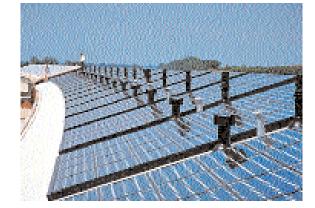
Challenges of Designing Glass Compositions for new applications

Ashtosh Ganjoo, Larry J. Shelestak and Jim McCamy

PPG Industries, Inc. Glass Business and Discovery Center Cheswick, PA 15024

> IMI-NFG Meeting November 17-18, 2008



Copyright 2008 PPG Industries Inc.,

Challenges

> Newer applications need newer glass properties

- > Satisfying customer's expected performance specifications
- > Able to commercially manufacture glass
- Complying with environmental regulations

PPG Industries Growth Leadership Innovation

Glass Quality Requirements

Building Glass products

Neutral reflected and transmitted color (residential)
Architects aesthetic preferences
Low solar heat gain, e.g., <0.25 (LEED points)
High visible transparency – daylighting
Low U-value for colder climates

Solar PV Glass products

Tsol > 90.2%; Reflectance should be small

Durable and little to no solarization

Extra Strength glass

Strength also important in addition to other properties

Glass Attributes

Solar Heat absorbing – high iron content (+other absorbers)

High visible transmittance – low iron content

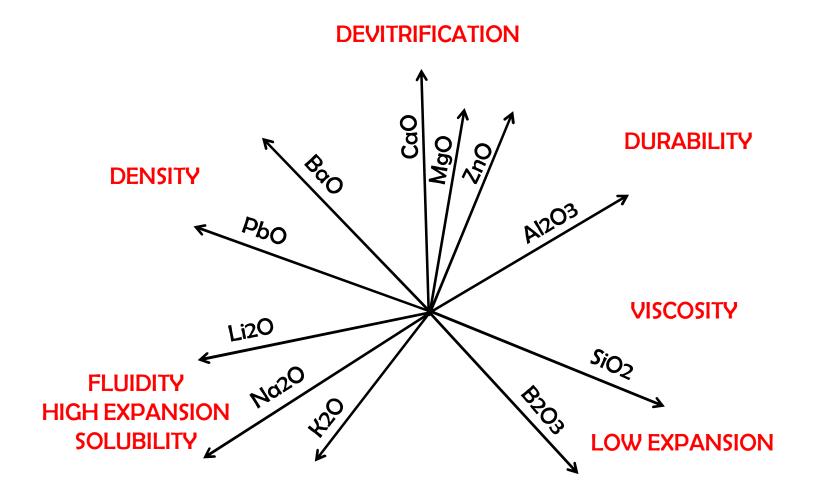
Solarization resistance

High Strength

Low melting temperature

Scratch resistant

Chemical durability


Control over density

Low thermal expansion

Apply computer models to predict glass properties

Relative Functions of the Glass-Making Oxides

Reference: S.R.Scholes, Modern Glass Practice, Industrial Publications, Inc., Chicago, IL, 1952, pg 17-18.

Production Criteria

Glass melting and forming temperature

➢Glass quality

Glass redox control

➢Glass furnace design – throughput rate, type of firing & fuel, heat penetration, convective flow velocity

Raw material availability

- Product change times between products
- Advanced process control and automation
- Glass coating on-line vs. off-line
- Environmental permits emissions, NO_x, SO₂, CO₂, particulate matter

Apply CFD modeling to determine compatibility with production process

Float Glass vs. Sheet or Rolled Glass

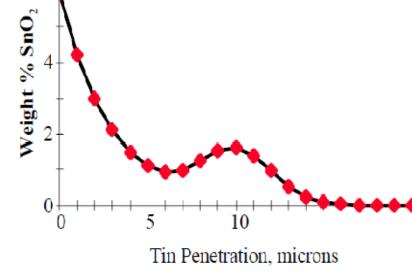
➤Float glass

>Bottom surface enriched in tin.

>Top surface > 10x lower tin content.

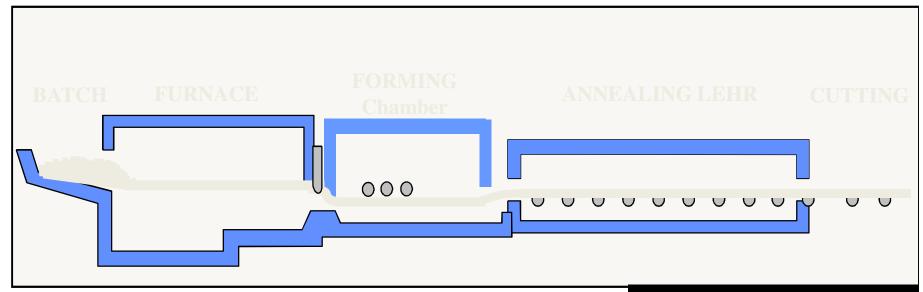
>Effect on surface reflectance :

>Bottom surface Rvis = 4.1%


>Top surface Rvis = 4.0%

➤ Sheet glass

>Down-draw or up-draw process.>Fire-polished surfaces


➢Rolled Glass

>Geometric pattern on one or both surfaces

Flat Glass Manufacturing The float glass process

 ➤ Typical peak glass melting temperatures up to 1600 °C
 ➤ Average throughput from 300 to 900 T/D
 ➤ Furnace melter surface area from 3000 to 4200 ft²

Solar Heat Absorbing Glass

Energy Management

➢ Building aesthetics

IR-absorbing glass

Low-e coated Glass

Energy efficient buildings

>Green engineering.

>Leadership in Energy and Environmental Design (LEED) standards and certification

New government regulations
Energy usage codes

>Glass Melting concerns

>Effect on temperature gradients in melting furnace.

Convective flow effects due to radiative and conductive heat transfer

>CFD modeling of tank flow patterns and temperature distributions.

PPG Industries

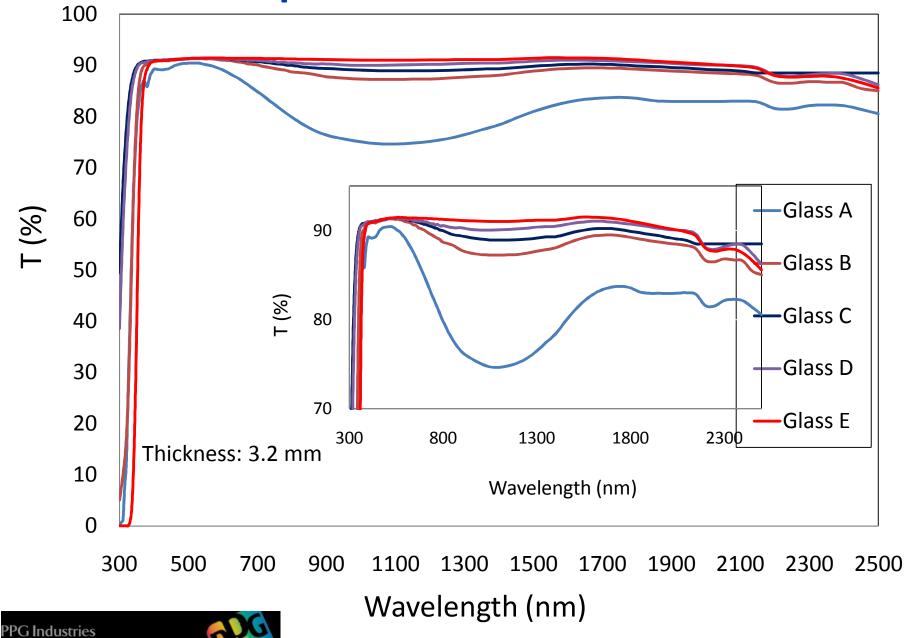
Growth Leadership Innovatio

rino Office Building ation: Aurora, CO

Sky Las Vogas Location: Las Vegas, NV NIR-Reflective coated Glass

High Transmittance Glass

> Requires use of low iron containing batch materials


- >Effect on temperature gradients in melting furnace.
- >Availability of raw materials
 - On-time delivery
 - Chemical consistency

Growing demand for solar energy applications.

- >Trend towards using more Green technologies
- >Glass compositions with unique properties

Optical Transmission in Glass

Growth Leadership Innovation

Solarization of glass

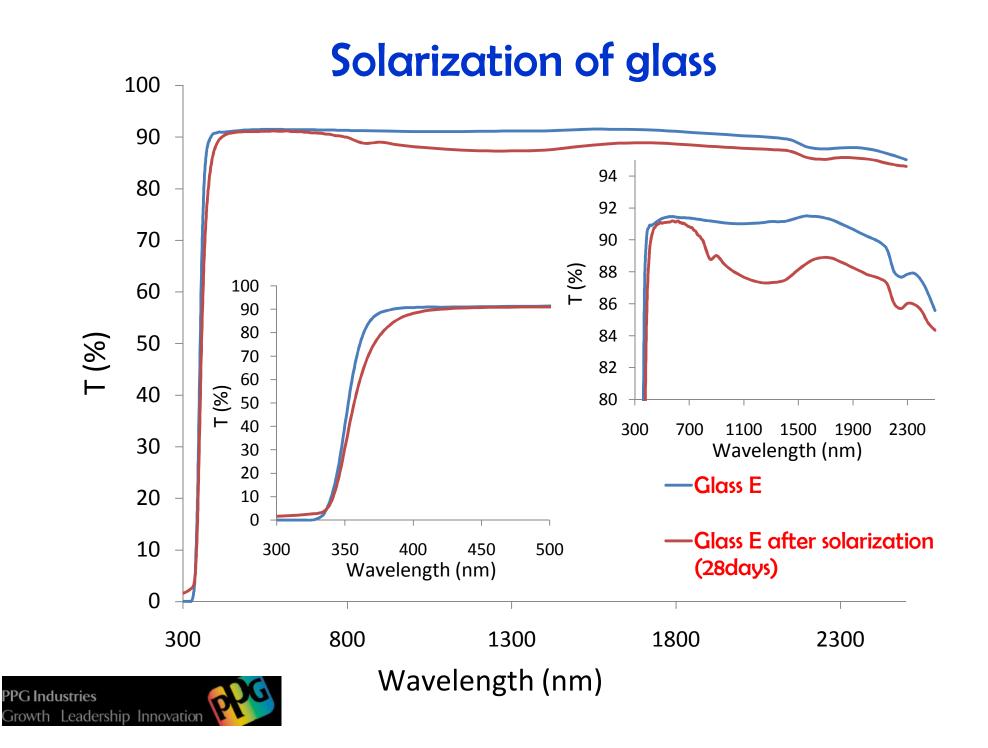
> Loss of light transmittance after prolonged exposure to sunlight

 \rightarrow number of photons available to the cell decreases

> Of great important for solar energy applications

Causes:

- Certain additives in the composition of the glass
- Non-bridging oxygen in the structure


Solarization Science

One species is oxidized (Loss of e⁻) $X^{+2} + hv \leftrightarrow X^{+3} + e^{-}$

Another species is reduced (Gain of e⁻) $Y^{+3} + e^- \leftrightarrow Y^{+2}$

A known solarization equation is: $4MnO + As_2O_5 \leftrightarrow 2Mn_2O_3 + As_2O_3$

Chemical Durability

An important attribute for outdoor applications

Surface corrosion (due to water induced ion-exchange)

Challenges:

- Improve resistance to water/moisture attack
- > Withstand large temperature variations
- > Withstand large humidity variations
- > Corrosion resistance in other chemical environments.

High Strength Glass

> Maintain pristine glass surface.

>Avoid surface flaws.

Surface strengthening methods

Thermal tempering

Chemical tempering.

Trend towards using thinner glass, lighter weight but strength cannot be compromised

Will Rogers Airport Location: Oklahoma City, OK

Environmental Stewardship

GE Healthcare Technologies Location: Waukesha, WI

Comply with Green Engineering manufacturing process.

> Air emissions. CO_2 , NO_x , SO_x , etc.

Water emissions.

Employee health and safety. Dust, noise, heat exposure.

Glass with ENERGY STAR solar energy performance attributes

High efficiency buildings and houses to lower operating costs for lighting, heating and air conditioning.

Summary

- Challenges to design variety of glass compositions to meet customers needs which requires compromises in performance and manufacturing while maintaining the cost.
- New glasses will continue to be made commercially over a large range of possible compositions and properties.
- Computer modeling will play a larger role in further development of compositions of glasses

