Optical and Photonic Glasses

Lecture 14:

Optical Properties Continued – Refraction of Light in Absorbing Materials

Professor Rui Almeida

International Materials Institute For New Functionality in Glass Lehigh University

Refraction of light in **absorbing materials**

From Maxwell's theory of electromagnetism, the dielectric permittivity of a material i is related to its magnetic permeability and the speed of light in the medium:

$$\mathbf{c}_{i} = (\varepsilon_{i} \ \boldsymbol{\mu}_{i})^{-1/2}$$

In non-magnetic media, where $\mu_i \sim \mu_o$ (vacuum value = $4\pi \cdot 10^{-7}$ Tm/A), one has:

$$n_i^2 = (c_o/c_i)^2 = \varepsilon_i \mu_i / \varepsilon_o \mu_o \sim \varepsilon_i / \varepsilon_o = \varepsilon_r$$

i.e., the relative dielectric permittivity (or dielectric "constant") equals the square of the refractive index, both functions of the radiation frequency. In a more general form, these are both *complex* variables and Maxwell's relation is written as:

$$n^*(\omega)^2 = \varepsilon_r^*(\omega)$$

Spring 2005

Lecture 14

For common silicate glass, e.g., $\varepsilon_r \sim 5-10$, but $n_D \sim 1.5$, $n_D^2 \sim 2.25 < \varepsilon_r$. The reason for this apparent failure of Maxwell's relation is the fact that the dielectric constant is normally measured at microwave frequencies (1 MHz), whereas the sodium D line ($\omega = 3.2 \times 10^{15} \text{ s}^{-1}$) lies in the much higher optical frequency domain, where only the electronic polarizability is excited, since only the electric field of light. In fact, for a material like Ge (which has only electronic polarizability), one has:

$$n_D = 4.0$$
 and $\epsilon_r = 16 = n_D^2$

in agreement with Maxwell's relation. In fact, from Lorentz-Lorenz relation:

[(n²-1)/(n²+2)] V_M = N_o
$$\alpha_t$$
 = N_o ($\alpha_e + \alpha_i + \alpha_o$) = $\sum_i x_i R_{M_i}$

Introducing the *absorption coefficient*, α and the dimentionless *extinction coefficient*, k, one has:

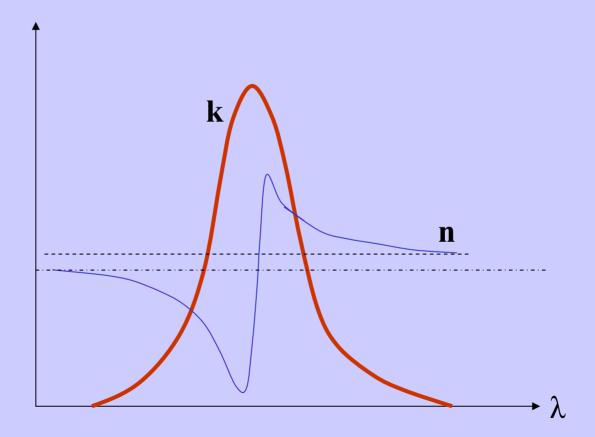
$$n^* = n - i k$$
 $\alpha = 4 \pi k / \lambda$ (in units of cm⁻¹)

Also:

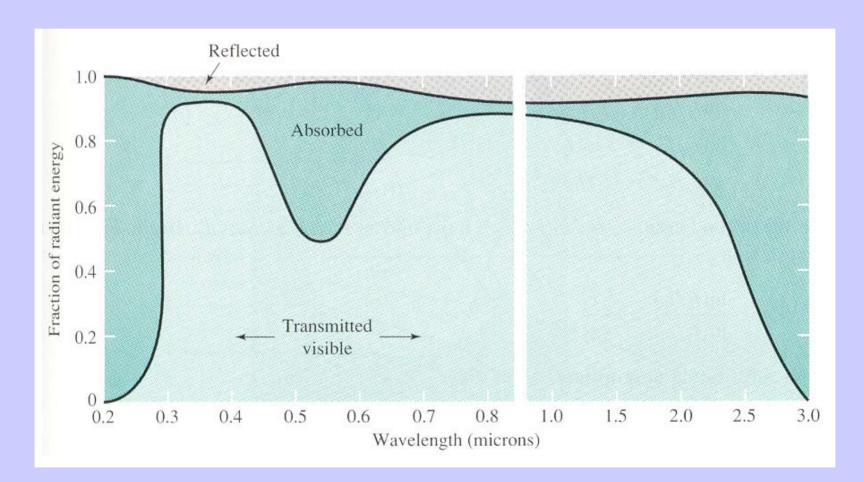
$$\varepsilon_r^* = \varepsilon_1 - i \varepsilon_2 \implies \varepsilon_1 = n^2 - k^2 \text{ and } \varepsilon_2 = 2 n k$$

Spring 2005

In the vicinity of an absorption band of the glass (where k > 0), the *anomalous dispersion* phenomenon is observed, corresponding to a non-smooth change (including a sudden increase) of n with increasing λ , followed by a normal dispersion region when k becomes zero again. The index becomes higher in this region than before the anomalous dispersion, due to the additional contribution of α_i .



Example of the relationship between transmitted, absorbed and reflected light (in the absence of scattering, Kirchoff's law states that T + A + R = 1), for the case of a silicate glass of blue color, due to the presence of Co²⁺ ions.



(Adapted from: The science and design of engineering materials, McGraw-Hill, 1999)

Lecture 14

For a glass with a "smooth" surface (whose average roughness is $< \lambda/10$), the only component of the reflected light is specular (incidence angle = reflection angle).

For *normal incidence* (incidence angle = 0° off-normal), the Fresnel equation for the reflectivity, R, of the glass surface, is written:

$$\mathbf{R} = \left| \begin{array}{c} (n^{*}-1) / (n^{*}+1) \right|^{2} = \left[(n-1)^{2} + k^{2} \right] / \left[(n+1)^{2} + k^{2} \right] \\ \end{array} \right|$$

For a glass parallel plate of thickness x and absorption coefficient α' ($\alpha' = 2.303 \alpha$), the transmittance is given by Beer's law:

$$T = I/I_0 = \exp(-\alpha' x)$$
 or $A = \log I_0/I = \alpha x$

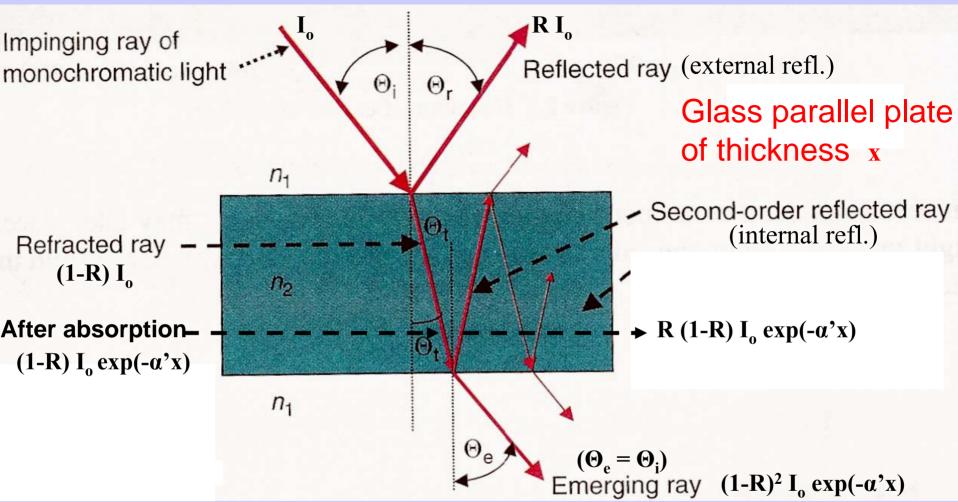
If $\alpha' = 1 \text{ cm}^{-1}$, then $\alpha = 0.434 \text{ cm}^{-1} = 4.34 \text{ dB/cm}$, sine 1 AU = 10 dB = 10% T.

If reflection is also taken into account, the transmittance can be computed based on the figure below.

Spring 2005

Lecture 14

(Adapted from: Introduction to DWDM Technology, S.V. Kartalopoulos, IEEE Press, 2000)

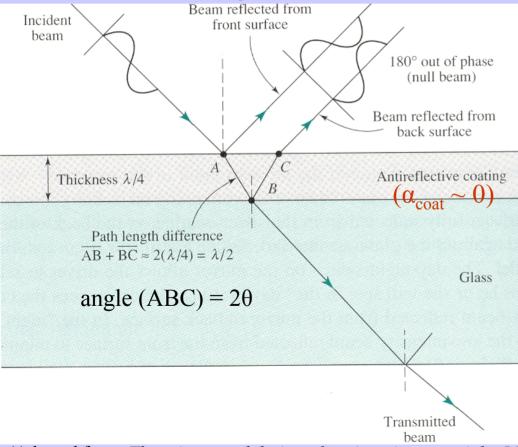


Therefore:

$$T = I / I_o = (1 - R)^2 \exp(-\alpha' x)$$

If $\alpha' \sim 0$, there are only reflection losses: $T = (1-R)^2 \sim 1-2R = 1-2(n-1)^2/(n+1)^2 \sim 92 \%$ for common silicate glass with $n \sim 1.5$ and for θ_i not higher than $\sim 45^\circ$. Spring 2005 Lecture 14 Rui M. Almeida

In applications like ophtalmic lenses, windows or telescopes, it is important to eliminate reflection losses, by means of anti-reflection coatings, based on destructive interference of the light reflected from the top and bottom surfaces of a film of thickness d and *index* n, lower than that of the glass. The difference in optical path length (the physical path length times the refractive index) between the *refracted* and *reflected* rays, taking into account a phase change of π (equivalent to an optical path difference of $\lambda/2$) for *external* reflection (light incident on the surface of a more dense medium), is given by:



 $\Delta d = 2nd \cos\theta = (m+1/2) \lambda$

for *destructive* interference (m=0,1,...). For normal incidence ($\theta = 0$) and m = 0:

 $2nd = \lambda/2 \iff d = \lambda/4n$

Note: for a film of *index higher than the* glass, constructive interference would occur for a film of the same thickness (a *quarter-wave reflective coating)*:

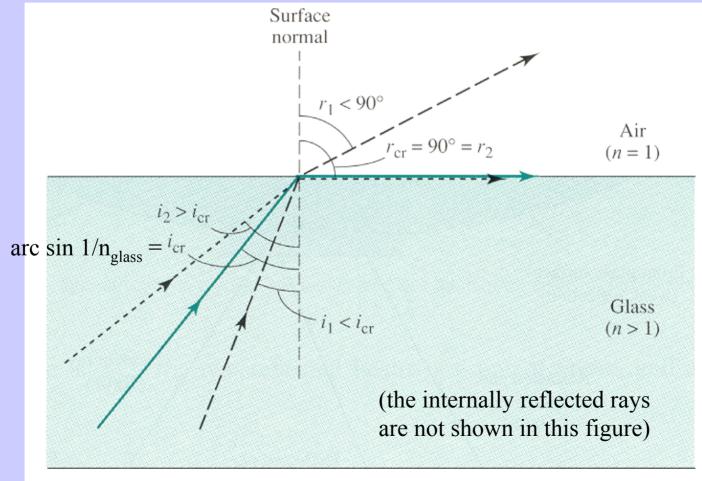
 $\Delta d=2nd \cos\theta -\lambda/2=m\lambda$ ($\theta=0$ and m=0)

(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999) Spring 2005

Lecture 14

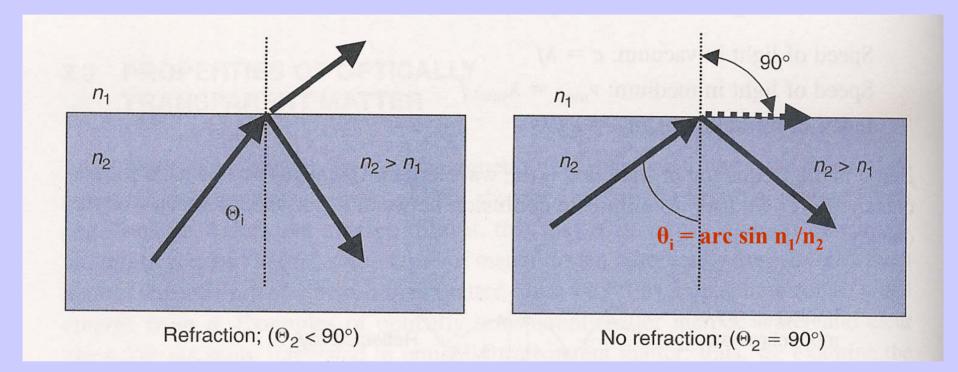
Total *internal* reflection

When light is incident on the surface of a less dense medium (of lower index) above a critical angle with the surface normal (given as arc sin 1/n, by Snell's law), total internal reflection occurs, the phenomenon on which guided wave optics and **fiberoptics** in particular are based.



(Adapted from: *The science and design of engineering materials*, J.P. Schaffer et al., McGraw-Hill, 1999) Spring 2005 Lecture 14 Rui M. Almeida

Critical angle for total internal reflection



(Adapted from: Introduction to DWDM Technology, S.V. Kartalopoulos, IEEE Press, 2000)

Spring 2005

Lecture 14

The dependence of the glass reflectivity on both **n** and **k** enables the calculation of these **fundamental optical constants** from reflectivity spectra at near-normal incidence, by means of *Kramers-Kronig analysis*.

If r^* is the complex amplitude of the reflected light wave, this is a function of the phase difference between the incident and reflected waves (given as a phase angle φ):

 $r^* = |r| \exp(i\phi)$

Also, since the reflectivity $R = |r|^2$, one will have, for normal incidence:

 $n = (1-R) / (1+R-2R^{1/2}\cos\varphi)$ and $k = 2R^{1/2}\sin\varphi / (1+R-2R^{1/2}\cos\varphi)$

If R is spectroscopically measured as a function of the frequency ω , ϕ is then obtained, for each frequency value ω_i , from the Kramers-Kronig relation:

$$\varphi(\omega_i) = (2\omega_i/\pi) \int_0^\infty \{\ln[R(\omega)]^{1/2} - \ln[R(\omega_i)]^{1/2}\} d\omega / (\omega_i^2 - \omega^2)$$

The values of n and k as a function of ω allow, e.g., the calculation of the reflection spectra R(ω), also as a function of the incidence angle off-normal, θ , by means of the Fresnel equations for oblique incidence.

Spring 2005

For a common silicate glass at a visible frequency ($n \sim 1.5$ and $\alpha \sim 0$), R(θ) will have the approximate shape shown below, for external reflection of light. Note that the effect of oblique incidence only becomes important for θ higher than ~ 45° and that external reflection is only total at grazing incidence.

