Glass in energy

Glass basics II

MAT 498 Lehigh University

Rui M. Almeida

Glass in Energy

Spring 2012

Glass properties (cont.)

- viscosity
- thermal expansion
- annealing and tempering
- optical properties
- transport properties (diffusion, electrical conductivity, chemical durability)

Glass viscosity

Viscosity (η)

Viscosity, η , is the property which more directly controls glass-forming ability from the melt.

It can be shown that both the rates of nucleation and crystal growth from the melt depend on η :

rate of homogeneous nucleation: $I_v \propto \exp(-\Delta G_m/RT) \sim \propto 1/\eta$ (with $\Delta G_m \sim E_\eta$)

rate of crystal growth (m/s):
$$u \propto \Delta T/\eta$$

where $\Delta T = T_m - T$ is the degree of supercooling.

Also, the time needed for *fining* of the melt (removal of gas bubbles), a function of the rate of rise of bubbles to the surface of the molten glass, is given, for spherical bubbles of radius r in a melt of density ρ , by Stokes law:

$$v = 2/9 \text{ g } \text{r}^2 \rho/\eta$$

Rui M. Almeida

Glass in Energy

For a *newtonian* fluid, the viscosity is constant at a given temperature and it is defined by Newton's law as:

 $\eta = \tau / (d\epsilon/dt)$ (in units of Pa.s)

when a shear stress τ causes a rate of shear d ϵ/dt (ϵ being the deformation).

When the viscosity of a fluid is not constant at a given temperature, but rather depends on the rate of shear, the fluid is said to be *non-newtonian*.

If the viscosity at a given temperature increases with the shear rate, the fluid is said to be *dilatant* (which is the case of mayonnaise, for example). If the viscosity decreases with the shear rate, rather, the fluid is said to be *pseudoplastic* (which is the case of ketchup, as another well known example).

Newtonian and non-newtonian behaviors

Glass-forming melts at high shear stresses may approach a pseudoplastic (also called *shear thinning*) behavior. This may become important during high speed pressing and blowing operations, as typically carried out in IS machines.

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Rui M. Almeida

Glass in Energy

Given the importance of viscosity in glass technology, there are five standard viscosity reference *points* (or temperature *ranges*):

- melting (fining)	point	\rightarrow	T @ $\eta = 10$ Pa.s
- working (forming)	"	\rightarrow	T @ $\eta = 10^3$ "
- softening (Littleton)	"	\rightarrow	T @ $\eta = 10^{6.65}$ "
- annealing (T _g)	"	\rightarrow	T @ $\eta = 10^{12}$ "
- strain	"	\rightarrow	T @ $\eta = 10^{13.5}$ "

Stress release from the glass occurs in a matter of minutes at the annealing temperature and in a matter of hours at the strain point.

The viscosity of molten glass is a strong function of **temperature**, rapidly decreasing when the temperature increases according to Arrhenius eq.:

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Rui M. Almeida

Glass in Energy

Spring 2012

The variation of molten glass viscosity with temperature often follows the Arrhenius law:

$$\eta = \eta_{o} \exp(E_{\eta}/RT)$$
 $(T \rightarrow \infty \implies \eta \rightarrow \eta_{o})$

where E_{η} is the activation energy for viscous flow (in kJ/mol), independent of temperature and of the order of the activation energy for diffusion across the liquid matrix/nucleous interface, ΔG_m , in the expression of homogeneous nucleation rate, I_v .

Arrhenius behavior is the case especially with melts with strong glassforming ability (SiO₂, GeO₂, BeF₂, ...), sometimes referred as *strong* liquids.

On the other hand, strongly modified melts, or melts with weak glass-forming ability, like most other glass-forming halides (ZrF_4 -based compositions, $ZnCl_2$, ...), usually exhibit an activation energy for viscous flow which strongly decreases with increasing temperature, due to an accelerated depolymerization of the melt structure. Such melts are sometimes referred as *fragile* liquids, in a terminology due to C.A. Angell (1986).

Rui M. Almeida

Variation of log(viscosity) versus T_g/T for "strong" and "fragile" liquids. (After Angell [19]. Reproduced with permission of Elsevier Science Publishers.) (Adapted from: *Fundamentals of inorganic glasses*, A.K. Varshneya, Academic Press, 1994)

The temperature dependence of the viscosity of *fragile* liquids cannot be described by the Arrhenius equation and more complex expressions become necessary, such as the Vogel-Fulcher-Tammann equation, valid for $T > T_o$ (T_o , adjustable parameter ~ T_g):

$$\eta = \eta_o \exp[Q/(T-T_o)]$$
 (Q independent of T)

Rui M. Almeida

Viscosi	ty standard	référence poin	ts (°C)
Glass	Softening	Annealing (Tg)	Strain
$v-SiO_2$	1600	1100	1000
Bonosilicat	820	565	520
Soda-line	700	510	470

Effect of temperature and composition on glass viscosity

Rui M. Almeida

Glass in Energy

Q.

Thermal expansion of glass

Physical origin of thermal expansion: increase in *amplitude* of the thermal vibrations of the atoms/ions, as a result of their anharmonicity:

(a) anharmonic oscillator:

$$V = \frac{1}{2} k (r - r_o)^2 + \dots$$

 $E_v = (v + \frac{1}{2})hv + \dots$

(b) *harmonic* oscillator:

 $V = \frac{1}{2} k r^2$ (Hooke's law)

$$E_v = (v + \frac{1}{2}) hv$$

Rui M. Almeida

For a given temperature, T:

linear thermal expansion coefficient of a sample of length **l**:

 $\alpha_{\rm T} = (1/\mathbf{I}) \, d\mathbf{I}/d\mathbf{T} \qquad \text{(in units of } \mathbf{K}^{-1}\text{)}$ $\alpha_{\rm T} = 1/3 \, \alpha_{\rm T}^{\rm vol} = 1/3 \, (1/\mathrm{V}) \, (\partial \mathrm{V}/\partial \mathrm{T})_{\rm P}$

Over a small temperature range, the average value:

 $\alpha_{\rm T} = (1/\mathbf{l}_{\rm av}) \,\Delta \mathbf{l} / \Delta \mathbf{T} \sim (1/\mathbf{l}_{\rm o}) \,\Delta \mathbf{l} / \Delta \mathbf{T} = (1/\mathbf{l}_{\rm o}) \,(\mathbf{l} - \mathbf{l}_{\rm o}) / (\mathbf{T} - \mathbf{T}_{\rm o})$

For a glass, the changes of α_T

with T are similar to those of c_p :

Rui M. Almeida

(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999)

Rui M. Almeida

Coefficient of (linear)	thermal expansion	$\alpha_{ m th}$ for selected	materials. α_{T}	x 10-6 °C	<u>C</u>-1
Coefficient of (linear)	thermal expansion	$lpha_{\mathrm{th}}$ for selected	materials. α_{T}	X 10-0 00	1

Material	$\alpha_{\rm th}(imes 10^{-6} \ ^{\circ}{ m C}^{-1})$	Material	$\alpha_{\rm th}(imes 10^{-6} \ {}^\circ\mathrm{C}^{-1})$
Metals		Ceramics	
Al	25	Al ₂ O ₃	6.5-8.8
Cr	6	BeO	9
Со	12	MgO	13.5
Cu	17	SiC	4.8
Au	14	Si	2.6
Fe	12	Si_3N_4 (α phase)	2.9
Pb	29	Si_3N_4 (β phase)	2.3
Mg	25	Spinel (MgAl ₂ O ₄)	7.6
Мо	5	Soda-lime-silicate glass	9.2 (used in light bulbs)
Ni	13	Borosilicate glass	4.6 (used with Kovar)
Pt	9	Silica (96% pure)	0.8
К	83	Silica (99.9% pure)	0.55
Ag	19	Polymers (unoriented)	
Na	70	Polyethylene	100-200
Та	7	Polypropylene	58-100
Sn	20	Polystyrene	60-80
Ti	9	Polytetrafluoroethylene	100
W	5	Polycarbonate	66
Zn	35	Nylon (6/6)	80
1020 steel	12	Cellulose acetate	80-160
Stainless steel	17	Polymethylmethacrylate	50-90
3003 aluminum alloy	23.2	Ероху	45-90
2017 aluminum alloy	22.9	Phenolformaldehyde	60-80
ASTM B 152 copper alloy	17	Silicones	20-40
Brass	18		
Pb-Sn solder (50-50)	24		
AZ31B magnesium alloy	26		
ASTM B160 nickel alloy	- 12		
Commercial titanium	8.8		
Kovar (Fe-Ni-Co)	5		

(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999)

Rui M. Almeida

Typical thermal expansion curve for a glass, with the relative expansion, $\Delta l/l_o$, plotted as a function of temperature. The *thermal expansion* coefficient is the slope of the curve. The slope increases steeply above T_g , hence this is a *good method to determine* the glass T_g . The *dilatometric softening temperature*, T_d , corresponds to $\eta \sim 10^9$ - 10^{10} Pa.s, a viscosity much higher than that of the Littleton softening point ($10^{6.65}$ Pa.s).

Rui M. Almeida

Glass in Energy

Spring 2012 17

Thermal expansion coefficient of alkali silicate glasses:

increases from $Li \rightarrow Na \rightarrow K \dots$

 T_g decreases from Li \rightarrow Na \rightarrow K ...

For SiO₂-R₂O silicate glasses of increasing R₂O content, α_T increases and T_g decreases, such that one has:

 $\alpha_T T_g \sim constant$

or $\alpha_T T_g^2 \sim \text{constant}$

(Adapted from: *Fundamentals of inorganic glasses*, A.K. Varshneya, Academic Press, 1994)

Rui M. Almeida

Thermal Expansion Coefficients of Some Commercial

Glasses

		Expansion coefficient 10 ⁻⁷ /°C		
Glass Code	Туре	0–300°C	Set point—25°C	
GE 001	Potash soda lead	93.5	101	
GE 008	Soda lime	93.5	105	
GE 012	Potash soda lead	89.5	97	
Corning 1720	Aluminosilicate	42	52	
GE 706	Borosilicate	48	55	
GE 725	Borosilicate	35.5	39	
Corning 7720	Borosilicate	36	43	
Corning 7740	Borosilicate	32.5	35	
Corning 7913	96% silica	7.5	5.5	
Corning 7940	Fused silica	5.5	3.5	

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

|--|

Sudden cooling of a glass surface below the average specimen temperature, T_a , causes the development of tensile stresses which can lead to glass fracture by *thermal shock*. The glass interior, where the temperature is above T_a and is maximum at the center, will be under compression. The thermal shock resistance is strongly dependent on the value of α_T and v-SiO₂ ($\alpha_T \sim 5 \times 10^{-7} \text{ K}^{-1}$) has an exceptional resistance to thermal shock.

Thermal shock resistance:

 $\Delta T_{fr} \propto \sigma_a^{~fr} \, / \, E \; \alpha_T$

Rui M. Almeida

Annealing and tempering

While the annealing of glasses at $T \le T_g$ is performed to promote the release of residual thermal stresses created during casting (generally into a mold at a temperature lower than the melt), the mechanical resistance of the final glass may be increased by means of thermal or chemical tempering treatments.

The most common thermal tempering (performed, e.g., on different types of glass windows) starts with a sudden cooling of the surface of a glass part (initially near its Littleton softening point), by blowing cold air over it, through a nozzle. The surface quickly solidifies (under a moderate tensile stress), while the internal layers are still hot and viscous, but these subsequently contract upon cooling, solidifying under tension, which is then compensated by a residual *surface compression*.

The surface compression is the key point, since catastrophic propagation of glass surface flaws will only occur under a tensile stress after the surface compression has been offset by the applied tensile stress, corresponding to a *strengthening* of the *glass*. (Remember that, according to Griffith's theory, $\sigma_c = 8 \sigma_t$).

Thermal tempering is not possible for very thin glass sheets, for glasses with very small α_T (e.g. high-silica glasses), or for complex shapes such as bottles, which are all cases where *chemical tempering* may be utilized. Q.

Rui M. Almeida

Optical properties of glass

Example of the relationship between transmitted, absorbed and reflected light (in the absence of scattering, Kirchoff's law states that T + A + R = 1), for the case of a silicate glass of blue color, due to the presence of Co²⁺ ions.

(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999)

Reflection and **refraction**

(absorption neglected at this stage)

(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999)

Rui M. Almeida

Refraction in terms of geometrical optics: Snell's law

	Refractive indices of	Refractive indices of materials. $n \ge 1$		
$[(n^2-1)/(n^2+2)] V_M = N_0 \alpha_t$	Material $\lambda = 589.3$ nm	Average refractive index		
	Air	1.00		
	Water	1.33		
	Ice	1.31		
$v_{ m vac}$	Ceramics			
n =	Diamond	2.43		
$v_{\rm mat}$	Al ₂ O ₃	1.76		
	SiO ₂	1.544, 1.553		
	MgO	1.74		
	NaCl	1.55		
	BaTiO ₃	2.40		
	TiO ₂	2.71		
	Pyrex glass	1.47		
$v_{i} = \lambda_{i} = \sin i$	Soda-lime-silicate glass	1.51		
$n = \frac{\sigma v_{ac}}{\sigma v_{ac}} = \frac{\sigma v_{ac}}{\sigma v_{ac}} = \frac{\sigma v_{ac}}{\sigma v_{ac}}$	Lead-silicate glass	2.50		
v_{mat} λ_{mat} sin r	Calcite	1.658, 1.486		
mat mat SIII /	Semiconductors			
	Ge	4.00		
	Si	3.49		
	GaAs	3.63		
	Polymers			
e n cin i	Epoxy	1.58		
$\frac{v_1}{v_2} = \frac{n_2}{n_1} = \frac{\sin t}{\sin r}$	Nylon 6.6	1.53		
	Polycarbonate	1.60		
	Polystyrene	1.59		
	High-density polyethylene	1.54		
	Polypropylene	1.49		
	Polytetrafluoroethylene	1.30-1.40		
	Polyvinylchloride	1.54		

(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999)

Rui M. Almeida

Glass in Energy

Poly(ethylene terephthalate)

1.57

Refractive indices of some glasses

Glass composition:	n _D
From orthoclase (KAlSi ₃ O ₈)	1.51
From albite (NaAlSi ₃ O ₈)	1.49
From nepheline syenite	1.50
Silica glass, SiO ₂	1.458
Vycor glass (96% SiO ₂)	1.458
Soda-lime-silica glass	1.51-1.52
Borosilicate (Pyrex) glass	1.47
Dense flint optical glasses	1.6-1.7
Arsenic trisulfide glass, As ₂ S ₃ Tellurite glasses (TeO ₂ -based)	2.66 1.8 - 2.3

(Adapted from: Introduction to Ceramics, W.D. Kingery et al., John Wiley, 1976)

Refractive index dispersion in typical glasses:

(Adapted from: Introduction to Ceramics, W.D. Kingery et al., John Wiley, 1976)

Rui M. Almeida

Glass in Energy

Spring 2012 27

(Adapted from: Introduction to Ceramics, W.D. Kingery et al., John Wiley, 1976)

Rui M. Almeida

Glass in Energy

Spring 2012 28

For a glass with a "smooth" surface (whose average roughness is $< \lambda/10$), the only component of the reflected light is specular (incidence angle = reflection angle).

For *normal incidence* (incidence angle = 0° off-normal), the Fresnel equation for the reflectivity, R, of the glass surface, is written:

$$\mathbf{R} = \left[\frac{(n^{-1})}{(n^{+1})} \right]^2 = \left[\frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} \right] \quad (k \sim 0 = \mathbf{R} \sim \frac{(n-1)^2 + k^2}{(n-1)^2 + k^2} \right]$$

For a glass parallel plate of thickness x and absorption coefficient α' ($\alpha' = 2.303 \alpha$), the transmittance is given by Beer's law:

$$T = I/I_o = \exp(-\alpha' x)$$
 or $A = \log I_o/I = \alpha x$

If reflection is also taken into account, the transmittance is approximately given by:

$$T = I / I_0 = (1 - R)^2 \exp(-\alpha' x)$$

If $\alpha' \sim 0$, there are only reflection losses: T = $(1-R)^2 \sim 1-2R = 1-2(n-1)^2/(n+1)^2 \sim 92\%$ for common silicate glass (n~ 1.5) and for incidence angle below ~ 45° (from normal).

In applications like ophtalmic lenses, windows or telescopes, it is important to eliminate reflection losses, by means of *anti-reflection coatings*, based on destructive *interference* of the light reflected from the top and bottom surfaces of a film of thickness d and *index* n, *lower than* that of *the glass*.

Rui M. Almeida

Glass in Energy

Spring 2012 30

Transport properties of glass

Diffusion

The diffusion, or transport of atoms or ions through the vitreous network controls glass properties such as the chemical durability (mass transport) and the electrical (ionic) conductivity (charge transport).

Diffusion refers to the mixing between two or more species in the presence of a concentration (or chemical potential) gradient between them, until chemical equilibrium is achieved. *Fick's First Law* states that the flux J_i , of species i, which crosses the unit area cross section in the perpendicular direction x, per unit time, is proportional to the gradient of its concentration, c_i , in the same direction:

$$\mathbf{J}_{i} = -\mathbf{D}_{i} \left(\partial \mathbf{c}_{i} / \partial \mathbf{x} \right)_{\mathrm{T}}$$

the proportionality constant, D_i , is called the *diffusion coefficient* (m²/s), which varies exponentially with the temperature (T), according to Arrhenius equation:

$$D = D_o \exp(-Q/RT)$$

 D_o being the pre-exponential factor and Q being the activation energy for diffusion in kJ/mol. A diffusion process occurring in the absence of a concentration gradient is called auto-diffusion.

The rate of change of the concentration with time at a given distance into the sample is given by *Fick's Second Law*:

$$(\partial c/\partial t)_{T} = D (\partial^{2}c/\partial x^{2})_{T}$$

Rui M. Almeida

If the diffusing species is a gas, such as hydrogen or helium and if one face of a glass plate of thickness L is exposed to a known gas pressure, while the other remains at zero pressure, a steady state flow can be reached for which:

$$J = \text{-} D \Delta c/L$$

where $\Delta c/L$ represents the slope of the linear concentration gradient from the front to the rear surface. If the gas concentration is expressed by *Henry's Law*, c = SP (where S is the solubility and P is the gas pressure) and a vacuum is maintained on the inside face of the glass sample, then:

JL/P = K = DS

where **K** is the gas *permeability* through the glass plate, whose knowledge allows the calculation of the steady-state flow rate of gas through a known area of a sample of known thickness, when exposed to a known pressure of gas.

Electrical conductivity

Charge transport in a glass may be due to the motions of ions or electrons. While special glasses, like the chalcogenides or glasses with appreciable concentrations of certain transition metal oxides, exhibit electronic conductivity and semiconducting behavior, most conventional oxide and halide glasses are ionic conductors, behaving as reasonably good electrical insulators. In particular, common silicate glasses exhibit ionic conductivity due to alkali cations like Na⁺ or Li⁺, while fluoride glasses are usually anionic conductors by means of F⁻ motions.

The electrical conductivity, σ , is by definition the current density (or charge flux), J, by unit applied electric field, ε :

 $\sigma = J/E = n e \mu$ (J = nev; $\mu = v/E$)

where n is the concentration of charged particles (m⁻³), e is their charge (Coulomb) and μ is the drift mobility (m²/(V.s).

If the conductivity of a glass is the result of field-induced diffusion of a single ionic species (e.g. Na⁺ in window glass), the electrical conductivity and the diffusion coefficient are related by *Nernst-Einstein* equation:

$$\sigma = Z^2 F^2 D c / f RT$$

where Z is the ionic charge (+1 for Na⁺), F is the Faraday constant (96500 Coulomb/equivalent-gram), c is the concentration of the diffusing species (mols of ions/m³ of glass), R is the gas constant and f is an empirical adjustment factor ~ 0.2 - 1.0 for most glasses.

Rui M. Almeida

Electrical conductivity

The **ionic** conductivity varies exponentially with temperature according to the Arrhenius equation:

$$\sigma = \sigma_0 \exp(-E_a / RT)$$

where the activation energy for electrical conductivity, E_a , has a value similar to the activation energy for diffusion of the conducting species (e.g. Na⁺), i.e. $E_a \sim Q$.

Both activation energies may be calculated from a plot of log σ , or log D, as a function of 1/T. For example:

Electrical conductivity

Divalent ions like Ca^{2+} have very low mobility and they will contribute very little to the overall ionic conductivity of a glass in the presence of alkali ions, in particular the smaller ones (Na⁺ and Li⁺). In fact, the addition of Ca^{2+} to a sodium silicate glass will block the diffusion of the Na⁺ ions and will decrease the electrical conductivity of the glass, as shown by the Fulda experiment. In a sodium silicate glass where Na⁺ is the only species with significant ionic mobility, Na⁺ undergoes *self-diffusion*.

It is interesting to notice that the sodium diffusion coefficients in sodium silicate glasses are found to increase with increasing Na⁺ concentration, primarily due to a simultaneous decrease in the activation energy for diffusion, Q, with little variation in D_0 .

Chemical durability and weathering

Most non-silicate glasses are quite susceptible to dissolution in water. Even glasses which exhibit excellent chemical durability in water may be readily dissolved in highly acidic or highly basic solutions. Silicate glasses, e.g., despite their excellent resistance to neutral water, are readily atacked by HF.

If a glass contains alkali ions like Na⁺, ion-exchange occurs between the alkali and H_3O^+ ions from the surrounding liquid. Congruent dissolution may also occur in the presence of a liquid, when this directly attacks the glass network bonds. Layers of reaction products may also deposit on the surface of the glass, which may influence the subsequent rate of dissolution.

Since the ion-exchange process is diffusion-controlled, it is found that, for glasses containing alkali cations like Li⁺ or Na⁺, the depth of H penetration into the glass increases with the square root of time $(x \propto \sqrt{Dt})$ during exposure to the H-containing liquid. On the other hand, congruent dissolution, which may occur simultaneously with ion-exchange, occurs at a constant rate and will thus dominate the dissolution process at longer times. If one characterizes the glass chemical durability by a weight loss measurement, the initial rate of weight loss varies with the square root of time, changing to a linear rate of loss with time, at longer times.

In general, silicate glasses dissolve rapidly at pH levels higher than 9 or less than 1, when the attack starts to occur directly on the Si-O bonds and the rate of congruent dissolution becomes so high that ion-excannge becomes unimportant.

Chemical durability and weathering

In neutral solutions, additions of alumina or CaO increase the chemical durability of alkali silicate glasses, while zirconia usually improves durability at high pH values. In fact, the addition of an alkaline earth modifier like Ca²⁺ to an alkali silicate glass blocks the motions of the alkali ions, decreasing their diffusivity and improving the chemical durability.

Phase separation may also have a significant effect on the chemical durability of a glass. A typical example are the alkali borosilicate glasses, which owe their very good chemical durability to the fact that they consist of a dispersion of isolated alkali borate droplets within a continuous silica-rich phase, such that the durability of the bulk glass is determined by that of the silica-rich phase, which is usually quite high.

Chemical durability and weathering

Weathering refers to the interaction of a glass with water vapor, while *chemical durability* usually refers to the interaction with liquids.

When a glass surface is exposed to water vapor, the water concentration is insufficient for congruent dissolution, but ion exchange can still occur. In the absence of liquid, the ions leached from the glass remain on its surface, where they can react with the surrounding atmosphere. Namely, hydroxides of Na and Ca can form at the surface of common silicate glass:

 $Na^+ + 2 H_2O = H_3O^+ + NaOH$

These hydroxides then react with carbon dioxide from the atmosphere to form carbonates:

$$2 \operatorname{NaOH} + \operatorname{CO}_2 = \operatorname{Na}_2 \operatorname{CO}_3 + \operatorname{H}_2 \operatorname{O}$$

or, in the case of Ca:

 $Ca(OH)_2 + CO_2 = CaCO_3 + H_2O$

These carbonates precipitate as discrete particles on the glass surface, which scatter light and give glass a frosted appearance and cannot be easily removed without permanent damage to the glass surface.

Reduction in alkali concentration by treatment with SO_2 (dealkalization), as done for glass bottles, not only leads to mechanical strengthening due to surface compression upon cooling, but also improves weathering resistance. In the case of float glass, when exposed to water vapor, the tin-rich surface exhibits much reduced weathering phenomena compared to the tin-poor surface.

Rui M. Almeida

References:

http://www.lehigh.edu/imi/OptoGlassCourse.htm (Optical and Photonic Glasses, Rui M. Almeida, 2005)

A.K. Varshneya, **Fundamentals of Inorganic Glasses**, 2nd Edition, Society of Glass Technology (Sheffield, UK, 2006).

James E. Shelby, **Introduction to Glass Science and Technology**, 2nd Edition, The Royal Society of Chemistry (Cambridge, U.K., 2005).

T.S. Izumitani, **Optical Glass**, American Institute of Physics Translation Series (New York, 1986).

J.P. Schaffer et al., **The science and design of engineering materials**, McGraw-Hill (New York, 1999).

R. Tilley, **Colour and the optical properties of materials**, 2nd Edition, John Wiley (New York, 2011).

Rui M. Almeida