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In the following, relaxation experiments on glass will be discussed.

Disclaimer:

As all lectures in this course, the manuscript may contain errors despite its careful 
preparation.

In general, no liability is assumed concerning any scientific or technical use of any lecture 
of this course. In particular, any experimental work inspired by these notes has to be in 
accordance with safety and other rules which are not given here. Any technical work such 
as production of goods which may be inspired by these notes has to be in accordance with 
safety and other rules which apply for manufacture and later use. These rules are not given 
here either. They may differ significantly from one location to another, as they do, for 
example, in case of fire-protection glazings.

Contact your local instructor for further information.     

Dr. Ulrich Fotheringham
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Dynamic testing via self-oscillations (at the eigenfrequency)

Example: Flexure pendulum, after Rötger, revitalised in the 1990s by Bark-Zollmann et al.

The flexure pendulum monitors 
self oscillations in a bending 
mode.
From the oscillation period, 
Young´s modulus is determined.
From the logarithmic decrement, 
relaxation time is determined.

The bifilar suspension 
counterbalances the weight at the 
bottom in order to prevent other 
restoring forces than those coming 
from bending the sample and its 
metal extension.
The metal extension works as 
“analogue amplifier” of the 
displacement signal.
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Analysis of the flexure pendulum
Starting point: Bending (of thin plates) and elongation are equivalent:

For thin plates, bending is equivalent to compression 
of one side and dilatation of the other side.

So the viscoelastic behaviour of both bending and elongation is determined by Young´s
modulus E and the extensional viscosity ηe. The extensional viscosity describes the 
creep of, e.g., a glass rod which is subject to continuous elongation.  

For incompressible*) Newtonian (η independent from deformation rate) fluids one can 

derive so that with one has

the first being Maxwell´s relaxation time and the latter measurable by the relaxometer.

*) Course approximation. In reality we do not have K = ∞ and should not neglect bulk viscoelasticity.
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Analysis of the flexure pendulum (continued)

In a first approach, 
one may treat the 
set-up of the flexure 
pendulum as an 
oscillating series of 
a simple Maxwell-
model representing 
the glass, an 2nd

spring representing 
the metal, and a 
load.
Of course, a more 
sophisticated glass 
model (Burger etc.) 
would be possible 
also.
If excited once, this 
system will carry out 
damped oscillations.

The last equations hold for small attenuations only.

The overall oscillation will have the same time dependence as εel,g.
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Analysis of the flexure pendulum (further continued)

If one introduces the logarithmic decrement
L as the attenuation after one oscillation:

and the eigenfrequency of the system
with metal only (no glass): , one gets:

Maxwell´s relaxation time: and
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Comparison of viscosity
measurements⇒ flexure
pendulum not reliable for
T < annealing point.

Copies from „Glastechn. Ber.“ with friendly permission of 
„Deutsche Glastechnische Gesellschaft“

Note: τ is independent from
geometry and therefore the same
for the flexure pendulum and its
linear representation.

For Eg, the result one would get
here would be valid for the linear 
representation only.
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Further experiments with the flexure pendulum
(Note again that more sophisticated models and data reductions
would be possible also.)

Note that many of these glasses have been replaced with so-called N-types in the meantime (no Pb, no As).
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Some exercises:

1. Consider 3-point bending with constant load. How is the relation of viscosity to the constant 
velocity at which the middle of the sample moves downward?

2. Consider the simple representation of the flexure pendulum. Does the eigenfrequency increase 
or decrease if the glass sample is removed and the metal strip is tested alone?

3. Cos(ωt) can be written as a linear combination of Exp(iωt) and Exp(-iωt). How?

4. Consider again the flexure pendulum. The time dependence is Exp(-t/10s)*Cos(2*Pi*10Hz*t). 
Calculate the logarithmic decrement.
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Dynamic testing via forced oscillations

Example: Torsional device, 
after de Bast and Gilard

An alternating angular momentum is applied which 
is caused by alternating current running through 
the coil in the permanent magnetic field. The 
relation between angular moment and current is 
known from calibration.
This angular momentum causes torsional stress*) 
in the sample. The resulting torsion is recorded via 
the course of a light beam which is reflected at the 
mirror fastened to the upper sample holder.
The size of the torsional angle as well as its phase 
shift to the angular momentum is recorded.
From this phase shift δ, the relaxation kinetics may 
be determined.

*) Note that in contrast to the flexure pendulum, we 
have pure shear here. Bulk viscoelasticity does not 
exist here and need not be neglected therefore.
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Analysis of the torsional device
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Results by de Bast and Gilard 1964
Soda-lime-glass with the composition: 72% SiO2,
14.5% Na2O + K2O, 12% CaO + MgO, 1.5% rest

Copies from „Glastechn. 
Ber.“ with friendly
permission of „Deutsche 
Glastechnische 
Gesellschaft“
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Forced oscillations / alternative to torsion: bending

First approach: oscillatory 3-point bending (preload plus oscillating load)

However: the problem of mixing shear and bulk viscoelasticity is back.

With typical values for glass, i.e. E = 60 GPa and ν = 0.2, and 

one arrives at about 80% of the elongation being due to shear and the remaining 20% 
being due to compression/dilatation.
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Forced oscillations / alternative to torsion: bending (continued)
Second approach: asymmetric 4-point bending I

ACerS-GOMD-Meeting, Greenville, May 16th-19th, 2006

Idea for implementation of shear mode in DMA
• Increase sample height 
Beside bending which is a composite mode consisting of shear and dilatation/compression (which 
will be called indirect shear and indirect dilatation/compression from here on), there is an additional 
direct shear which may be neglected for thin samples but not for thick samples.

• Asymmetric 4-point-bending

Analysis of asymmetric 4-point-bending:

• Size of bending part?

• Size of direct shear part?

• Size of indentation due to Hertzian pressing (of sample holder in sample)?

core of sample:
shall be subject to shear
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Forced oscillations / alternative to torsion: bending (continued)
Second approach: asymmetric 4-point bending II

ACerS-GOMD-Meeting, Greenville, May 16th-19th, 2006
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Balance of shear- and compression/dilatation-contributions

Optimum geometry under condition (a, b > 1.5c)
and for typical glass modules (E = 60GPa, ν = 0.2)
⇒ shear part = 87.7% 

Allowing also for handling issues & manufacturing
tolerances of sample holders ⇒
a = 10mm b = 12mm
c = 4mm h = 7mm,
shear part = 86%
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Forced oscillations / alternative to torsion: bending (continued)
Second approach: asymmetric 4-point bending III

ACerS-GOMD-Meeting, Greenville, May 16th-19th, 2006

Check of Analytical Optimization by Finite Element Simulation

Basic Assumption:

elongation total = elongation due to shear + elongation due to compression/dilatation
∝ 1/G ∝ 1/K

typical values from above: E = 60GPa, ν = 0.2 ⇔ G = 25GPa, K = 33.33 GPa

Now: make FE simulation with G = 25GPa, K = 33.33 GPa ⇒ elongation total
and with G = 25GPa, K = ∞ GPa ⇒ elongation due to shear

shear part = elongation due to shear / elongation total

Check of the geometry from above:

0.0087382/0.0106575=0.82 => shear part is only 82%

FE-analysis of a glass with E=60GPa, ν=0.2
⇔ G=25GPa, K=33.33GPa.
Elongation = 100µm ⇔ load = 9383N, i.e.
Elongation/load =0.0106575µm/N

10mm
12mm

4mm

4mm

FE-analysis of a glass with E=75GPa, ν=0.5
⇔ G=25GPa, K= ∞ .
Elongation = 100µm ⇔ load = 11444N, i.e.
Elongation/load =0.0087382µm/N

10mm
12mm

4mm

4mm

7mm 7mm

vertical
displacement

vertical
displacement
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Forced oscillations / alternative to torsion: bending (continued)
Second approach: asymmetric 4-point bending IV

ACerS-GOMD-Meeting, Greenville, May 16th-19th, 2006

Optimum geometry according to Finite Element Simulation

0.00790989/0.0091959=0.86 => shear part is 86%.

Almost homogeneous shear in the middle.

FE-analysis of a glass with E=60GPa, ν=0.2
⇔ G=25GPa, K=33.33GPa.
Elongation = 100µm ⇔ load = 10874.4N, i.e.
Elongation/load =0.0091959µm/N

8mm
16mm

4mm

FE-analysis of a glass with E=75GPa, ν=0.5
⇔ G=25GPa, K= ∞.
Elongation = 100µm ⇔ load = 12642.4N, i.e.
Elongation/load =0.00790989µm/N

8mm
16mm

4mm

6mm
6mm

4mm4mm

FE-analysis of a glass with E=60GPa, ν=0.2
⇔ G=25GPa, K=33.33GPa.
Elongation = 100µm ⇔ load = 10874.4N, i.e.
Elongation/load =0.0091959µm/N

vertical displacement vertical displacement

main stresses (plane stress simulation)
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Forced oscillations / alternative to torsion: bending (continued)
Second approach: asymmetric 4-point bending IV

ACerS-GOMD-Meeting, Greenville, May 16th-19th, 2006

Dynamic-Mechanical Analysis on Borofloat33 with an asymmetric four-point-bending load and the 
frequencies 1Hz (top curve), 1.8Hz, 3.3Hz, 6Hz (bottom curve)
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Measurement on Borofloat33
Parameters: static load 400N, dynamic load 200N 
dynamic elongation measured: 2µm
dynamic elongation calculated: direct shear 1.27µm + bending 2.16µm + indentation 0.78µm = 4.21µm
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Dynamic methods / general problem:
Measurement of sample or contact between sample and sampleholder?

Measurement on steel: if preload and 
oscillating load exceed certain values, the 
values found for Young´s modulus and the 
loss angle become realistic:
Better geometrical fit of sample and 
sampleholder; sample is “hammered” into 
the right shape.

preload

oscillating load
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Some exercises:

1. Consider forced oscillations dynamic testing. What is the formula for tan(δ) in case b=1?

2. Consider again forced oscillations dynamic testing. Assume that a single simple Maxwell-
model describes the shear viscoelasticity of glass well. At the temperature of the experiment, 
η=1012Pa·s holds. The shear modules is 25GPa. What is Maxwell´s relaxation time? Which 
values will be measured for tan(δ) by the de Bast and Gilard apparatus if the frequency is, 1st, 
1Hz, and, 2nd, 10Hz?

3. Consider b<1. By the de Bast and Gilard apparatus, you have measured tan(δ) as a function of 
ω. You make a plot Log(tan(δ)) vs. Log(ω). How can you obtain b from that?


