Microstructured optical fibres:

Opportunities & challenges

Philip Russell

Max Planck Institute for the science of light

Erlangen, Germany

Topics

• Introduction to PCF

- Compound glass PCF
- Hybrid two-glass structures
- Optomechanicalstructures
- Twisted fibres
- Final comments

Elounda, Crete: Summer 1995

Birks et al in Photonic Band Gap Materials (Editor: C.M. Soukoulis) Kluwer 1996

Optimistic subtitle: "Photonic bandgaps by the km"

Max Planck Institute for the science of light

Some of the latest structures

J. Lightwave Tech. 24, 4729-4749 (2006)

new ways to guide light

Max Planck Institute for the science of light

State-of-the-art hollow-core PCF (2004)

Max Planck Institute for the science of light

Typical attenuation spectrum

Roberts et al, Opt. Exp. **13** (236-244) 2005

Loss peaks caused by surface states

Humbert et al, Opt. Exp. 12 1477 (2004)

fraction of light in glass changes dramatically with wavelength of the light

Max Planck Institute for the science of light

Low loss mid IR silica fibre

Yu et al: Opt. Exp. 20, 11153 (2012)

Guidance mechanisms: summary

- Total internal reflection
 - core index must be higher than cladding index
- Photonic band gap (PBG)
 - core index not important (can be lower than cladding)
 - core resonance must coincide with PBG in the cladding
 - losses as low as 1 dB/km
- Low leakage structures (ARROW** and kagome)
 - core light anti-resonant with cladding states, i.e., not phase-matched
 - some light leaks into cladding, typical losses 1 dB/m

** anti-resonant reflection optical waveguides

MPL

Topics

• Introduction to PCF

- Compound glass PCF
- Hybrid two-glass structures
- Optomechanicalstructures
- Twisted fibres
- Final comments

Why bother with compound glasses?

Manning et al: Opt. Mat. Exp. **2**, 140–152 (2012)

- Higher nonlinearity & refractive index ullet
- Extended window of transparency (e.g., into the mid-IR) \bullet
- Higher rare-earth solubility \bullet

	Silica SiO ₂	Chalcogenide AsGeSeTe	Tellurite TeO ₂ -based	Lead-silicate SF6
Glass transition temperature (°C)	1175	245	300	423
Refractive index	1.46	2.9	1.9-2.3	1.81
n ₂ (m²/W)	10 ⁻²⁰	10 ⁻¹⁷	10 ⁻¹⁹	10 ⁻¹⁹
Window of transparency (µm)	0.2-2.3	4-11	0.4-5	0.3-2.5

Max Planck Institute

Viscosity control is key to fibre drawing

- hollow core soft-glass PCF difficult because of:
 - steep viscosity gradient with temperature
 - reactivity or thermal instability

When things go wrong

Jiang et al: Opt. Exp. **19**, 15438 (2011)

Serious structural distortion in hollow-core SF6 PCF

Max Planck Institute for the science of light

When things go better

Jiang et al: Opt. Exp. **19**, 15438 (2011)

Transmission losses

Jiang et al: Opt. Exp. **19**, 15438 (2011)

Finite element modelling

Jiang et al: Opt. Exp. **19**, 15438 (2011)

Max Planck Institute for the science of light

Finite element modelling

Jiang et al: Opt. Exp. **19**, 15438 (2011)

- 20 cm length
- launch LP₁₁ mode

- Introduction to PCF
- Compound glass PCF
- Hybrid two-glass structures
- Optomechanicalstructures
- Twisted fibres
- Final comments

Hybrid glass-glass structures

- Pressure-assisted melt-filling technique:
 - low-melting-point glasses in a fused silica host matrix
 - strand diameters as narrow as 200 nm

Hybrid glass-glass structures

- Pressure-assisted melt-filling technique:
 - low-melting-point glasses in a fused silica host matrix
 - strand diameters as narrow as 200 nm
- Overcomes viscosity and process incompatibility of silica and non-silicate optical glasses
- Unique waveguiding devices with:
 - high core-cladding index-contrast
 - high optical non-linearity
 - wide transparency windows into the mid infrared
- Very small quantities of filling material required:
 - protected from environmental contact
 - ultra-high cooling rates possible
 - difficult-to-handle or reactive optical glasses can be used

Hybrid chalcogenide-silica fibre

Granzow et al: Opt. Lett. **36**, 2432–2434 (2011)

chalcogenide glass $Ga_4Ge_{21}Sb_{10}S_{65}$ (unsuitable for fibre drawing)

 index contrast reversed: photonic bandgap guidance

silica host

Max Planck Institute for the science of light

Transmission spectrum

Modes in chalcogenide strands

Granzow et al: Opt. Lett. **36**, 2432–2434 (2011)

Supercontinuum in Ga₄Ge₂₁Sb₁₀S₆₅ core

Granzow et al: Opt. Exp. 19, 21003 (2011)

- Ga₄Ge₂₁Sb₁₀S₆₅
 - diameter 1.6 µm

- length ~10 mm
- **ZDW 1500 nm**
- **Er fibre laser**
 - 1550 nm
 - 100 MHz

Numerical modelling: As₂S₃ strand

zero dispersion wavelength

Granzow et al: Opt. Exp. 19, 21003 (2011)

Max Planck Institute for the science of light

- Introduction to PCF
- Compound glass PCF
- Hybrid two-glass structures
- Optomechanical structures
- Twisted fibres
- Final comments

Stripe waveguide in fibre: 1974

Dual nano-web fibre

Butsch et al: Phys. Rev. Lett. **108**, 093903 (2012) Conti et al., Phys. Rev. A **86**, 013830 (2012)

- two suspended air-clad silica nanowebs
- long optomechanical interaction length

Optomechanical self-channelling

Butsch et al: Phys. Rev. Lett. **108**, 093903 (2012) Conti et al., Phys. Rev. A **86**, 013830 (2012)

- optomechanical nonlinear refractive index
- formation of self-channeled guided beams
- highly non-local nonlinearity

for the science of light

Guiding dual-nanoweb fiber

- fabricated by stack-and-draw technique
- web thickness 440 nm, spacing 550 nm, width 22 μm
- slightly convex thickness profile

Max Planck Institute for the science of light

Interferometric set-up

Butsch et al: Phys. Rev. Lett. **109**, 183904 (2012)

Max Plane for the sci

Measurements at different pressures

Butsch et al: Frontiers in Optics, paper FM3H.2 (2012)

Dual nanoweb structure

- Higher optomechanical nonlinearity possible by thinner and longer webs
- Dynamic nonlinearities > 20,000 times greater than Kerr effect
- Gas stiffness & damping affect resonances
- Q factor enhancement in evacuated fiber
- Possible applications as a highly sensitive static or dynamic fiber pressure sensor
- Ultimate goal: self-channelling

Topics

- Introduction to PCF
- Compound glass PCF
- Hybrid two-glass structures
- Optomechanical structures
- Twisted fibres
- Final comments

Solid core PCF (1995)

Knight et al., Opt. Lett. **21**, 1547 (1996)

Max Planck Institute for the science of light

Twisted solid-core PCF

• twist rate

 $\alpha = 2\pi / L$

- pitch *L* is much greater than inter-hole spacing
- angle between hollow channels and axis increases with radius

Wong et al: Science **337**, 446 (2012)

Twist rate versus resonant wavelength

Wong et al: Science **337**, 446 (2012)

Twisted solid-core PCF

$$\Rightarrow n_{\rm SM} \rho^2 \alpha = l \frac{\lambda}{2\pi}$$
mode order

Consistent mode orders

Wong et al: Science **337**, 446 (2012)

Twisted fibres

- Leaky ring-shaped resonances form in the twisted cladding of helical photonic crystal fibre
- Complex filtering characteristics possible by varying the pitch along the fibre
- Twisting during fibre drawing allows extremely long lengths to be produced

Topics

- Introduction to PCF
- Compound glass PCF
- Hybrid two-glass structures
- Optomechanical structures
- Twisted fibres
- Final comments

Final comments

Requirements

- Hollow core PCF made from "soft" glasses needs more development:
 - high power delivery of IR radiation, e.g. 10 microns, not yet available
 - losses can be orders of magnitude lower than the bulk glass
- New techniques for producing nano-scale glass fibre structures
 - flow-focusing?
 - new kinds of extrusion?
- Optical glasses with other properties, e.g., magnetooptical, UV transparent, are highly desirable

Applications

- Lab-in fibre:
 - (photo)chemistry using PCF as a microfluidic channel that guides light
- Optomechanics
 - hollow core PCF for laser manipulation of particles & cells
 - intense nonlinear optoacoustic modulation driven by light
- Nonlinear optical devices
 - exquisite control of ultrafast nonlinear optics in gases (e.g., tunable deep UV light)
 - supercontinuum generation from compact pump lasers
- Nanowire plasmonics
 - devices based on metallic nanowire arrays

MPL

