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The Carbon Energy Problem…

 Consider the 

world’s energy 

use…
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Leading to Increasing World CO2 Emissions…
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That lead to Global Warming…
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That Suggests Alternative Zero-Carbon Energy 

Harvesting Systems…such as solar…
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Solar source ~ 6,600 TW/year

World use ~ 16 TW/year
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Photovoltaic…

Thermal…
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…and wind…
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However….

 Solar-based energy systems are temporal

 and…Energy demand is temporal

 Energy storage systems are necessary to 

balance the mismatch between supply and 

demand

 Mechanical – pressure, m g, hydro…

 Electrical – capacitors…

 Chemical – batteries…
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Further…

 Portable energy is also required for….

 Transportation

 Mechanical work

 Electronics

 Health care

 Food production

 …
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Portable energy for transportation…

 Must be developed

 Will be more expensive than oil

 Must be used as efficiently as possible

 Consider the demand…

 ~8,000 cars and ~150 miles of paved roads in 1900

 ~600,000,000 passenger cars in 2008

 ~1,200,000,000 passenger cars expected in 2030

 Will half of all cars be hybrids in 2030?

 600,000,000+ battery systems?
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Portable energy for personal electronics…

 ~6 Billion people, ~4 billion cell 

phones in 2008

 In 30 countries, cell phone use

now exceeds 100%

 Italy ~ 122%

 Sweden ~ 110%

 Consider the demand…

 ~9 Billion people in 2050?

 ~10 Billion cell phones?

 ~10+ Billion Lithium batteries?
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The paradigm has changed….
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Thus…Portable Energy Sources are Critical 

Technologies
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But….what’s the problem…?
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Anodes

Cathodes

J.M. Tarascon, M. Armand, Nature, 414, 15 (2001) 359

Anode and Cathode Combinations Determine the 

Voltage and Energy Density of Lithium Batteries
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Where we are… Where we want to go…



Just for comparison…
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10 fold increase 

in energy density!

Where we are… Where we can go…
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LixC6 Li1-xCoO2
Li+ conducting 

electrolyte
Anode:      LixC6 xLi+ + xe- + C6

Cathode:    Li1-xCoO2 + xLi+ + xe- LiCoO2

C6 is a common anode 

material for Li-ion batteries

The maximum capacity of 

graphite (LiC6): 410Ah/kg

1339 C/g

Good cycle-life

But, Low capacity for new 

portable devices

Li-ion Batteries

Li+

Li+

Li+

e-

e-

e-

e-

e-

e-

e-
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New Lithium Battery Designs - Anode

 Higher energy storage in the anode

 Move closer to unit activity of metallic lithium

 Yet maintain safety

 Stability in contact with electrolyte and other battery 

materials

 Preference is to manufacture Lithium batteries in 

the discharged state

 Does not require handling high activity material

 Increases shelf life of battery before selling

 Reduces time and cost of manufacture

 Increases safety during storage and shipment

 Increases the lifetime of the battery for the consumer
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New Lithium Battery Designs - Anode

 Need a cheap material that will store lithium 

safely near unit activity that will charge and 

discharge Li reversibly, ~4000x (~10 years), 

near 0 V (vs. Li/Li+) at a density near that of Li

 To obtain 50% loss after ~ 10 years, ~4000 

cycles, reversibility at each cycle must be ? % 

reversible?
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Carbon as a Negative Insertion Electrode

 Lix Cn xLi+ xe- + Cn 

 x ~ 1, n ~ 6 

 C has high e-conductivity

 Cheap

 Plentiful

 Good voltage

 However, relatively low 

capacity, small x
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M. Winter, J. Besenhard, M. Spahr, P. Novak, Adv. Mater.  10(1998) 10
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New Lithium Battery Designs - Anode

 Metallic alloy anodes

 Metal + xLi  LixM

 x can be greater than 1

 Li4.4Si, for example

 However, large capacity 

fade

 Associated with large 

volume change

 +400% from Si to Li4.4Si
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A.J. Appleby, et al. J Power Sources 163(2007)1003
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New Lithium Battery Designs - Anode

 Nano-structured Si

 To increase surface area

 Increase reaction rate

 Decrease volume change on intercalation
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Y. Cui et al., Nature Nanotechnology 2007
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Nano-Structured Si anode

 Nano-structured Si 

does improve 

cyclability

 But..cycle fade is still 

strong

 1000s of cycles is a 

design goal 
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A.J. Appleby, et al. J Power Sources 163(2007)1003

1 mAhr/g = 1Ahr/kg
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Opportunities for Improved Lithium Batteries

 Cycle life, the number of times the Lithium battery can be 

discharged and recharged, is often only a few hundred to 

at most a thousand

 This leads to lifetimes of only a year or two

 Unbroken paradigm of good cyclability and low Lithium 

capacity (activity) at the anode

 Li metal has the highest activity, but the poorest cyclability

 Li-C has low activity, Li6C, but among the highest cyclability

 New materials are needed that can help break this 

paradigm of low capacity (activity), but good cyclability
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New Anodes for Lithium Batteries

 How can we store more Li at near unit activity, but 

safely, reversibly, and cheaply?

 Li readily alloys with many metals

 Li-Si, Li-Ge, Li-Al…

 However, large volume changes often occur (> 100 %) with 

these alloy reactions

 Anode cracks and crumbles after only a few cycles

 Can we create these Li-alloys inside a buffering 

material that will accommodate the volume changes 

leading to improved cyclability, but maintain Lithium 

activity, hence high voltage and energy density?
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New Anodes for Lithium Batteries

 Needed: An Anode Material which:
 Conducts Li+ ions rapidly to insure fast electrode 

kinetics and charge transfer

 Has significant fractions of alloying metal, such as Si 
or Ge, to store large amounts of Li to insure high Li 
activity and cell voltage

 Has a relatively low mechanical modulus that will 
accommodate volume changes during alloying 
reactions

 Is chemically stable under highly reducing conditions 
of the Lithium battery anode

 Relatively cheap, plentiful, and easily manufactured
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Glasses as High Capacity, High Voltage, High 

Cyclability, Safe Lithium Battery Anodes

 Idea: Li+ ion conducting chalcogenide glass anodes

 Chalcogenide glasses are among the highest of all Li+ ion conductors 

known, 10-3 ( cm)-1 at 25oC

 Chalcogenide glasses can be readily made using Si and Ge over a 

continuous range of compositions, ~50 at% to ~ 10 at%

 Chalcogenide glasses are significantly “softer” than oxide glasses, 

MPa moduli versus GPa, for example

 Sulfide glasses while commonly unstable under oxidizing conditions 

can be quite stable under reducing conditions

 Due to their ease of preparation, glasses can be inexpensively 

prepared, especially in powder form, using mechanical milling where 

no melting is required
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Inorganic Glasses as Hosts for Active Materials

 Sulfide glasses show 

significantly higher Li+ ion 

conductivity over their 

oxide counterparts

 Li2O + P2O5 has RT ~ 10-9

(S/cm)

 Li2S + P2S5 has RT ~ 10-3

(S/cm)

 Perhaps sulfide glasses 

might serve as high 

capacity anodes?
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S.W. Martin JACerS 74(1991)1767
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Comparative behavior of pure Ge
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Comparative behavior of GeO2 Glass
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GeS2 Glass Li anodes
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Ge-based Active Material Anodes

 GeS2 glass 

based anode 

has best 

reversibility
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Kim and Martin et al. Electrochimica Acta  53(2008) 5058
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Plausible mechanism of Glassy Anodes

 Reaction steps:

x/2GeS2 + 2xLi  xLi2S + x/2Ge

Ge + nLi  LinGe
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Components of Li-ion Batteries
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Batteries 

Cathodes Electrolytes Anodes

Li metal

Li-ion materials 

LiCoO2

LiNiO2

LiMnO2

Liquid SolidPolymer

High ionic conductivity Low ionic conductivityMedium ionic conductivity

.

.

.

.

.

.
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Li-Battery Anode and Cathode Combinations
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Anode

Cathode

J.M. Tarascon, M. Armand, Nature, 414, 15 (2001) 359
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Lithium Dendrite Formation in Lithium Batteries

 Non-epitaxial deposition of lithium after each cycle 

leads to the growth of uneven “fingers” or dendrites

 Internal connection results in short circuits in the battery

M. Dolle et al. Electrochemical and Solid-State Letters, 5(12) (2002)A286

Li metal
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Components of Li-ion Battery
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Batteries 

Cathodes Electrolytes Anodes

Li metal

Li-ion materials 

LiCoO2

LiNiO2

LiMnO2

Liquid Solid (oxides)Polymer

High ionic conductivity Low ionic conductivityMedium ionic conductivity

.

.

.

.

.

.



Advantages of Solid State Thin Film Batteries
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High power and energy densities

(Li metal as an anode material) 

Various sizes (thickness and area to optimized capacity) 

Wide operating temperatures (between -40 oC and 150 oC)

(Low temperature dependence)

No liquid components
(No leakage problem)

High cyclability

(Reversability over many charge and discharge cycles)



LiPON (Li3PO4 sputtered in N2 ) Thin Film Battery
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1~2 m LiPON

100 nm Cu

100 nm Au or Pt

1 m LixCoO2

2~3 m Li metal

 Long term stability with lithium metal

 Relatively low ionic conductivity, ~ 10-6 (S/cm) at 25 oC

 Good stability in air

 Easy preparation and characterization

J.B. Bates, N. J. Dudney, et al. Solid State Ionics 135(2000)33



Materials Selection
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RF sputtering
(Ar atmosphere)

Sulfide materials show high ionic conductivity

B2S3, SiS2, Li2S, GeS2, P2S5....

nLi2S + GeS2

(n = 1, 2 and 3)

Lithium thio-germanate thin film electrolytes
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25 oC

n = 1 1Li2S + GeS2 0.5Li2S + 0.5GeS2 Li2GeS3

n = 2 2Li2S + GeS2 0.67Li2S + 0.33GeS2 Li4GeS4

n = 3 3Li2S + GeS2 0.75Li2S + 0.25GeS2 Li6GeS5



Experimental Methods
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 Conclusions and Future Work

 Experimental Methods

 Results and Discussion

 Introduction

Surface and structural characterization by XRD, IR and Raman

 Compositional characterization by XPS

Ionic conductivity measurement by impedance spectroscopy



RF Magnetron Sputtering System

swmartin@iastate.edu US - China Winter School on New Functionalities in Glass 40

Load lock

gate

Glove box

Sputtering

Head

Ar gas cylinder

RF generating

system and

power supplier

Sputtering

Chamber

Pressure controller panel



RF Magnetron Sputtering System
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Sputtering main chamberAnti chamberSide view of main chamber and anti chamber during sputtering
Gas System

Ar gas

(99.9999%)

Turbo pump

Sputter head

Roughing pump



Target Preparation
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 Ge + 2S  GeS2 – Sealed SiO2 tube

 Commercial source for Li2S – (Alfa, 99.9%)
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25 oC Time(h)

Temp(oC)

1 
o C

/m
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15h 23h 

Air quench
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/m
in

15h 23h 

Air quench



Target Preparation
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 nLi2S+GeS2 (n=1, 2 and 3) 950 oC for 15 min.

 Pressed using 2” stainless 

steel die set

 Melted target materials were  

quenched onto a brass plate

 Quenched materials were milled  

using Spex milling to make powder

 Loaded with 30,000 lbs overnight



Target Preparation
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Target, 

nLi2S+GeS2

(n=1, 2 and 3)

2 Copper plate

Targets are attached onto a copper plate by silver paste

Silver paste

2 

Target

Copper plate



Sputtering Conditions
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nLi2S+GeS2 target with Ar atmosphere

• The pressure for sputtering : 30mtorr

• Sputtering power : 50 W

• Ar gas atmosphere (N2 in future work)



Results and Discussion
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 Conclusions and Future Work

 Experimental Methods

 Introduction

 Results and Discussion

 Surface and structural characterization by SEM, Raman and IR

 Compositional characterization by XPS

 Ionic conductivity measurement by impedance spectroscopy



The Outline of the Characterizations
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Materials

Structure Composition
Ionic

Conductivity

SEM XRD Raman IR XPS
Impedance 

spectroscopy

Starting 

materials
Li2S

GeS2

  

Targets
Li2GeS3

Li4GeS4

Li6GeS5

   

Thin 

films
Li2GeS3

Li4GeS4

Li6GeS5

    



Surface Morphology and Thickness of the Thin Film
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Li4GeS4 thin film in Ar atmosphere

 No cracks or pits that increase contact 

resistance between 

electrodes and electrolytes

120 nm

1.35 m

Si wafer

Ni adhesion layer

Thin film

 Sputtering time :  4 hours

 Sputtering rate : 1.35 m/4h ≈ 6 nm/min.

 Sputtering power : 50 W@ 30 mtorr

Si substrate

Thin film 

Ni adhesion layer



XRD Data of the Starting Materials
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XRD Data of the Target Materials
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 (a) Li6GeS5 target – polycrystalline

 (b) Li4GeS4 target – polycrystalline

 (c) Li2GeS3 target – amorphous

(3Li2S + GeS2)

(2Li2S + GeS2)

(Li2S + GeS2)



XRD Data of the Target Materials
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 (a) Li6GeS5 target – polycrystalline

 (b) Li4GeS4 target – polycrystalline

 (c) Li2GeS3 target – amorphous
 (a) Li4GeS4 target – polycrystalline

 (b) Li4GeS4 literature data – crystalline

R. Komiya et al., Solid State Ionics 140 (2001) 83.
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Raman Spectra of the Starting Materials
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~ 340 cm-1

assigned to Ge-S-Ge 

(Bridging Sulfur)

~ 375 cm-1

assigned to Li+S-
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Raman Spectra of the Target Materials
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~ 340 cm-1 assigned to 

Ge-S-Ge 

(Bridging Sulfur)

~ 375 cm-1 assigned 

to  Li+S-

~ 415 cm-1

assigned to Ge-S-

(Non-bridging 

sulfur)

Li2GeS3 target

(amorphous)

Li4GeS4 target

(polycrystalline)

Li6GeS5 target

(polycrystalline)
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Raman Spectra of the Thin Films
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~ 340 cm-1 assigned to 

Ge-S-Ge 

(Bridging Sulfur)

~ 375 cm-1 assigned to 

Li+S-

~ 415 cm-1 assigned to

Ge-S-

(Non-bridging sulfur)

~ 460 cm-1 assigned to

Ge-S-

(Non-bridging sulfur)

(Amorphous)
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Li6GeS5 thin film

Li4GeS4 thin film

Li2GeS3 thin film

Raman



Raman Spectra of the Starting, Target Materials, Thin Films
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XPS Compositional Data of the Starting Materials
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Li2S

Li1s

(0.028)

S2p

(0.717)

C1s

(0.314)

O1s

(0.733)

Comments

(Sensitivity factor)

44.7 22.9 11.7 20.7 Raw material

66.1 33.9 - - Ignore C, and O 

66.7 33.3 0.0 0.0 Theoretical values

GeS2

Ge2p3

(5.400)

S2p

(0.717)

C1s

(0.314)

O1s

(0.733)

Comments

(Sensitivity factor)

34.2 59.2 6.6 0.0 Raw material

36.7 63.3 - 0.0 Ignore C

33.3 66.7 0.0 0.0 Theoretical values

Li S

SGe

Sulfur in Li2S

Sulfur in GeS2

(Sulfide)

(Bridging sulfur)

(± 3 % error)



Deconvoluted S2p Core Peaks of the Starting Materials

swmartin@iastate.edu US - China Winter School on New Functionalities in Glass 57

 Deconvoluted S2p core peaks for Li2S

 One doublet

 100 % Sulfide

 Deconvoluted S2p core peaks for GeS2

 One doublet

 100 % Bridging sulfur



XPS Compositional Data of the Target Materials
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Li 1s

(0.028)

Ge 2p3

(5.400)

S 2p

(0.717)

C 1s

(0.314)

O 1s

(0.733)

Comments

(Sensitivity factor)

26.1 16.4 41.3 10.3 5.9 (± 3 % )   As prepared

31.1 19.5 49.4 - - Ignore C and O

33.3 16.7 50.0 0 0 Theoretical values

Li 1s

(0.028)

Ge 2p3

(5.400)

S 2p

(0.717)

C 1s

(0.314)

O 1s

(0.733)

Comments

(Sensitivity factor)

36.5 9.6 40.2 8.6 5.1 As prepared

42.3 11.1 46.6 - - Ignore C and O

44.4 11.2 44.4 0.0 0.0 Theoretical values

Li 1s

(0.028)

Ge 2p3

(5.400)

S 2p

(0.717)

C 1s

(0.314)

O 1s

(0.733)

Comments

(Sensitivity factor)

40.4 8.0 37.2 6.5 7.9 As prepared

47.2 9.3 43.5 - - Ignore C and O

50.0 8.3 41.7 0 0 Theoretical values

Li2GeS3

target

(n=1)

Li4GeS4

target

(n=2)

Li6GeS5

target

(n=3)



XPS S2p Core Peaks of the Li2GeS3 Target Material
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Binding energy (eV)

C
P

S

Eb S2p3/2-1/2 Experimental ratio Theoretical ratio

160.7 – 161.9 NBS (64.5 %) NBS (66.7 %)

161.7 – 162.9 BS (35.5 %) BS (33.3 %)
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XPS S2p Core Peaks of the Li4GeS4 Target Material
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Eb S2p3/2-1/2 Experimental ratio Theoretical ratio

161.0 – 162.2 NBS (92.2 %) NBS (100 %)

161.9 – 163.1 BS (7.8 %) BS (0 %)

Binding energy (eV)
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XPS S2p Core Peaks of the Li6GeS5 Target Material

Eb S2p3/2-1/2 Experimental ratio Theoretical ratio

161.1 – 162.3 NBS (~100 %) NBS (80 %)

0 % Sulfide (20 %)

Binding energy (eV)
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XPS S2p Core Peaks of the Starting Materials and Targets
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Li6GeS5 target

Li4GeS4 target

C
P

S
Li2GeS3 target

170 158160162164166168

GeS2

Li2S

Binding Energy (eV)

100 % BS

100 % NBS



Compositions of the Li2GeS3 Thin film
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Li1s

(0.028)

Ge2p3

(5.400)

S2p

(0.717)

C1s

(0.314)

O1s

(0.733)

Comments

(Sensitivity factor)

27.2 8.5 37.1 18.6 8.6 As prepared

32.6 15.9 47.8 0.0 3.7 Ar etching for 1 min.

31.7 16.1 48.1 0.0 4.1 Ar etching for 5 min.

33.3 16.7 50.0 0.0 0.0 Theoretical values

(± 3 % error)



Merged XPS Spectra of the Li2GeS3 Thin Film
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1 min.
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C O
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As prepared As prepared
As prepared

As prepared



Compositions of the Li4GeS4 Thin Film
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Li1s

(0.028)

Ge2p3

(5.400)

S2p

(0.717)

C1s

(0.314)

O1s

(0.733)

Comments

(Sensitivity factor)

31.0 5.5 32.1 18.3 13.1 As prepared

40.6 12.6 41.3 0.0 5.5 Ar etching for 1 min.

41.9 12.9 40.5 0.0 4.7 Ar etching for 5 min.

44.4 11.2 44.4 0.0 0.0 Theoretical values

(± 3 % error)



Merged XPS Spectra of the Li4GeS4 Thin Film
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1 min.
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As prepared As prepared

As prepared As prepared As prepared



Compositions of the Li6GeS5 Thin Film
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Li1s

(0.028)

Ge2p3

(5.400)

S2p

(0.717)

C1s

(0.314)

O1s

(0.733)

Comments

(Sensitivity factor)

35.9 4.9 33.2 14.7 11.3 As prepared

43.7 8.9 41.8 0.0 5.6 Ar etching for 1 min.

44.6 11.1 41.2 0.0 3.1 Ar etching for 5 min.

50.0 8.3 41.7 0.0 0.0 Theoretical values

(± 3 % error)



Merged XPS Spectra of the Li6GeS5 Thin Film
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Ge

C O

1 min.
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1 min.
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1 min.
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1 min.
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1 min.

5 min.

As prepared As prepared

As prepared As prepared As prepared



XPS S2p Core Peaks of the Starting Materials and Thin Films
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C
P

S

170 158160162164166168

Li6GeS5 thin film

Li4GeS4 thin film

Li2GeS3 thin film

GeS2

Li2S

Binding Energy (eV)

100 % BS

100 % NBS



Sample Preparation of the Targets for Ionic Conductivity
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Composition
Thickness 

(± 0.002 mm)
Area 

Li2GeS3 target 0.96 mm 0.7854 cm2

Li4GeS4 target 1.05 mm 0.7854 cm2

Li6GeS5 target 0.85 mm 0.7854 cm2

Target (13 mm diameter)

Sputtered Au electrode
1 cm

Before assembly After assembly
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Ionic Conductivities of the Li2GeS3 Target
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Temp. 

(oC)

Target resistance 

( )

d.c. ionic conductivity 

(S/cm)

-25 7.3 (±100 ) 10-4 1.7 (±0.3) 10-6

0 1.5 (±70 ) 10-4 8.2 (±0.3) 10-6

25 4.2 (±50 ) 10-3 2.9 (±0.2) 10-5

50 1.5 (±40 ) 10-3 8.3 (±0.2) 10-5

75 6.2 (±20 ) 10-2 2.0 (±0.1) 10-4

100 3.2 (±10 ) 10-2 3.8 (±0.1) 10-4
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Ionic Conductivities of the Li4GeS4 Target
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Temp. 

(oC)

Target resistance 

( )

d.c. ionic conductivity 

(S/cm)

-25 1.9 (±500 ) 106 7.0 (±0.5) 10-8

0 2.8 (±300 ) 105 4.8 (±0.4) 10-7

25 4.9 (±100 ) 104 2.7 (±0.3) 10-6

50 1.1 (±80 ) 104 1.2 (±0.2)  10-5

75 3.1 (±50 ) 103 4.3 (±0.2)  10-5

100 1.0 (±30 ) 103 1.3 (±0.1) 10-4
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Ionic Conductivities of the Li6GeS5 Target
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Temp. 

(oC)

Target resistance 

( )

d.c. ionic conductivity 

(S/cm)

-25 1.8 (±500 ) 106 5.9 (±0.5) 10-8

0 2.4 (±300 ) 105 4.5 (±0.4)  10-7

25 4.2 (±100 ) 104 2.5 (±0.3) 10-6

50 9.8 (±80 ) 103 1.1 (±0.2) 10-5

75 2.7 (±50 ) 103 4.0 (±0.2)  10-5

100 8.6 (±25 ) 102 1.3 (±0.1) 10-4
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Arrhenius Plots of the d.c. Conductivity of the Targets
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Composition 25 C (S/cm)
Ea (eV)

(± 0.005)

Log o (S/cm)

(± 0.005)

Li2GeS3 target 2.9 10-5 0.337 1.135

Li4GeS4 target 2.7 10-6 0.492 2.764

Li6GeS5 target 2.5 10-6 0.497 2.828
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Sample Preparation of the Thin Film for Ionic Conductivity

swmartin@iastate.edu US - China Winter School on New Functionalities in Glass 75

Before assembly After assembly

10 mm



Ionic Conductivities of the Li2GeS3 Thin Film
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Temp. 

(oC)

Thin film resistance 

( )

d.c. ionic conductivity 

(S/cm)

-25 1.3 109 4.0 (±0.3) 10-6

0 2.1 108 2.5 (±0.2) 10-5

25 5.0 107 1.1 (±0.1) 10-4

50 1.4 107 3.8 (±0.1) 10-4

75 4.8 106 1.1 (±0.05) 10-3

100 1.8 106 2.9 (±0.05) 10-3
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Ionic Conductivities of the Li4GeS4 Thin Film
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-25 1.0 108 4.6 (±0.2) 10-5

0 2.3 107 2.2 (±0.1) 10-4

25 6.6 106 7.5 (±0.1) 10-4
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Ionic Conductivities of the Li6GeS5 Thin Film
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Temp. 

(oC)

Target resistance 
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d.c. ionic conductivity 
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-25 5.1 107 9.7 (±0.2) 10-5

0 1.0 107 4.8 (±0.1) 10-4

25 2.9 106 1.7 (±0.05) 10-3

50 1.0 106 5.0 (±0.05) 10-3

75 3.8 105 1.3 (±0.02) 10-2

100 1.6 105 3.0 (±0.02) 10-2
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Arrhenius Plots of d.c. Ionic Conductivity of the Thin Films
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Composition 25 C (S/cm)
Ea (eV) 

(± 0.005)

Log o (S/cm)
(± 0.005)

Li2GeS3-Ar thin film 1.1 (±0.1) 10-4 0.417 3.096

Li4GeS4 -Ar thin film 7.5 (±0.1) 10-4 0.358 2.951

Li6GeS5 -Ar thin film 1.7 (±0.05) 10-3 0.363 3.382
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25 oC

LiPON[Ref.]

Li6GeS5 thin film

Li4GeS4 thin film

Li2GeS3 thin film

Xiaohua Yu, J. B. Bates, G. E. Jellison and F. X. Hart, J. Electrochem. Soc. Vol 144, 2 (1997) 524.
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Arrhenius Plots of the Ionic Conductivities of Targets and Thin Films
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LiPON

Li6GeS5 thin film

Li4GeS4 thin film

Li2GeS3 thin film

Li2GeS3 target

Li4GeS4 target

Li6GeS5 target



Ionic Conductivities of Li4GeS4 Thin Films under various Conditions
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Li4GeS4

thin film

Sputtering 

time
Pressure Power Width Space

Thickness (

microns)

k = t/A

(cm-1)

(a) 90 30 45W 10 mm 2 mm 0.5 4,000

(b) 90 25 45W 10 mm 2 mm 0.5 4,000

(c) 30 25 50W 10 mm 3 mm 0.17 17,647

(d) 30 25 50W 10 mm 2 mm 0.17 11,765
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Summary and Conclusions
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 The lithium thio-germanate thin film electrolytes are very promising for solid 

state Li-ion batteries.

 The ionic conductivities of thin films at RT are 100 to 1000 times larger than 

oxide thin films (LiPON) which are the current commercial products.

In addition, the thin films are thermally stable up to 100 oC 

 We have successfully made nLi2S+GeS2(n=1, 2 and 3) thin films in Ar 

atmosphere.

 From the SEM data, the thin films showed high quality surface morphology.

 Raman and IR data showed consistent structures between targets and thin films. 

 Target XPS compositional data are close to thin film composition and both 

closely match theoretical values. In addition, C exists only 1 nm from the 

surface and minor O exists 1 nm below the surface.
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Future work (Ge based system)
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■ Add GeO2 to nLi2S + GeS2 system to increase chemical stability

(and Li+ ion conductivity?)

■ Test lithium thin-film solid state batteries

with lithium anodes and transition metal oxide cathodes  

■ Use an Ar + N2 atmosphere for sputtering to increase ionic   

conductivity of the thin film electrolytes 

(and stabilize electrolyte-lithium interface?)



Concluding comment…..
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It’s all we’ve got…..let’s take good care of it….

US - China Winter School on New Functionalities in Glass


