rely on autophagy to neatly survive

The hurdles required for metastasis
Until blood flow’s established for cancerous bliss.

Blocking autophagy sends them over the brink
And how chloroquine works, we think

But tumors are slowed by statin’s effects
Which induce autophagy and tumor cell death

Autophagy’s good, autophagy’s bad
The confusion’s enough to drive us all mad

So study we must, and learn ever more
’Til enlightenment finally opens the door

Oncologists must heed the tumor’s agenda
And decide whether autophagy is a friend or foe.

Roberta A. Gottlieb

Autophagy and Cancer
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Foreword

Roberta A. Gottlieb M.D. 
Cedars-Sinai Heart Institute

It is with great pleasure that I introduce 
Volume 6 of the impressive seven-volume 
series on autophagy edited by M.A. (Eric) 
Hayat. This volume addresses a number of 
mechanistic advances in our understand-
ing of the regulation of autophagy, particu-
larly the importance of nutrient availability. 
Regulatory mechanisms through micro- 
RNAs and cross-talk with other protein deg-
radation pathways are presented. Several  
chapters cover the expanding role of 
autophagy in host immunity and the ways 
in which various intracellular pathogens 
repurpose the pathway for their own ben-
efit. Finally, this volume addresses selective 
autophagy for degradation of mitochondria 
and endocytosed gap junctions.

The importance of autophagy in host 
defense represents an exciting emerging 
field. Autophagy facilitates antigen presenta-
tion, participates in thymic development, and 
shares many regulatory nodes with innate 
immunity, including cross-talk with Toll-
like receptors, reflecting its important role in 

regulating the immune response. Autophagy 
is also a participant in the dynamic struggle 
between intracellular pathogens and the host. 
While cells often use autophagy to eliminate 
intracellular pathogens and to activate innate 
and adaptive immunity, bacterial and viral 
pathogens have evolved defensive mecha-
nisms, enabling them to subvert autophagy 
for their own purposes. As mitochondria can 
be viewed as domesticated intracellular bac-
teria, it is not surprising that autophagy plays 
a significant role in their removal.

The state of current knowledge on these 
important topics is summarized in the chap-
ters of Volume 6, with contributions from 
experts from around the world. Researchers 
in immunology and infectious disease will 
find this volume to be particularly valu-
able, as well as those interested in selective 
autophagy and its regulation.
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xix

It is becoming clear that cancer is an 
exceedingly complex molecular network, 
consisting of tumor cells at different stages 
of differentiation and noncancerous cells 
from the tumor microenvironment, both 
of which play a role in sustaining cancer 
progression. The latter cells maintain a 
proinflammatory environment conducive 
to cancer progression through induction 
of angiogenesis and evasion of the innate 
immune system. Although induction of 
cancer cell death by apoptosis, autophagy 
and necroptosis has been the main sys-
tem exploited as anticancer strategies, an 
understanding of the role of the alterations 
in cellular metabolism is necessary for the 
development of new, more effective anti-
cancer therapies. For example, it is known 
that cancer cells switch towards aerobic 
glycolysis from mitochondrial oxidative 
phosphorylation.

Autophagy, on the other hand, also pos-
sesses mechanisms that can promote can-
cer cell survival and growth of established 
tumors. Regarding cell survival, tumor cells 
themselves activate autophagy in response 
to cellular stress and/or increased meta-
bolic demands related to rapid cell prolifera-
tion. Autophagy-related stress tolerance can 
enable cell survival by maintaining energy 
production that can lead to tumor growth 
and therapeutic resistance. Tumors are often 
subjected to metabolic stress due to insuffi-
cient vascularization. Under these circum-
stances, autophagy is induced and localized 
to these hypoxic regions where it supports 
survival of tumors. Aggressive tumors have 
increased metabolic demands because of 

their rapid proliferation and growth. Thus, 
such tumors show augmented dependency 
on autophagy for their survival.

Defective autophagy causes abnormal 
mitochondria accumulation and reduced 
mitochondrial function in starvation, which 
is associated with reduced energy output. 
Because mitochondrial function is required 
for survival during starvation, autophagy 
supports cell survival. The recycling of 
intracellular constituents as a result of their 
degradation serves as an alternative energy 
source for tumor survival, especially dur-
ing periods of metabolic stress. In this con-
text, in tumor cells with defective apoptosis, 
autophagy allows prolonged survival of 
tumor cells. However, paradoxically, as 
mentioned above, autophagy is also asso-
ciated with antitumorigenesis. Autophagy 
induced by cancer therapy can also be uti-
lized by cancer cells to obtain nutrients for 
their growth and proliferation. Therefore, 
such treatments are counterproductive to 
therapeutic efficacy.

This is the sixth volume of the seven-
volume series, Autophagy: Cancer, Other 
Pathologies, Inflammation, Immunity, Infection 
and Aging. This series discusses in detail 
almost all aspects of the autophagy machin-
ery in the context of cancer and certain other 
pathologies. Emphasis is placed on main-
taining homeostasis during starvation or 
stress conditions by balancing the synthesis 
of cellular components and their degrada-
tion by autophagy.

Both autophagy and ubiquitin-proteas-
ome systems degrade damaged and super-
fluous proteins. Degradation of intracellular 
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components through these catabolic path-
ways results in the liberation of basic build-
ing blocks required to maintain cellular 
energy and homeostasis. However, less 
than or more than optimal protein degra-
dation can result in human pathologies. An 
attempt is made in this volume to include 
information on the extent to which various 
protein degradation pathways interact, col-
laborate or antagonize one another.

It is known that conditions resulting in 
cellular stress (e.g., hypoxia, starvation, 
pathogen entry) activate autophagy, but 
dysregulation of autophagy at this stage 
might result in pathological states including 
cancer. MicroRNAs are non-protein-coding 
small RNAs that control levels of transcripts 
and proteins through post-transcriptional 
mechanisms. Current knowledge of micro-
RNA regulation of autophagy is presented 
in this volume.

Autophagy (macroautophagy) is strictly 
regulated and the second messenger Ca+2 
regulates starvation-induced autophagy. 
Withdrawal of essential amino acids 
increases intracellular Ca+2, leading to the 
activation of adenosine monophosphate-
activated protein kinase and the inhibition 
of the mTORC1, which eventually results in 
the enhanced formation of autophagosomes. 
The importance of this signaling pathway 
and other pathways (AMPK, AKT) within 
the autophagy signaling network is empha-
sized in this volume.

Recent discoveries of autophagic 
receptors that recognize specific cellular 
cargo have opened a new chapter in the 
autophagy field. Receptors are indispen-
sable for the initiation and finalization of 
specific cargo removal by autophagy. For 
example, BNIP3L/NIX mediates mito-
chondrial clearance, which is discussed in 
this volume. It is pointed out that, in the 
absence of such clearance, accumulation of 
ROS can severely damage the mitochondrial 

population within the neuron and ulti-
mately cause apoptosis of the affected 
neurons. Mitochondrial dysfunction is 
implicated in Parkinson’s disease. Toll-like 
receptors (TLRs) play critical roles in host 
defense by recognizing specific molecular 
patterns from a wide variety of pathogens. 
In macrophages, TLR signaling induces 
autophagy, limiting the replication of intra-
cellular pathogens. How TLRs activate 
autophagosome formation in macrophages 
and enhance immunity is discussed in this 
volume.

Autophagy plays an important role dur-
ing viral and bacterial infection. Autophagy 
can act either as a part of the immune 
defense system or as a pro-viral or pro-bac-
terial mechanism. In other words, although 
autophagy suppresses the replication of 
some viruses, it enhances the replication of 
others. Several examples of the latter viruses 
are discussed in this volume. For exam-
ple, Herpes viridae family members encode 
autophagy-regulating proteins, which con-
tribute to the host antiviral defenses, either 
by enhancing innate immunity or by help-
ing antigen presentation. Herpes viruses 
have also evolved proteins that are able to 
inhibit this cellular mechanism. Positive or 
negative impact of autophagy on viral infec-
tion is explained in this volume.

Another example of the role of a virus 
in inducing autophagy is varicella-zos-
ter virus (VZV); this human herpes virus 
causes chickenpox. Infected cells show a 
large number of autophagosomes and an 
enlarged endoplasmic reticulum (ER) indi-
cating its stress, which is a precursor to 
autophagy through the inositol requiring 
enzyme-1 pathway and PERK pathway. 
Hepatocellular β virus (HBV) also activates 
the autophagic pathway while avoiding lyso-
somal, protein degradation.

As in the case of VZV, ER stress also 
plays a positive role in HBV replication. 
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The possible effect of autophagy on HBV-
induced hepatocarcinogenesis is also 
included in this volume. Staphylococcus 
aureus pathogen not only induces an 
autophagic response in the host cell (localiz-
ing in LC3 decorated components), but also 
benefits from that state.

Although inflammatory responses are 
essential for eradicating intracellular patho
gens and tissue repair, they can be det-
rimental to the host when uncontrolled. 
Therefore, inflammation needs to be tightly 
controlled to prevent excessive inflam-
mation and collateral damage. Cytokine 
IL-1β (produced by microglia in the CNS) 
is one of the pro-inflammatory mediators. 
The pivotal role of autophagy in regulat-
ing the production and secretion of the IL-1 
family members is explained in this vol-
ume. Atg6L1, an essential component of 
autophagy, suppresses pro-inflammatory 
signaling. Better understanding of the role 
of the autophagy-lysosomal pathway in the 
maturation and secretion of IL-1 should pro-
vide a new strategy for targeting inflamma-
tion in various pathological conditions.

Excess adiposity contributes to the devel-
opment of obesity-associated metabolic dis-
turbances such as insulin resistance, type 
2 diabetes, or metabolic syndrome. It is 
pointed out that imbalance between ghre-
lin (a gut-derived hormone) and tumor 
necrosis factor in states of insulin resistance 
may contribute to altered apoptosis and 
autophagy found in the adipose tissue of 
patients with type 2 diabetes.

By bringing together a large number of 
experts (oncologists, physicians, medical 
research scientists and pathologists) in the 
field of autophagy, it is my hope that sub-
stantial progress will be made against terri-
ble diseases that inflict humans. It is difficult 
for a single author to discuss effectively 

and comprehensively various aspects of 
an exceedingly complex process such as 
autophagy. Another advantage of involving 
more than one author is to present differ-
ent points of view on various controversial 
aspects of the role of autophagy in health 
and disease. I hope these goals will be ful-
filled in this and future volumes of this 
series.

This volume was written by 46 contribu-
tors representing 11 countries. I am grateful 
to them for their promptness in accepting 
my suggestions. Their practical experience 
highlights the very high quality of their 
writings, which should build and further 
the endeavors of the readers in this impor-
tant medical field. I respect and appreciate 
the hard work and exceptional insight into 
the role of autophagy in disease provided 
by these contributors.

It is my hope that subsequent volumes 
of this series will join this volume in assist-
ing in the more complete understanding 
of the complex process of autophagy and 
eventually in the development of therapeu-
tic applications. There exists a tremendous 
urgent demand by the public and the sci-
entific community to develop better treat-
ments for major diseases. In the light of the 
human impact of these untreated diseases, 
government funding must give priority 
to researching cures over global military 
superiority.

I am grateful to Dr. Dawood Farahi and 
Phillip Connelly for recognizing the impor-
tance of medical research and publishing 
through an institution of higher education. 
I am thankful to my students for their con-
tributions to the final preparation of this 
volume.

M. A. Hayat
July 2014
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1AP	 inhibitor of apoptosis protein
3-MA	 3-methyladenine, an autophagy inhibitor
3-methyladenine	 an autophagic inhibitor
5-Fu	 5 fluorouracil
AAP	 protein that mediates selective autophagy
ACF	 aberrant crypt foci
aggrephagy	 degradation of ubiquitinated protein aggregates
aggresome	 �inclusion body where misfolded proteins are confined and 

degraded by autophagy
AIF	 apoptosis-inducing factor
AIM	 Atg8-family interacting motif
Akt	 protein kinase B regulates autophagy
Alfy	 autophagy-linked FYVE protein
ALIS	 aggresome-like induced structures
ALR	 autophagic lysosome reformation
AMBRA-1	 activating molecule in Beclin 1-regulated autophagy
AMP	 adenosine monophosphate
amphisome	 �intermediate compartment formed by fusing an 

autophagosome with an endosome
AMPK	 adenosine monophosphate-activated protein kinase
aPKC	 atypical protein kinase C
APMA	 autophagic macrophage activation
apoptosis	 programmed cell death type 1
ARD1	 arrest-defective protein 1
ASK	 apoptosis signal regulating kinase
AT1	 Atg8-interacting protein
ATF5	 activating transcription factor 5
ATF6	 activating transcription factor 6
Atg	 autophagy-related gene or protein
Atg1	 serine/threonine protein 1 kinase
Atg2	 protein that functions along with Atg18
Atg3	 ubiqitin conjugating enzyme analogue
Atg4	 cysteine protease
Atg5	 protein containing ubiquitin folds
Atg6	 component of the class III PtdIns 3-kinase complex
Atg7	 ubiquitin activating enzyme homologue
Atg8	 ubiquitin-like protein
Atg9	 transmembrane protein
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Atg10	 ubiquitin conjugating enzyme analogue
Atg11	 fungal scaffold protein
Atg12	 ubiquitin-like protein
Atg13	 component of the Atg1 complex
Atg14	 component of the class III PtdIns 3-kinase complex
Atg15	 vacuolar protein
Atg16	 component of the Atg12-Atg5-Atg16 complex
Atg17	 yeast protein
Atg18	 protein that binds to PtdIns
Atg19	 receptor for the Cvt pathway
Atg20	 PtdIns P binding protein
Atg21	 PtdIns P binding protein
Atg22	 vacuolar amino acid permease
Atg23	 yeast protein
Atg24	 PtdIns binding protein
Atg25	 coiled-coil protein
Atg26	 sterol glucosyltransferase
Atg27	 integral membrane protein
Atg28	 coiled-coil protein
Atg29	 protein in fungi
Atg30	 protein required for recognizing peroxisomes
Atg31	 protein in fungi
Atg32	 mitochondrial outer membrane protein
Atg33	 mitochondrial outer membrane protein
Atg101	 Atg13-binding protein
ATM	 ataxia-telangiectasia mutated protein
autolysosome protein	 lysosomal associated membrane protein 2
autolysosome	 �formed by fusion of the autophagosome and lysosome, 

degrading the engulfed cell components
autophagic body	 the inner membrane-bound structure of the autophagosome
autophagic flux	 the rate of cargo delivery to lysosomes through autophagy
autophagosome	 �double-membrane vesicle that engulfs cytoplasmic contents  

for delivery to the lysosome
autophagosome 	  
maturations	 ��

events occurring post-autophagosome closure followed  
by delivery of the cargo to lysosomes

autophagy	 programmed cell death type 2
AV	 autophagic vacuole
axonopathy	 degradation of axons in neurodegeneration
BAD	 Bcl-2 associated death promoter protein
Bafilomycin	 inhibitor of the vacular-type ATPase
Bafilomycin A1(BAF-A1)	 an autophagy inhibitor
BAG	 Bcl-2-associated athanogene
BAG3	 Bcl-2-associated athanogene 3
BAK	 Bcl-2 antagonist/killer
Barkor	 Beclin 1-associated autophagy-related key regulator
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BATS	 Barkor/Atg14(L) autophagosome targeting sequence
BAX	 Bcl-2-associated X protein
Bcl-2	 B cell lymphoma-2
Beclin 1	 �mammalian homologue of yeast Atg6, activating 

macroautophagy
Beclin 1	 Bcl-2-interacting protein 1
BH3	 Bcl-2 homology domain-3
BH3-only proteins	 induce macroautophagy
BHMT	 �betaine homocysteine methyltransferase protein found in the 

mammalian autophagosome (metabolic enzyme)
BID	 BH3-interacting domain death agonist
Bif-1 protein	 interacts with Beclin 1, required for macroautophagy
Bim	 Bcl-2 interacting mediator
BNIP	 pro-apoptotic protein
BNIP3 protein	 �required for the HIF-1-dependent induction of 

macroautophagy
bortezomib	 selective proteasome inhibitor
CaMKKβ protein	 activates AMPK at increased cytosolic calcium concentration
CaMK	 calcium/calmodulin-dependent protein kinase
CASA	 chaperone-assisted selective autophagy
caspase	 cysteine aspartic acid specific protease
CCI-779	 rapamycin ester that induces macroautophagy
CD46 glycoprotein	 mediates an immune response to invasive pathogens
chloroquine	 �an autophagy inhibitor which inhibits fusion between 

autophagosomes and lysosomes
c-Jun	 �mammalian transcription factor that inhibits starvation-

induced macroautophagy
Clg 1	 a yeast cyclin-like protein that induces macroautophagy
CMA	 chaperone-mediated autophagy
COG	 functions in the fusion of vesicles within the Golgi complex
COP1	 coat protein complex1
CP	 20S core particle
CRD	 cysteine-rich domain
CSC	 cancer stem cell
CTGF	 connective tissue growth factor
Cvt	 cytoplasm-to-vacuole targeting
DAMP	 �damage-associated molecular pattern molecule/danger-

associated molecular pattern molecule
DAP1	 death-associated protein 1
DAPK	 death-associated protein kinase
DAPK1	 death-associated protein kinase 1
DDR	 DNA damage response
DEPTOR	 DEP domain containing mTOR-interacting protein
DFCP1	 a PtdIns (3) P-binding protein
DISC	 death-inducing signaling complex
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DMV	 double-membrane vesicle
DOR	 diabetes- and obesity-regulated gene
DRAM	 damage-regulated autophagy modulator
DRAM-1	 �damage-regulated autophagy modulator 1 induces autophagy 

in a p53-dependent manner.
DRC	 desmin-related cardiomyopathy
DRiP	 defective ribosomal protein
DRP1	 dynamin-related protein 1
DUB	 deubiquitinases that accumulate proteins into aggresomes
E2F1	 a mammalian transcription factor
efferocytosis	 phagocytosis of apoptotic cells
EGFR	 epidermal growth factor receptor
EIF2α	 eukaryotic initiation factor 2 alpha kinase
endosomes	 �early compartments fuse with autophagosomes to generate 

amphisomes
ERAA	 endoplasmic reticulum-activated autophagy
ERAD	 endoplasmic reticulum-associated degradation pathway
ERK	 extracellular signal regulated kinase
ERK1/2	 extracellular signal regulated kinase 1/2
ERT	 enzyme replacement therapy
ESCRT	 endosomal sorting complex required for transport
everolimus	 mTOR inhibitor
FADD	 Fas-associated death domain
FKBP12	 FK506-binding protein 12
FoxO3	 Forkhead box O transcription factor 3
FYCO1	 FYVE and coiled domain containing 1
GAA	 acid α-glucosidase
GABARAP	 gamma-aminobutyric acid receptor-associated protein
GAS	 group A streptococcus
GATE-16	 Golgi-associated ATPase enhancer of 16 kDa
GFP	 green fluorescent protein
glycophagy	 degradation of glycogen particles
GPCR	 G protein-coupled receptor
GSK-3β	 glycogen synthase kinase 3 beta regulates macroautophagy
GST-BHMT	 �BHMT fusion protein used to assay macroautophagy in 

mammalian cells
HAV	 heavy autophagic vacuole
HCV	 hepatitis C virus
HDAC	 histone deacetylase
HDAC6	 histone deacetylase 6
HIF	 hypoxia-inducible factor
HIF1	 hypoxia-inducible factor 1
HMGB1	 high mobility group box 1
HR-PCD	 hypersensitive response programmed cell death
Hsc70	 heat shock cognate protein
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HSP	 heat shock protein
Hsp90	 heat shock protein 90
HspB8	 heat shock cognate protein beta-8
Htraz	 �high temperature requirement factor Az is a pro-apoptotic 

protein
I13P	 phosphatidylinositol
IAP	 inhibitor of apoptosis protein
IKK	 inhibitor of nuclear factor κB
IL3	 interleukin-3
IM	 isolation membrane
inflammasome	 an intracellular protein complex that activates caspase-1
IRF	 interferon regulatory factor
IRGM	 immunity-associated GTPase family M
IRS	 insulin receptor substrate
JNK/SAPK	 c-Jun N-terminal kinase/stress-activated protein kinase
KRAS	 an oncogene that induces autophagy in cancer cells
LAMP	 lysosome-associated membrane protein
LAMP1	 lysosome marker, lysosome-associated membrane protein 1
LAMP2	 lysosomal-associated membrane protein 2
LAMP-2A	 lysosomal-associated membrane protein 2A
LAP	 LC3-associated phagocytosis
LAV	 light autophagic vacole
LC3 (MAP1LC3B)	 �autophagosome marker microtubule-associated protein 1 light 

chain 3B
LC3	 microtubule-associated protein light chain 3
LET	 linear energy transfer
lipophagy	 �selective delivery of lipid droplets for lysosomal degradation
LIR	 LC3 interacting region
LKB	 liver kinase B
LSD	 lysosomal storage disorder
lysosomotropic agent	 compound that accumulates preferentially in lysosomes
macroautophagy	 autophagy
macrolipophagy	 regulation of lipid metabolism by autophagy
MALS	 macroautophagy–lysosome system
MAPK	 mitogen-activated protein kinase
MARF	 mitofusion mitochondrial assembly regulatory factor
MCU	 mitochondrial calcium uptake uniporter pore
MDC	 monodansylcadaverine to measure autophagic flux in vivo
MEF	 mouse embryonic fibroblast
MFN2	 �mitofusin 2, a mitochondrial outer membrane protein involved 

in fusion/fission to promote mitochondrial segregation and 
elimination

MHC	 major histocompatibility complex
MHC-II	 major histocompatibility complex class II
MiCa	 mitochondrial inner membrane calcium channel
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micropexophagy or  
macropexophagy	 peroxisome degradation by autophagic machinery
MIPA	 micropexophagy-specific membrane apparatus
mitofusion	 mitochondrial fusion-promoting factor
mitophagy	 degradation of dysfunctional mitochondria
MOM	 mitochondrial outer membrane
MPS	 mucopolysaccharide
MPT	 mitochondrial permeability transition
mPTP	 mitochondrial permeability transition pore
MSD	 multiple sulfatase deficiency
MTCO2	 mitochondrial marker
MTOC	 microtubule organizing center
mTOR	 �mammalian target of rapamycin, which inhibits autophagy 

and functions as a sensor for cellular energy and amino acid 
levels

mTORc1	 mammalian target of rapamycin complex 1
MTP	 mitochondrial transmembrane potential
MTS	 mitochondrial targeting sequence
MVB	 multivesicular body
NBR1	 neighbor of BRCA1 gene 1
NDP52	 nuclear dot protein 52 kDa
NEC-1	 necrostatin-1
necroptosis	 �a form of programmed cell death by activating autophagy-

dependent necrosis
Nix	 a member of the Bcl-2 family required for mitophagy
NLR	 NOD-like receptor
NOD	 nucleotide-binding oligomerization domain
NOS	 nitric oxide synthase
NOX	 NADPH oxidase
Nrf2	 nuclear factor 2
OCR	 oxygen consumption rate
omegasome	 �PI(3)P-enriched subdomain of the ER involved in 

autophagosome formation
OMM	 outer mitochondrial membrane
OPA1	 mitafusin 1 is required to promote mitochondrial fusion
Ox-LDL	 �oxidized low density lipoprotein is a major inducer of ROS, 

inflammation, and injury to endothelial cells
p62	 an autophagy substrate
p62/SQSTM1	 sequestosome 1
PAMP	 pathogen-associated molecular pattern molecule
PAS	 pre-autophagosomal structure
PB1 domain	 Phox and Bem1 domain
PCD	 programmed cell death
PDI	 protein disulfide isomerase
PE	 phosphatidyl ethanolamine
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PERK	 protein kinase-like endoplasmic reticulum kinase
PFI	 proteasome functional insufficiency
phagophore	 �a cup-shaped, double membraned autophagic precursor 

structure
PI(3)K-PKB-FOXO	 �a growth factor that inhibits autophagy and increases 

apoptosis by regulating glutamine metabolism
PI3K	 phosphatidylinositol 3-kinase
PI3KC3	 phosphatidylinositol-3-kinase class III
PINK1	 �PTEN (phosphatase and tensin homologue deleted on 

chromosome 10)-induced putative kinase 1
PKA	 protein kinase A
PKB	 protein kinase B
PKC	 protein kinase C
polyQ	 polyglutamine
PQC	 protein quality control
prion disease	 transmissible spongiform encephalopathy
PRR	 pathogen recognition receptor
PS	 phosphatidyl serine
PSMB5	 proteasome subunit beta type-5
PtdIns	 phosphatidylinositol
PTGS	 post-transcriptional gene silencing
PUMA	 p53 upregulated modulator of apoptosis
R1G	 retrograde signaling pathway
Rag	 GTPase that activates TORC1 in response to amino acids
RAGE	 receptor for advanced glycation end product
rapamycin	 a well-known autophagy inducer by suppressing mTOR
RAPTOR	 regulatory-associated of mTOR
RE	 recycling endosome
residual body	 lysosome containing undegraded material
reticulophagy	 degradation of endoplasmic reticulum
ribophagy	 degradation of ribosomes
RIP	 receptor-interacting protein
RISC	 RNA-induced silencing complex
RLS	 reactive lipid species
RNAi	 RNA interference
RNS	 reactive nitrogen species
ROS	 reactive oxygen species
ROT	 rottlerin used as a protein kinase C-delta inhibitor
RP	 19S regulatory particle
Rubicon	 �RUN domain and cysteine-rich domain-containing Beclin 

1-interacting protein
selective autophagy	 selective recruitment of substrates for autophagy
sequestosome 1	 an autophagy substrate
sequestosome 1 
(p62/SQSTM1)	

a multifunctional adapter protein implicated in tumorigenesis
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sequestosome (SQSTMI)1	 p62 protein, a ubiquitin-binding scaffold protein
SESN2	 sestrin-2
shRNA	 small/short hairpin RNA
siRNA	 small interference RNA
sirt 1	 �sirtuin 1 class III histone deacetylase, prevents Alzheimer’s 

disease
SMIR	 small molecule inhibitor of rapamycin
SNARE	 soluble N-ethylmaleimide-sensitive factor attachment receptor
SNP	 single nucleotide polymorphism
SQSTM1	 sequestosome 1
Syt1	 synaptotagmin 1
T1DM	 type 1 diabetes mellitus
TAKA	 transport of Atg9 after knocking-out Atg1
TASCC	 TOR-autophagy spatial coupling compartment
TCN	 trans-Golgi network
TCR	 T cell receptor
TECPR1	 tectonin beta-propeller repeat containing 1
tensirolimus	 mTOR inhibitor
TFEB	 transcript factor EB
TGFβ	 transforming growth factor β that activates autophagy
TGN	 trans-Golgi network
TIGR	 �TP53 (tumor protein 53)-induced glycolysis and apoptosis 

regulator
TK	 tyrosine kinase
TKI	 tyrosine kinase inhibitor
TLR	 Toll-like receptor
TMD	 transmembrane domain
TMEM166	 transmembrane protein 166 that induces autophagy
TNF	 tumor necrosis factor
TNF-α	 tumor necrosis factor alpha
Torin1	 ATP-competitive mTOR inhibitor
TRAIL	 tumor necrosis factor-regulated apoptosis-inducing ligand
TSC	 tuberous sclerosis complex
TSC2	 tuberous sclerosis complex 2
TSP	 thrombospondin
UBA domain	 ubiquitin-associated domain
UBAN	 ubiquitin-binding domain
ubiquitin	 �a small protein that functions in intracellular protein 

breakdown and histone modification
ubiquitination	 �a well-established signal for inducing autophagy of protein 

aggregates
Ubl	 ubiquitin-like
ULK	 Unc-51-like kinase complex
ULK1	 putative mammalian homologue of Atg1p
UPR	 unfolded protein response
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UPS	 ubiquitin–proteasome system
UVRAG	 UV-irradiation resistance-associated gene
VAchT	 vesicular acetylcholine transporter
VAMP	 vesicle-associated membrane protein
VCP/p97	 �valosin-containing protein involved in endosomal trafficking 

and autophagy
VEGF	 vascular endothelial growth factor
VEGFR	 vascular endothelial growth factor receptor
VMP1	 �vacuole membrane protein 1, promotes formation of 

autophagosomes
VPS15	 vacuolar protein sorting 15 homologue
VTA	 vascular targeting agent
VTC	 vacuolar transporter chaperone
wortmannin	 an autophagic inhibitor
XBP1	 �a component of the ER stress response that activates 

macroautophagy
xenophagy	 degradation of invading bacteria, viruses and parasites
YFP	 yellow fluorescent protein
zymophagy	 �lysosomal degradation of zymogen granules (digestive 

enzymes)

See also Klionsky, D. J., Codogno, P., Cuervo, A. M. et al. (2010). A comprehensive glossary 
of autophagy-related molecules and processes. Autophagy 6, 438–448.
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AUTOPHAGY

1.  INTRODUCTION TO AUTOPHAGY2

INTRODUCTION

Aging has so permeated our lives that it cannot be stopped, but it can be delayed. Under 
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Abstract
Autophagy plays a direct or indirect role in health and disease. A simplified definition of autophagy is that 
it is an exceedingly complex process which degrades modified, superfluous (surplus) or damaged cellular 
macromolecules and whole organelles using hydrolytic enzymes in the lysosomes. It consists of sequential 
steps of induction of autophagy, formation of autophagosome precursor, formation of autophagosomes, 
fusion between autophagosome and lysosome, degradation of cargo contents, efflux transportation of 
degraded products to the cytoplasm, and lysosome reformation.

This chapter discusses specific functions of autophagy, the process of autophagy, major types of 
autophagy, influences on autophagy, and the role of autophagy in disease, immunity, and defense.
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O U T L I N E

Abstract
Four principal categories of cell-cell junctions connect cells in vertebrates and form the basis for shaping 
distinct tissues and organs. Gap junctions (GJs), one of the four junction types, provide direct cell-to-cell 
communication by mediating passive diffusion of small hydrophilic signaling molecules between neigh-
boring cells. Gap junction mediated intercellular communication (GJIC) has been shown to play a crucial 
role for all aspects of multicellular life, including embryonic development, tissue function, and cellular 
homeostasis; and mutations in the GJ forming proteins, connexins (Cxs), have been linked to severe human 
diseases that include inherited and sporadic nonsyndromic hearing loss, neuropathies, eye lens cataracts, 
cardiac diseases, craniofacial malformations, and a number of acute skin disorders. Clearly, biosynthesis and 
degradation significantly contribute to GJ function and need to be controlled precisely. We have previously 
shown that GJs are removed from the plasma membrane via the internalization of entire GJ plaques (or por-
tions thereof) in a cellular process that resembles clathrin-mediated endocytosis. GJ endocytosis results in 

http://dx.doi.org/10.1016/B978-0-12-801032-7.00019-8
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INTRODUCTION

Gap Junction Structure and Function

Cells in vertebrates including humans are linked together by four principal types of cell-
cell junctions to form tissues and organs. Each type of cell-cell junction is considered to ful-
fill a special function (Figure 19.1A). Tight junctions (TJs) form a net-like belt of branched 
ridges of transmembrane proteins (claudins, occludins, tricellulin) around cells that tightly 
link cells together to separate apical from baso-lateral membrane domains, or (in case of 
epithelia and vascular endothelia) to separate outside from inside, or the lumen of blood 
vessels from the surrounding body, respectively. Desmosomes and adherens junctions (AJs) 
form patchy cell-cell contacts that connect cytoskeletal elements (intermediate and actin fila-
ments, respectively) of neighboring cells to provide tissue strength, aid in tissue morpho-
genesis during development, and to maintain proper tissue organization. Gap junctions 
(GJs) consist of clusters of double-membrane spanning hydrophilic channels that provide 
direct cell-to-cell communication by allowing the passage of signaling molecules, ions, and 
electrical currents. Epithelia and endothelia, sheets of polarized single-cell layers that coat 
the outside and inside surface of organs such as the intestine, liver, kidneys, or the vascu-
lature, are particularly rich in cell-cell junctions and exhibit a well-organized hierarchical 
architecture of these structures (Figure 19.1A).

FIGURE 19.1  Cellular location and structure of gap junctions (GJs). (A) GJs are assemblies of double-mem-
brane spanning hydrophilic channels termed “plaques” that bridge the apposing plasma membranes of neigh-
boring cells to provide direct cell-to-cell (or intercellular) communication as shown here for epithelial cells. (B) GJ 
channels form by the head-on docking of two hemi-channels or “connexons” each assembled and trafficked to the 
plasma membrane by one of the two contacting cells. Connexons are assembled from six four-pass trans-membrane 
proteins termed “connexins” (Cxs). (C) GJs can be detected by immunofluorescence light microscopy when stained 
with fluorescence-tagged antibodies, such as the ones shown here in T51B liver cells assembled from endogenously 
expressed Cx43 protein. (D) GJs also appear as structures with unique morphology in ultrathin sections when 
examined by electron microscopy (EM).

the formation of double-membrane vesicles (termed annular gap junctions [AGJs] or connexosomes) in the 
cytoplasm of one of the coupled cells. A set of recent independent studies consistent with earlier ultrastruc-
tural analyses demonstrate the degradation of endocytosed AGJs by autophagy. Some other reports, how-
ever, describe AGJ degradation by endo-/lysosomal pathways in cells that were treated with TPA. Here, I 
summarize evidence that supports the concept that autophagy serves as the principal cellular degradation 
pathway for internalized GJs under physiological and pathological conditions.
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Direct cell-to-cell communication is a pivotal cellular function of multicellular organisms. 
It is established by GJ channels, which bridge apposing plasma membranes of neighboring 
cells. Typically, tens to thousands of GJ channels cluster into densely packed two-dimensional 
arrays, termed GJ plaques, that can reach several micrometers in diameter (Figure 19.1B). GJ 
channels are assembled from a ubiquitously expressed class of four-pass trans-membrane pro-
teins, termed connexins (Cxs), with connexin 43 (Cx43) being the most abundantly expressed 
Cx type. Six Cx polypeptides oligomerize into a ring to form a hexameric trans-membrane 
structure with a central hydrophilic pore, called a hemi-channel or connexon. Once traf-
ficked to the plasma membrane, two connexons, one provided by each of two neighboring 
cells, dock head-on in the extracellular space to form the complete double-membrane span-
ning GJ channel that is completely sealed off to the extracellular space (Thévenin et al., 2013) 
((Figures 19.1, 19.2). Recruitment of additional GJ channels along the outer edge enlarges the 
GJ plaques, while simultaneous removal of older channels from plaque centers balances GJ 
channel turnover (Falk et al., 2009; Gaietta et al., 2002; Lauf et al., 2002).

RESULTS

Gap Junction Endocytosis Generates Cytoplasmic Double-Membrane Vesicles

Goodenough and Gilula (1974), and Ghoshroy et  al. (1995) found that connexons, 
once docked, appear inseparable under physiological conditions (Ghoshroy et  al., 1995; 
Goodenough and Gilula, 1974), suggesting that cells may endocytose and degrade GJ 
plaques in whole. Indeed, we found that cells endocytose their GJs as complete double-
membrane structures via a combined endo-/exocytic process (endocytic for the receiving 
cell, exocytic for the donating cell) (Baker et al., 2008; Falk et al., 2009; Gilleron et al., 2008; 
Gumpert et  al., 2008; Piehl et  al., 2007) (Figure 19.3, steps 1–5). Internalization was found 
to occur preferentially into one of two coupled cells, indicating a highly regulated process 
(Falk et al., 2009; Piehl et al., 2007). Further analyses indicated that GJ internalization utilizes 
well-known components of the clathrin-mediated endocytosis (CME) machinery, includ-
ing the classical endocytic coat protein clathrin, the clathrin-adaptors AP-2 and Dab2, the 
GTPase dynamin2, the retrograde actin motor myosin VI (myo6), as well as the process of 
actin polymerization (Gumpert et al., 2008; Piehl et al., 2007) (Figure 19.3, steps 1–4). A recent 
analysis from our lab revealed that two AP-2 binding sites are present in the C-terminus of 
Cx43 that cooperate to mediate GJ endocytosis (Fong et al., 2013), suggesting a mechanistic 
model for clathrin’s ability to internalize these large plasma membrane structures.

GJ internalization generates characteristic cytoplasmic double-membrane GJ vesi-
cles, termed annular GJs (AGJs) or connexosomes (Figures 19.2, 19.3). Note that the outer 
membrane of the generated AGJ vesicles corresponds to the plasma membrane of the host 
cell, while the inner membrane and the vesicle lumen correspond to plasma membrane 
and cytoplasm of the neighboring donor cell (Figures 19.2, 19.3, steps 1–5). Extensive fur-
ther analyses revealed that cells turn over their GJs constitutively (Falk et  al., 2009; Piehl 
et  al., 2007), and efficiently after treatment with inflammatory mediators such as throm-
bin and endothelin (Baker et  al., 2008); mitogens such as EGF and VEGF (Fong and Falk, 
and Nimlamool and Falk, unpublished); in response to treatment with the nongenomic 



FIGURE 19.2  Gap junctions and endocytosed gap junctions. (A) HeLa cells transfected with Cx43-GFP effi-
ciently express and assemble GJs in the adjacent plasma membranes of transfected cells (visible as green fluores-
cent lines and puncta such as the one shown in insert 1). Over time, GJs bulge inward (insert 2), detach from the 
plasma membrane and form endocytosed cytoplasmic annular gap junction (AGJ) vesicles or connexosomes (insert 
3). (B) Selected still images of a time-lapse recording of stably transfected Cx43-YFP expressing HeLa cells show-
ing the formation of a GJ, its endocytic internalization into the cytoplasm of one of the previously coupled cells, 
and final degradation of the generated AGJ vesicle, indicated by the loss of its fluorescence (marked with arrows). 
Combined phase contrast and fluorescence images are shown in (A) and (B). Transmission electron micrographs of 
a gap junction (C) and an annular gap junction (D) in mouse embryonic stem cells.
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carcinogen lindane (Gilleron et al., 2008); and under pathological conditions such as in the 
failing canine ventricular myocardium (Hesketh et al., 2010). Constitutive and acute endo-
cytosis of GJ plaques correlates with the described short half-life of connexins of only 1–5 
hours (Beardslee et al., 1998; Berthoud et al., 2004; Falk et al., 2009; Fallon and Goodenough, 
1981; Gaietta et al., 2002).

Endocytosed Gap Junctions are Degraded by Autophagy

Four recent studies by Hesketh et al. (2010), Lichtenstein et al. (2011), Fong et al. (2012), 
and Bejarano et al. (2012) report the degradation of endocytosed AGJ vesicles via autophagy 
(Figure 19.3, steps 6–10). Hesketh et al. (2010) report loss of GJs from the plasma membrane, 
and GJ endocytosis and AGJ degradation by autophagy in pacing-induced failing canine 
ventricular myocardium. Lichtenstein et al. (2011) report that autophagy contributes to the 
degradation of endogenously (NRK cells, mouse embryonic fibroblasts) and exogenously 
(HeLa cells) expressed Cx43 protein, and of wild-type and cataract-associated mutant Cx50 
proteins in both un-induced cells and in cells in which autophagy was induced by starva-
tion (Lichtenstein et al., 2011). Fong et al. (2012) report the autophagic degradation of AGJ 
vesicles in normal, untreated HeLa cells that express exogenous fluorescently tagged 
Cx43; and in primary porcine pulmonary artery endothelial cells (PAECs) endogenously 

FIGURE 19.3  Mechanisms of gap junction endocytosis and degradation. Schematic representation of proposed 
steps that lead to GJ internalization (steps 1–3), cytoplasmic AGJ vesicle formation and fragmentation (steps 4, 5), 
and AGJ vesicle degradation by phago-/lysosomal (steps 6–10) and endo-/lysosomal pathways (steps 11–15) based 
on the previous work by others and us. Note the proposed nonjunctional membrane domains missing the green GJ 
label (shown in steps 4, 5, 11, 12), and the increased phosphorylation and ubiquitination on AGJ vesicles that fuse 
with endosomes (steps 11, 12 versus 6, 7).
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expressing Cx43. Bejarano et  al. (2012) report the Nedd4-mediated ubiquitin-dependent 
autophagic degradation of internalized GJs in situ (mouse liver) as well as in starved and 
fed cultured cells expressing Cx43 endogenously and exogenously (mouse embryonic fibro-
blasts, NIH3T3, COS7, and NRK cells).

In all four studies cytoplasmic AGJ vesicles were detected inside phagophores by 
ultrastructural analyses. Autophagosomes exhibit a highly characteristic, clearly rec-
ognizable double-membrane structure on ultra-thin sections (Figure 19.2D), making 
conventional electron microscopy a very reliable technique for the characterization of 
autophagosomes (Mizushima, 2004). Also, in all studies AGJs were observed to co-localize  
with the autophagy marker protein, LC3-II/Atg8, known to be one of the most useful 
generic marker proteins for the characterization of autophagosomes (Kabeya et  al., 2000). 
Microtubule-associated protein light chain 3 (LC3, the mammalian homologue of the yeast 
autophagic protein Atg8) is an abundant soluble cytoplasmic protein. It is proteolytically 
processed by the removal of a few N-terminal amino acid residues shortly after translation 
that generates LC3-I. LC3-I is recruited to developing phagophores, is covalently conjugated 
to phosphatidyl-ethanolamine (PE) of the phagophore membrane (termed LC3-II), and 
remains on autophagosomes for most of their lifetime (Kabeya et al., 2000; Mizushima, 2004).

While the Lichtenstein et  al. and Bejarano et  al. studies were aimed more broadly at 
a potential role of autophagy contributing to Cx and GJ degradation in general, the Fong 
et al. and the Hesketh et al. studies were aimed specifically at investigating the fate of inter-
nalized AGJ vesicles that others and we had characterized previously (Baker et  al., 2008; 
Gumpert et  al., 2008; Jordan et  al., 2001; Piehl et  al., 2007). To further support their find-
ings, Lichtenstein et  al. and Bejarano et  al. knocked down the autophagy-related proteins 
Atg5 and Atg7 in cells expressing either endogenous or exogenous Cx43, and used the 
drugs chloroquine and 3MA to inhibit autophagy. Fong et al. knocked down expression of 
the autophagy related proteins Beclin-1 (Atg6), LC3 (Atg8), LAMP-2 and p62/sequesto-
some 1 (SQSTM1), and used the drugs 3MA, Wortmannin, and Bafilomycin A1 in Cx43-GFP 
expressing HeLa cells.

As mentioned previously in the Lichtenstein et al., Fong et al., and Bejarano et al. studies 
the ubiquitin-binding protein p62/SQSTM1 was identified as a protein that targets internal-
ized GJs to autophagic degradation. Knocking down p62/SQSTM1 protein levels as per-
formed by Fong et al. resulted in a significantly increased accumulation of cytoplasmic AGJs 
(av. 55%, n = 4) and a significantly reduced co-localization (av. 69.5%, n = 3) of AGJs with 
autophagosomes. In summary, all four complementary studies (Bejarano et  al., 2012; Fong 
et al., 2012; Hesketh et al., 2010; Lichtenstein et al., 2011) compellingly show that under phys-
iological and pathological conditions GJ plaques are endocytosed from the plasma mem-
brane, and that the generated AGJ vesicles are degraded by autophagy.

Structural Elements Warrant the Autophagic Degradation of Endocytosed  
Gap Junctions

Since cytoplasmic vesicles normally can fuse with endosomes, at first glance, autophagic 
degradation of AGJ vesicles might not appear intuitive. However, considering the GJ inter-
nalization process that generates double-membrane vesicles in which both membranes are 
tightly linked to each other (not single membrane vesicles that typically are formed by the 
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endocytosis of cargo molecules on the plasma membrane), the structural organization of AGJ 
vesicles (multiprotein complexes with paracrystalline surface packing), and their cytoplasmic 
location, autophagic degradation emerges as the most apparent cellular degradation path-
way. Finally, the unique structural composition of AGJ vesicles with lumen and inner mem-
brane derived from the neighboring cell (being foreign to the AGJ-receiving host cell) may 
further direct AGJs to autophagic degradation. Taken together, the structural and functional 
characteristics of AGJ vesicles, along with the fact that autophagy serves as the generic degra-
dation pathway for cytoplasmically localized structures (organelles and protein aggregates), 
renders autophagic degradation the most obvious cellular AGJ degradation pathway.

Potential Other Degradation Pathways for Endocytosed Gap Junctions

Interestingly, a recent paper by Leithe et  al. (2009) reports that in TPA-treated cells (a 
structural analogue of the secondary messenger molecule diacylglycerol [DAG]), internal-
ized GJs may be degraded by the endo-/lysosomal and not the autophagosomal pathway 
(Figure 19.3, steps 11–15). Recently, the Leithe lab identified the protein Smurf2 (the HECT 
E3 ubiquitin ligase smad ubiqitination regulatory factor-2) as a critical factor that regulates 
GJ internalization and endo-/lysosomal targeting in TPA-treated cells (Fykerud et al., 2012). 
DAG is a known potent activator of protein kinase C (PKC), and PKC is known to phospho-
rylate and promote ubiquitination of Cx43 (Leithe et  al., 2009; Leithe and Rivedal, 2004b; 
Postma et al., 1998). Based on these and our own results, it is tempting to speculate that cells 
might be able to regulate by which pathway (endo-/lysosomal versus phago-/lysosomal) 
specific cargo is sequestered and processed (e.g., endo-/lysosomal and phago-/lysoso-
mal pathways might process internalized GJs in different ways). Furthermore, the level of 
cargo-phosphorylation and/or ubiquitination might determine which of these pathways is 
ultimately chosen (basic phosphorylation/ubiquitination signaling autophagic AGJ vesicle 
degradation; elevated phosphorylation/ubiquitination signaling endo-/lysosomal AGJ ves-
icle degradation) (see Figure 19.3, steps 6–10 versus 11–15).

Endo-/lysosomal degradation of AGJs as observed in TPA-treated cells by Leithe et  al. 
(2009) of course raises an important question: How is it structurally possible for a double-
membrane vesicle that consists of tightly bonded membrane layers and densely packed GJ 
channels to fuse with a single-membrane endosome? The Rivedal and Leithe laboratories 
suggest that subsequent to GJ internalization and AGJ formation, the inner AGJ membrane 
splits and peels away from the outer AGJ membrane, generating a single-membraned cyto-
plasmic AGJ vesicle that then can fuse with a single-membraned endosome (Kjenseth et al., 
2010, 2012; Leithe et al., 2009, 2012). However, since docked GJ channels cannot split into 
undocked connexons under physiological conditions (Ghoshroy et  al., 1995; Goodenough 
and Gilula, 1974) – which appears to be the apparent reason for double-membrane GJ endo-
cytosis – it is not clear how membrane separation could be initiated in the AGJ vesicles 
shortly after their generation. Clearly low pH, a characteristic of late endosomes and lys-
osomes, and a potential initiator of GJ splitting, can be excluded because AGJ vesicle mem-
brane-separation needs to occur before AGJ/endosome fusion.

Interestingly, by electron microscopic (EM) examination, we found that AGJ vesicles exam-
ined by electron microscopy (EM) appear to include a small region where the two mem-
branes are void of GJ channels and are not docked or linked to each other (Falk et al., 2012; 
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Piehl et al., 2007) (shown schematically in Figure 19.3, steps 4, 5, 11 and 12). Similar small AGJ 
membrane separations were also observed in classical ultrastructural analyses of GJs and 
AGJ vesicles (see, e.g., Mazet et al., 1985). Possibly, these nonjunctional membrane domains 
consist of plasma membrane that is derived from both neighboring cells, and we postulated 
that these areas might originate from plasma membrane regions that were located immedi-
ately adjacent to the GJ plaques and were internalized as well. To gain further support for this 
hypothesis, we incubated inducible stably Cx43-YFP expressing HeLa cells for 2–4 hours with 
a fluorescently tagged lectin, Alexa594-wheat germ agglutinin (WGA), and examined AGJ 
vesicles by high-resolution fluorescence microscopy. WGA binds specifically to sialic acid 
and N-acetylglucosaminyl carbohydrate moieties commonly found on extracellular-exposed 
carbohydrate side-chains of plasma membrane proteins. Due to its relatively large size 
(~38 kDa), WGA is not able to traverse the plasma membrane in living cells. However, WGA 
will bind to and label the extracellular surface of plasma membranes, and subsequently will 
be endocytosed and then will also label intracellular membrane compartments. Interestingly 
we found that a significant portion of AGJ vesicles (~50%, n = 80; the ones that likely were 
generated during the WGA-incubation period), exhibited red-fluorescent WGA-puncta (Falk 
et al., 2012). These results support our hypothesis that the undocked membrane domains we 
detected by EM indeed represent plasma membrane areas that were located in the immediate 
vicinity of GJ plaques and were concomitantly internalized in the AGJ endocytosis process. It 
is very likely that these nonjunctional membrane domains provide the single membrane areas 
that allow double-membrane AGJ vesicles to fuse with single-membrane endosomes.

Signals that Prime Gap Junctions for Endocytosis and Direct them  
to Autophagic Degradation

Post-translational modification of proteins is a widespread mechanism to fine-tune the 
structure, function, and localization of proteins. One of the most versatile and intriguing 
protein modifications is the covalent attachment of ubiquitin (Ub) or Ub-like modifications 
to target proteins. Ub is a small, 76-amino acid protein, and either single or multiple Ub moi-
eties can be conjugated to lysine amino acid residues of target proteins. An incredible diver-
sity of mono- and poly-Ub chains (in which Ub moieties can be linked to each other via the 
Ub residues Met1-, Lys6-, Lys11-, Lys27-, Lys29-, Lys33-, Lys48-, and Lys63-) conjugated to 
target proteins have been characterized that can range in function from protein activation to 
protein degradation (Fushman and Wilkinson, 2011). Multiple mono-Ubs, and Lys48- and 
Lys63-linked poly-Ubs, have been recognized as important signals for protein degrada-
tion. For example, conjugation of Ub moieties to proteins has been recognized as a signal 
for both proteasomal targeting (addition of Lys48-linked poly-Ub chains) and more recently 
as a sorting signal for internalized vesicles of the late endocytic pathway. This is achieved 
through the addition of multiple mono-Ub moieties or of Lys63-linked poly-Ub chains, 
which ultimately lead to degradation by lysosomes (Hicke, 2001; Hicke and Dunn, 2003; 
Schnell and Hebert, 2003). In addition, Lys-63-linked polyubiquitination can act as an inter-
nalization signal for clathrin-mediated endocytosis (CME) (Belouzard and Rouille, 2006; 
Geetha et al., 2005). Lys63-polyubiquitinated target proteins are recognized by specific CME 
machinery protein components that associate with a subset of Ub-binding proteins, specifi-
cally Epsin1 and Eps15 (Barriere et al., 2006; Hawryluk et al., 2006; Madshus, 2006). Further 
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work has shown that the Ub-binding protein p62/SQSTM1 recognizes and interacts via its 
UBA-domain with polyubiquitinated proteins (Ciani et al., 2003; Seibenhener et al., 2004) and 
delivers polyubiquitinated (Lys63-linked) oligomeric protein complexes to the autophagic 
degradation pathway (Bjorkoy et al., 2005; Pankiv et al., 2007). Ubiquitination of Cx43-based 
GJs has been described previously (Catarino et al., 2011; Girao et al., 2009; Leithe et al., 2009; 
Leithe and Rivedal, 2004b). The findings that Cx43-based GJs can become ubiquitinated 
(e.g., Lys63-polyubiquitinated; Kells and Falk, unpublished), the known affinity of p62/
SQSTM1 for ubiquitinated protein complexes, its co-localization with plasma membrane 
GJs in HeLa, COS7, and PAE cells (Bejarano et al., 2012; Fong et al., 2012; Lichtenstein et al., 
2011), and its apparent involvement in targeting AGJ vesicles to autophagic degradation 
(Fong et  al., 2012) suggest that ubiquitination of Cx43 (and at least Cx50), besides serving 
as a likely signal for GJ internalization, may also serve as the signal for targeting AGJ vesi-
cles to autophagic degradation. Future research will be required to determine the potentially 
numerous types (multiple mono-Ubs, Lys48- and Lys63-linked poly-Ubs, etc.) and functions 
of connexin ubiquitination (see Kjenseth et al., 2010; Leithe et al., 2012; Su and Lau, 2012 for 
recent reviews that discuss Cx-ubiquitination). Very recently, Kjenseth et al. (2012) described 
an additional, Ub-like post-translational modification of Cx43, SUMOylation (SUMO, small 
ubiquitin-like modifier) that appears to be involved in regulating GJ stability and turnover. 
The small Ub-like protein SUMO was found to be conjugated to lysines 144 and 237 of the 
Cx43-C-terminal domain, further widening the role of Ub and Ub-like signals in the mainte-
nance and degradation of GJs.

DISCUSSION

Cells have developed three principal degradation pathways: the proteasomal, the 
endo-/lysosomal, and the phago-/lysosomal system (termed macroautophagy or simply 
autophagy), and all three have been implicated previously at various steps in the regula-
tion of GJ stability and Cx degradation (Hesketh et  al., 2010; Laing et  al., 1997; Leach and 
Oliphant, 1984; Leithe and Rivedal, 2004a; Musil et al., 2000; Pfeifer, 1980; Qin et al., 2003). 
While the two latter ones utilize the lysosome for final degradation and are designed for 
the degradation of protein aggregates, multiprotein complexes and cytoplasmic organelles, 
the proteasomal system is designed for the degradation of single polypeptide chains that 
require unfolding to be inserted into the tubular core of the cytoplasmically located protea-
some. Since AGJ vesicles are highly complex multi-subunit protein assemblies, their degra-
dation by the proteasome is highly unlikely, and no evidence appears to exist that would 
suggest a proteasome-mediated degradation of GJs or AGJ vesicles. Similarly, lysosomal 
inhibitors such as leupeptin, chloroquine, NH4Cl, and E-64, which previously have been 
used to gain evidence for endo-/lysosomal degradation of GJs (Berthoud et al., 2004; Laing 
et al., 1997; Musil et al., 2000; Qin et al., 2003), will also inhibit autophagic GJ degradation, 
and thus obtained results may not have been interpreted correctly. Experimental approaches 
that specifically target the autophagosomal degradation pathway that were used by others 
and us compellingly demonstrate that endocytosed GJs are degraded by autophagy.

Historically, autophagy has been known as a lysosomal degradation pathway that becomes 
essential to cell survival following nutrient depletion. However, substantial research over 



IV.  AUTOPHAGY: GENERAL APPLICATIONS

19.  Autophagy Degrades Endocytosed Gap Junctions282

the past decade has indicated that autophagy, besides its well-known function in organelle 
degradation during starvation, represents a much more common and highly conserved 
autonomous lysosome-based cellular degradation pathway that is specifically designed to 
remove and degrade protein aggregates, multiprotein complexes, organelles, and invading 
pathogens from the cytoplasm (Bjorkoy et al., 2005; Hung et al., 2009; Pohl and Jentsch, 2009; 
Ravikumar et al., 2008). Recent studies have further shown that protein aggregates, such as 
the ones formed by huntingtin and β-amyloid protein, and cellular structures such as the mid-
body ring, a mitotic cytokinesis leftover multiprotein complex, are all degraded by autophagy 
(Bjorkoy et al., 2005; Hung et al., 2009; Pohl and Jentsch, 2009; Ravikumar et al., 2008). Clearly, 
these cellular structures are degraded by autophagy independent of starvation. In addition, 
autophagosomal degradation of membranous/vesicular organelles, as for example malfunc-
tioning mitochondria, is common. Since the catabolic activity of lysosomes is used in this 
process, degradation-prone structures first need to be separated from the cytoplasm. This 
is necessary due to the destructive activity of lysosomal enzymes, which cannot be released 
directly into the cytoplasm. Thus, cytoplasmic structures targeted for degradation are first 
engulfed in double-membrane vesicles (autophagosomes) that allow lysosomal fusion, deg-
radation, and subsequent recycling of the phagosome cargo and the phagosome membrane.

CONCLUSION

In this article, I have summarized recent experimental results and discussed structural 
and functional considerations that all support the concept that autophagy serves as the 
default degradation pathway for endocytosed GJs. Indeed, in several classical ultrastruc-
tural analyses of various cells and tissues in situ including heart, dermis, and liver (Leach 
and Oliphant, 1984; Mazet et al., 1985; Pfeifer, 1980; Severs et al., 1989), autophagic degrada-
tion of GJs had been suggested. However, surprisingly back then not much attention was 
attributed to this evidently fundamental GJ degradation pathway. Autophagic degrada-
tion of GJs plays a significant role in the regulation of GJ function, as inhibition of cellular 
autophagy increases GJIC, prevents internalization of GJs, slows down the degradation of 
Cxs, and causes cytoplasmic accumulation of internalized GJ vesicles in situ, and in cells 
that either express endogenously or exogenously connexin proteins (Bejarano et  al., 2012; 
Fong et  al., 2012; Lichtenstein et  al., 2011). Hence, it is likely that certain disease-causing 
mutations in Cx proteins will impair physiological levels of GJ endocytosis and autophago-
somal turnover, and that this will cause a detrimental misregulation of GJ function. Future 
research also will need to address the signals that specifically modify the Cx proteins to ini-
tiate GJ endocytosis and degradation. Post-translational modifications, such as phospho-
rylation, ubiquitination, and acetylation, the binding/release of regulatory proteins (e.g., 
ZO-1), and specific conformational changes of the Cx43-C-terminus that regulate access of 
modifying enzymes are all enticing possibilities.
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