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Abstract

Based on heat capacity measurements, we propose a simple approach to determine the fictive temperature ðTfÞ of a
hyperquenched glass. The recovered enthalpy of heating is estimated, which equals the released amount of the excess

inherent structure energy stored in the glass. The hyperquenching is reached by means of the fiber spinning. We analyze

relationships between the released enthalpy, changes in the internal energy, and changes in the configurational en-

tropy. � 2002 Published by Elsevier Science B.V.

1. Introduction

The fictive temperature (Tf ) of a glass is the
temperature, at which the structure of an equilib-
rium liquid is frozen-in. Tf is important for the
glass science and technology because mechanical
and optical properties of a glass strongly depend
on thermal pre-history and fictive temperature [1].
The microstructure, relaxation behavior and
physical properties of hyperquenched (rapidly
cooled) glasses substantially differ from those of a
normally cooled glass [2–6], even if the substances
have the same chemical composition. The term
‘normally cooled glass’ refers here to ‘glass cooled
with a rate of 0.167 K/s (10 K/min)’. The cooling
rate is a deciding factor in determining Tf .
An approach for determining Tf of glass was

first proposed by Moynihan [7]. This approach is

used for the determination of Tf of slowly cooled
glass at low heating rates during the DSC mea-
surement. This approach is, however, not suitable
for the determination of Tf of a glass subjected to
hyperquenching (e.g. 106 K=s). This is because the
dependence of the heat capacity ðCpÞ of a fiber on
temperature is rather different from that of a bulk
glass at normal cooling (e.g., 0.167 K/s). To obtain
the same Cp curve of a fiber as that of a bulk glass,
a heating rate for calorimetric measurement is re-
quired to coincide with the rate of cooling of a
fiber at the stage of its forming. Then Tf can be
determined by using Moynihan’s approach [7].
Such a calorimetric measurement is not easy, be-
cause the heating time required is so short that it is
far beyond the experimental time window of a
conventional calorimeter. Furthermore, a com-
bined TN [8,9] – KWW [10,11] – AG [12] model
was successfully used to fit Cp data of fibers cooled
at a normal rate, but failed to fit those of rapidly
cooled fibers [13]. In terms of that model, Tf of
rapidly cooled fibers could not be determined
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accurately. Later on, a thermorheologically com-
plex (TC) model was proposed [14], which suc-
cessfully accounts for the structural relaxation and
determines Tf of a rapidly cooled fiber. However, it
is still not an easy task to use the TC model to
determine Tf due to the fact that three adjustable
and two dependent parameters are required for
applying that model. In this Letter, we report a
simple area-matching method for determining the
fictive temperature of a hyperquenched glass. We
also demonstrate thermodynamic grounds for the
derivation of this method.

2. Experimental

Hyperquenching (about 106 K=s) was achieved
by means of fiber spinning. Fibers were drawn and
hyperquenched from a basalt-like glass melt with
the composition: 49.3 SiO2, 15.6 Al2O3, 1.8 TiO2,
11.7 FeO, 10.4 CaO, 6.6 MgO, 3.9 Na2O, and 0.7
K2O (wt%) in the temperature range from 1473 to
1573 K by using a cascade technique. The average
diameter of the fibers is 3:5 lm.
The heat capacity of the fibers was measured by

using a differential scanning calorimeter (DSC)
Netzsch STA 449C. The fibers were placed into a
platinum crucible situated on a sample holder of
the DSC at room temperature. The fibers were
heated to T ¼ 1013 K and, afterwards cooled to
room temperature. Both the heating and cooling
rate, were 0.167 K/s. To determine the heat ca-
pacity ðCpÞ of the fibers, both the baseline (blank)
and the reference sample (Sapphire) were mea-
sured. The fibers were subjected to two runs of
upscans.

3. Results and discussion

Fig. 1 shows the heat capacity curves obtained
from the first and second upscans, which are de-
nominated Cp1 and Cp2, respectively. The Cp1 curve
reflects thermal and mechanical history of the fi-
bers determined by the forming process. The Cp2

curve reflects the thermal history of the fibers de-
termined by the cooling rate of 0.167 K/s. The
difference between Cp2 and Cp1 equals the enthalpy

released (per Kelvin per one gram): ðoDH=oT Þp ¼
Cp2 � Cp1, where DH stands for the enthalpy re-
leased from the fibers up to a temperature T, and
the subscript p means ambient pressure. DH is the
difference between the enthalpy H2 measured in the
second upscan, and the enthalpy H1 in the first
upscan: DH ¼ H2 � H1. In what follows, ðoDH=
oT Þp is written as dDH=dT . The inset of Fig. 1
shows dDH=dT as a function of temperature. The
total enthalpy released during the entire heating
process, DHtot, is calculated by the following
equation

DHtot ¼
Z Teq

Tc

dDH
dT

dT ¼
Z Teq

Tc

ðCp2 � Cp1ÞdT ; ð1Þ

where Tc is the onset temperature, at which the
release of enthalpy starts, and Teq is the tempera-
ture, at which Cp2 ¼ Cp1, as shown in Fig. 1. This
equation means that DHtot is the area between the
dDH=dT curve and the zero-line as shown in the
inset of Fig. 1 or the area between the Cp2 and Cp1
curves. After the first upscan, the enthalpy recov-
ers to the level typical of fibers cooled at 0.167 K/s,
DHtot. The recovered enthalpy can be treated as the
total excess internal energy ðDEtotÞ stored during
hyperquenching over that of the fibers cooled at

Fig. 1. The heat capacity curves of rapidly cooled glass fibers

(the composition is given in Section 2). Cp1 is the heat capacity

curve measured during the first upscan of DSC measurements

and Cp2 is that measured during the second upscan. The inset
shows the rate of energy release from the fibers as a function of

temperature. Tc stands for the temperature, at which the release
of enthalpy starts, and Teq is the temperature, at which Cp2 ¼
Cp1.
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0.167 K/s. A reason for this is that the melt is in-
compressible under ambient pressure, so that the
pressure–volume work can be neglected, which
means that the relation DHtot � DEtot. The hatched
area in the inset of Fig. 1 represents DEtot as well.
DE=dT is considered as the rate of release of the
excess energy from the fibers, because it indicates
the amount of energy released from 1-g fibers by
raising one Kelvin.
The heat capacities of the fibers measured at the

second upscan and that of the first one merge at
the temperature Teq, at which the melt returns to
internal equilibrium, i.e. Cp2 ¼ Cp1 (see Fig. 1).
Therefore, the change of the Helmholtz energy
(dA) due to a temperature increment (dT) should
be minimized. At T > Teq, we have the relation

dA ¼ dE � TdS ¼ 0; ð2Þ
where dE and dS are the increments of internal
energy and entropy induced by a temperature in-
crement dT. According to [15,16], dE ¼ dEisþ
dEhar þ dEanh, where dEis is the increment of the
average inherent structure energy, and dEhar and
dEanh are the average harmonic and the anhar-
monic contributions to dE, respectively, due to
thermal excitations about the inherent structure.
dS in Eq. (2) originates from vibrational and
configurational contributions, dSv and dSc. The
increment of the average inherent structure energy
dEis is balanced by the increment of configura-
tional entropy, TdSc, i.e.

dEis ¼ TdSc ¼ ðCpl � CpgÞdT ; ð3Þ
where Cpl and Cpg are the liquid and glass heat
capacities. In contrast, the increments of the har-
monic and anharmonic energies are balanced by
that of the vibrational entropy.

DEis is the integral of the average inherent
structure energy of fibers from Tg to Tf . When the
fibers are subjected to hyperquenching, DEis is
frozen-in at Tf . It is expected that DEis should be
equal to the total enthalpy ðDHtotÞ released from
the fibers during the first upscan up to Teq, hence to
the total excess ðDEtotÞ, since the excess vibrational
enthalpy is not frozen at Tf during quenching.
Based on Eqs. (1) and (3) and the relations

DHtot � DEtot ¼ DEis, we have the following rela-
tion:

Z Teq

Tc

ðCp2 � Cp1ÞdT ¼
Z Tf

Tg

ðCpl � CpgÞdT : ð4Þ

The left-hand side of Eq. (4) can be obtained by
calculating the area covered by Cp2 and Cp1 curves
as shown in Fig. 2. This equation, together with
the relations DHtot � DEtot ¼ DEis, provides a
physical basis, on which the area A can match the
area B (see Fig. 2). The latter is represented by the
right-hand side of Eq. (4), while Tf is determined
by the right borderline of the area B.
The accuracy of determining Tf depends on the

Cpl and Cpg values. Cpl can be obtained directly
from the DSC measurements in the temperature
range between Teq and Tf . To obtain Cpg values
above Tg, the following equation is used which
describes the temperature dependence of Cpg [17]:

Cpg ¼ aþ bT þ c=T 2 þ d=T 0:5; ð5Þ
where a; b; c and d are constants. In this study,
a ¼ 0:56, b ¼ 0:00037, c ¼ �33342 and d ¼ 6:95,
which are obtained from a best fit of Eq. (5) to the
measured Cpg values. Thus, Tf can be estimated by
substituting Eq. (5) into Eq. (4) and using the
measured Cpl values. However, to resolve Eq. (4)
and, hence, to determine Tf , the simplest ways is to
find the right borderline by matching the areas A
and B as shown in Fig. 2. The lower borderline of
the area B is obtained by extrapolating the

Fig. 2. Determination of fictive temperature (Tf ) by using the
energy-matching method. The heating and cooling rates in DSC

measurements are 0.167 K/s.
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experimental Cpg with the help of Eq. (5). In this
manner, Tf of the fibers studied in this paper is
found to be 1155 K, i.e. Tf ¼ 1:23Tg.
A rough estimate of Tf is based on the Adam–

Gibbs assumption that Cpl � Cpg is constant [12].
Thus, Eq. (4) is turned into the expression DEtot ¼
ðTf � TgÞðCpl � CpgÞ, from which Tf can be calcu-
lated

Tf ¼ DEtot=ðCpl � CpgÞ þ Tg: ð6Þ
From Fig. 1 and Eq. (6), Tf is found to be 1135 K,
which is 20 K lower than the one calculated from
Eqs. (4) and (5). This means that Eq. (6) can be
used as an approximate alternative to determine Tf
of hyquenched glasses.
It should be mentioned that DEtot of the fibers is

calculated as the excess energy compared to that of
the glass cooled at 0.167 K/s. However, the max-
imum excess energy ðDEmaxÞ should be estimated
over that of a ‘ideal’ glass

DEmax ¼
Z Tf

TK

ðCpl � CpgÞdT ; ð7Þ

where TK is the Kauzmann temperature [18]. Be-
low Tk, the excess configurational entropy vanishes
for the ‘ideal glass’ [18,19]. In reality, it is impos-
sible to measure DEmax, because the corresponding
Cp curves should be measured at an extremely low
heating rate, which is not available within the ex-
perimental time window. But if DEmax were avail-
able, from it we would get the same Tf as that
obtained in the present work. Tf of the fibers de-
pends on the cooling rate used in fiber forming
only, not on the cooling rate of the fibers used for
the DSC downscan.
Fig. 3 is the high temperature region of Fig. 2. It

shows that besides Tf , Tg of the fibers relaxed with
the heating rate 0.167 K/s is found to be 941 K by
using the area-matching method proposed in this
letter. The so-obtained Tg value coincides with that
determined by the intersection point between the
extrapolated line of the Cpg curve (measured in the
second run) and the maximum tangent of the rapid
rising part of the Cp curve, as shown in Fig. 1. For
the latter method, the Cp curve obtained in the
second run should be used, since it reflects the
near-equilibrium conditions. As demonstrated in
Fig. 3, the way to find Tg of the glass cooled with a

cooling rate lying in the experimental time window
is identical to that proposed in [7].

Tf determined here is the average fictive tem-
perature of the fibers for the following reasons.
First, diameters of the fibers are not constant and
they are distributed in a certain range. Under
comparable drawing conditions, the higher is the
drawing speed, the thinner the fiber is, and the
higher the cooling rate is. Hence, the fibers with
different diameters have different fictive tempera-
tures. Second, there could be a small fictive tem-
perature gradient in the cross-section of the fibers.
This gradient increases with increasing diameter of
the fiber, because the time of heat transfer from the
fiber core to its surface increases with diameter of
the fiber.

4. Conclusions

A method is proposed to determine the fictive
temperature of a hyperquenched glass. The excess
energy stored in the glass due to hyperquenching is
determined from two rounds of DSC upscan. This
energy equals the increase in the average inherent
structure energy at heating from Tg to Tf , which is
accompanied by a change in the configurational
entropy. This correlation makes it possible to
match area A enclosed by Cp1 and Cp2 curves into

Fig. 3. The high temperature region of Fig. 2 which includes

the left borderline (the line for determining Tg) and the right
borderline (the line for determining Tf ). The way of placing the
left borderline was described in [3].
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the area B enclosed by Cpl and Cpg curves. In this
manner, the right borderline is found, which co-
incides with Tf .
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