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Mechanical behavior of glass

Glasses are brittle materials: only recoverable strains, of the order of 0.1 %. 
There is no plastic deformation.
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Theoretical tensile strength

The theoretical tensile strength of glass, σt, corresponds to the stress needed to 
separate two atomic “planes”, when the attractive forces are at a maximum:
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(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)
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For a glass with an equilibrium interatomic spacing Ro, a Young’s modulus E 
and a surface energy γ, it can be shown that:

σt = (E γ / 4 Ro)1/2 

For example, for v-SiO2 (Ro=0.162 nm, E=72 GPa, γ=2.9 J/m2), one has:

σt = 18 GPa  ∼ E / 5

The actual experimental value (measured at 4 K, after flame polishing) was:

σt = 15 GPa
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Under normal practical conditions (at room temperature and without previous 
surface reconditioning), for v-SiO2, one measures only:

σt ∼ 100 MPa 

more than 100 times less than the theoretical prediction.

This large difference was attributed by Griffith (1920) to the occurrence of 
microscopic (or even nanoscopic, using today’s terminology) flaws (or cracks) at 
the surface of ordinary glass specimens, which act as stress concentrators, 
causing glass fracture at an applied stress σa << σt. Such flaws are usually the 
result of handling or abrasion.

Griffith’s model was based on a previous result of elasticity theory due to Inglis 
(1913), which yielded an expression for the maximum value of the concentrated 
tensile stress near the tip of an elliptical crack of major axis 2c and crack tip 
radius ρ:

σmax = 2 σa (c/ρ)1/2

Fracture will occur whenever σmax ≥ σt.     
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Typical example of an elliptical 
flaw, where the crack tip radius:

ρ = b2 / c

is not too small. 

However, for very sharp cracks 
(for which b/c << 1), their tip 
radii may reach atomic 
dimensions. For example, if ρ ∼
0.2 nm and c ∼ 1 µm, the stress 
concentration factor:

2 (c/ρ)1/2 = σmax / σa

will be ∼ 140 .

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)
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A combination of Griffith’s and Inglis’ theories eventually leads to the equation:

σt ∼ (4 E γ / ρ)1/2

Comparing this equation with the theoretical estimate of σt, one obtains the 
following estimate of the crack tip radius:

ρ ~ 16 Ro

In the case of uniaxial compression, Griffith’s model predicts that the theoretical 
compressive strength, σc, equals 8 times the tensile strength, for infinitely sharp 
cracks (b/c → 0).
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The mechanical strength of brittle materials like glass has a statistical nature, with 
varying populations of cracks from sample to sample (number and size), which 
account for the usual scattering in measured strength data. 

A statistical criterion derived by Weibull (Weibull statistics, similar but not equal 
to the normal gaussian distribution) is the most suitable in this case.

In 1957, Irwin introduced the stress intensity factor, K:

K = Y σa c1/2               (in Pa.m1/2, or Nm-3/2)

where Y is a shape factor; for surface flaws in a glass, Y ~ π1/2 and K ~ σa(πc)1/2.

K is, in fact, a measure of the stress intensity near the crack tip. Taking π1/2 ~ 2, 
Inglis’ equation becomes: 

σmax ~ K / ρ1/2   <=>     K ~ σmax ρ1/2  

indicating that, for a given applied stress and crack length 2c, a smaller tip radius 
leads to glass failure at a lower stress level.
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(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Typical shell-like shape of glass fracture. Next to the origin of the catastrophic 
failure, where the critical flaw was located, lies a shiny region called the mirror, which 
ends in a misty texture called the mist. The mist begins to form when the fracture front 
approaches its terminal velocity, usually ~ 60 % of the transverse acoustic velocity, vt ~ 
3 km/s. The rougher hackle region surrounding the mist represents the motion of the 
fracture front at terminal velocity, after which it decelerates, producing Wallner lines.   

The fractographic analysis 
of broken glass may yield 
very important information 
regarding the cause of the 
fracture.
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For glass specimens with pre-existing surface flaws (usually due to handling), fracture 
is controlled by crack propagation. When a critical stress level, the applied fracture 
stress, σa

fr, is reached for the largest flaw with proper orientation (called the critical 
flaw, of length 2ccr), Griffith’s criterion may be expressed as σa ≥ σa

fr = (Eγ/ccr)1/2, 
indicating catastrophic failure. 

However, if σa < σa
fr (for example, for a glass window under a static load), there will 

be no failure. Unless the glass part exhibits static fatigue, or delayed failure, which 
consists of slow crack growth, under a sub-critical, static applied stress, until the most 
severe crack reaches the length 2ccr and brittle fracture occurs.

Such phenomenon, in common silicate glasses, is usually attributed to stress corrosion 
at the crack tip, where strained bonds are broken, often by the combined action of 
stress and atmospheric humidity:

Si-O-Si + H2O = Si-OH + HO-Si

forming a gel-like region where the crack is able to propagate under sub-critical 
conditions. It thus becomes important to follow the velocity of crack propagation as a 
function of the stress intensity factor K, for the three possible independent modes of 
crack propagation.  
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