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A general model is presented for calculating of pull	in parameters of

nano�electromechanical systems� Theory includes van der Waals forces

and presents analytical expressions for pull	in voltage and gap� A role

of atomistic corrections for the pull	in at the nanoscale is discussed at

length�

I� INTRODUCTION

Nano�electromechanical systems �NEMS� become an essential part of modern sci�
ence and technology ���� A number of applications is already known� nanomanipu�
lation	 nanosensors	 medical devices	 nano
uidic devices	 to name a few� Even more
applications are anticipated to follow the technological progress in this �eld�

I address in this paper one of issues arising when we try to understand phenomena
happened at the nanoscale with theoretical tools borrowed from an experience of
macroscopic physics� The latter has to reach its limits and micromodels are required
for a quantitative description of a nano�device� However	 an essential part of the
theory bases on very general assumptions� For example	 a continuum modeling gives
a perfect description of systems of atomic scale when using a microscopically derived
parameterization for the theory�

The aim of this paper is to derive an atomistic correction for a micro�scale mod�
eling and to discuss limits of applicability of simplest models� The object of study is
a nano�electromechanical switch� Main changes in its operation at the nanoscale are
related to an importance of van der Waals forces� These forces will change param�
eters	 describing the equation of state of a NEMS� All derivation will be performed
analytically	 which allows one to apply this theory to a broad class of devices�

I will demonstrate how the van der Waals interaction changes two main parameters
describing an instability point of a NEMS device	 which are a pull�in voltage and a
pull�in gap� The calculation is done within a continuum model� It allows to develop
a common analytical approach for nanoscale switches of various geometry	 various
size and various material properties� I stress that the model includes a general form
of the free energy�

The free energy of the system may be comprised of several terms� Corresponding
gradients of the energy components are forces acting on the NEMS� In particular	 I
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consider in details a role of dispersion forces	 which are the van der Waals forces at
the smallest distance	 Casimir forces at intermediate distances	 or thermal 
uctuation
forces at the largest separation� In order to be able to use the model for every force
�eld	 the power law dependence of the dispersion energy on the distance is used�
It allows describing many�body corrections to the van der Waals energy	 that have
been discussed in Ref� ���� These forces have a fractional power law dependence on
the distance� The power law exponent enters the �nal analytical expression as a
parameter and	 thus	 the model comprehends a wide class of phenomena in nanoscale
systems� Of course	 this purely analytical calculation can provide only an order of
magnitude estimation without a detailed knowledge of the speci�c system�

II� ANALYTICAL MODEL

I start here with a calculation of the pull�in parameters of a general NEM system
which is an elastic media �elastic manifold� subjected to external forces� The forces are
changing during the NEMS operation and de�ne a dynamic shape of the NEMS� The
speci�c forces	 considered below	 are �i� the van der Waals force	 �ii� the electrostatic
force	 and �iii� the elastic force	 which is able to restore the initial equilibrium shape
of the NEMS�

A further generalization to the case of non�zero dissipation is straightforward	 as
well as an addition of a media surrounding a NEMS is easy� As far as I consider static
rather than dynamic e�ects	 the friction is not important�

It is well known how to derive an equation of state for simple electromechanical
devices at the micrometer scale ���� This paper presents a theory giving a required
generalization for nanodevices� In an earlier paper ��� an analytical derivation of the
pull�in voltage for a speci�c device has been presented with account for the vdW
correction� The second pull�in parameter	 the gap	 was treated as an independent
quantity� Below I will extend the result of the paper ��� and give an accurate derivation
for both pull�in parameters�

The equilibrium dynamic shape of the NEMS satis�es the force balance condition
�A�� the �rst derivative of the total NEMS energy is equal to zero� In general	 one
has to calculate the energy gradient at every point of the system and equate it to
zero locally� This gives the equilibrium shape of the system at given external forces
applied to the NEMS� Main approximation	 which allowed me to yield an analytical
solution of the problem	 is to consider only one mechanical degree of freedom� This
approximation gives a true answer for the pull�in up to a numerical factor which
is geometry dependent� The numerical factor is not altered by changing force �elds
�e�g�	 by changing van der Waals to Casimir force� and has to be calculated only once
for a given geometry�

Within this one parameter model	 I write the �rst equation of state as�

�E

�x
� � ���

where x is the single degree of freedom of a NEMS	 for example	 the gap	 and E is
the total energy given by

E�x� �� � T �x� h� k�� V �x� ��C��W �x� �� ��� ���
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Here	 the energy depends on x and �	 the gap and the voltage	 which are the param�
eters governing the instability point� Three energy components are the elastic strain
energy	 T 	 the electrostatic energy	 V 	 and the dispersion �van der Waals� energy
�vdWE�	 W � All three terms depend on the system design �geometry	 shape etc��
as well as on the material parameters �elasticity	 capacitance etc��� The �rst type
of dependence is expressed in terms of the gap �or the NEMS degree of freedom�	
� � x � h� in terms of the maximum �initial� gap	 h� and the voltage	 �� The mate�
rial properties are collected in four constants� an elastic sti�ness with respect to the
gap �degree of freedom�	 k	 a general capacitance with respect to the voltage	 C	 and
general vdW coe�cients	 � and �	 which have the meaning of a power law exponent
and a speci�c vdWE for a given NEMS structure�

Let me de�ne the sti�ness	 k	 as a linear response to the strain induced by the
gap variation�

k �
��T

�x�
� o�x�� ���

and last terms of this expansion series will be omitted� Then	 the elastic energy
component reads as T � k�h � x����� One can easily recognize a mechanical linear
oscillator model	 which is widely used in MEMS analysis� Thus	 numerical results
given below will directly correspond to a continuum MEMS theory� In particular	
beam equations may be useful to estimate k for a speci�c geometry� An advanced
atomistic model �molecular mechanics and�or dynamics� may require to de�ne the
sti�ness of a speci�c nanoscale device �for example	 a parameterization for nanotubes
is given in Ref� ����� However	 once parameterized for a concrete device	 the model
allows fast analysis of the device equation of state in various external �elds�

I propose a similar de�nition for the speci�c capacitance�

C �
��V

���
� o����� ���

The de�nition is consistent with the classic image charge energy	 well known in MEMS
physics	 but not restricted to the classical electrostatics� One may use a micromodel
to determine the energy	 similarly to what has been done for calculating an atomistic
capacitance of a single wall nanotube in Ref� ���� The electrostatic energy term reads
as V � C�����

So far	 the energy components are similar	 at least formally	 to what have been
used in a standard MEMS theory ���� Let me add an extra term which is the dispersion
energy� The dispersion energy component is often approximated by a single attraction
term ��	��	 given by an attractive part of the vdWE	 which depends on the distance
between interacting surfaces� Integrating out all system geometry ��	�� will result
in a simple dependence of the vdWE on the gap� W � �x��	 where an exponent
� de�nes the speci�c power law for the speci�c dispersion force� For example	 for
the pure van der Waals interaction between small objects �atoms� � � �	 for the
retarded Casimir force between atoms � � �	 it can be fractional for the many�body
terms in low dimensional systems ��	��� To be consistent with this de�nition of a
general dispersion �van der Waals� potential	 I de�ne the material coe�cient � and
the exponent � as�
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� �W �x� exp

�
�x log�x� � logW

�x

�
� o�x�� ���

� � �x� logW
�x

� o�x� ���

With these de�nitions for the material constants I write the total energy of the
NEMS as�

E�x� �� �
k�h� x��

�
� C�x���

�
�W �x� �� �� ���

where the dependence of the capacitance on the gap	 C � C�x�	 has to be de�ned
separately�

To �nd an instability point of the NEMS I write the second pull�in equation�
It follows from the condition for disappearing of the stable solution of the Eq�����
Since one de�nes a physical root of this equation	 the merging of a stable root and an
unstable root which is next to the physical solution	 is a single possibility for device
instability� It is equivalent to a condition �B�� the second derivative of the expression
��� must equal zero�

��E

�x�
� k � ��

�

��C

�x�
� ��W �x�

�x�
� �� ���

III� GENERAL EQUATIONS FOR THE PULL�IN

Let me present a solution for the pull�in voltage	 Vo	 and the pull�in gap	 xo	 for a
standard electromechanical switch with planar electrodes� The capacitance of a planar
capacitor is known to be C � co�x in neglecting fringing �elds	 where co � S��� and
S is a plate capacitor surface area� It results in simple relations for the capacitance
derivatives� �C��x � �C�x and ��C��x� � �C�x�� The equations of state �A� and
�B� are written with use of these relations as follows�

���
��
�k�h� x� � �

�
�� C

x
� �W

�x
� �

k � �
�
�� �C

x�
� ��W

�x�
� ��

��

In full neglecting the vdWE terms I obtain����
��
�k�h� x� � �

�
�� C

x
� �

k � �
�
�� �C

x�
� ��

����

which reproduces the classical MEMS result� The system of equations ���� is linear
in variables x and �� and always allows an analytical solution�

In what follows logarithmic derivatives of the energy components will be used�
When the dependence of the energy components on the gap is given by a power law
�the vdWE term and the electrostatic energy may be approximated by a power law
at certain conditions�	 the logarithmic derivatives are simply constants depending on
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the material properties and the geometry of the NEMS� 	� � �x� logC��x	 �� �
�x� logW��x	 	� � x� �� logC��x�� � x��� logC��x� and �� � x� �� logW��x�� �
x��� logW��x��

In terms of � and 		 which are just numbers	 the general physical solution of
Eq��� is as follows�

���������������
��������������

xo � h
	�

	� � 	�

�

�

�
�� �

s
� � �

W �xo�

kh�
	� � 	�
	�

��	� � ��	�
	�

	
A

Vo �

p
�khq
C�xo�

p
	�

	� � 	�
�

s
�
�
� W �xo�

kh�
��������������

��
� �

�

r
� � �W �xo�

kh�
�����
��

���������
��

�

����

So far	 this expression is still implicit because R�H�S� of the �rst equation depends
on the amount of vdWE at the pull�in gap	 W �xo�� However	 the vdWE component
is normally small at large distances and I propose to substitute the bare value for
the pull�in gap xo��� � h ��

�����
into the R�H�S� of the equations ����� This is allowed

for large h because expanding the expression in series in W 	 one gets the di�erence
of this approximation and an exact result only in the second order of W�kh� � ��
In the opposite	 ultra�nanoscale	 limit the solution of the �rst of Eqs����� must be
substituted in the second one�

Several conclusions can be drawn from the general expression for the pull�in� It
gives a required generalization of the MEMS result ���� It describes how the elec�
trode geometry	 which is re
ected in the speci�c capacitance	 C�x�	 in
uences the
pull�in gap and voltage� It shows the role of the vdW interaction in the pull�in at
the nanoscale� To the best of my knowledge this e�ect has not been studied with
analytical theory to date	 although numerical solution may indicate the discrepancy
with standard MEMS expressions�

IV� NEGLECTING VDWE� MEMS LIMIT

The Eq����� gives a general solution for an electromechanical device operation�
The solution includes the van der Waals correction which will be considered in the
last section�

In full neglecting the van der Waals cohesion	 the pull�in gap	 xo	 is a �xed fraction
of the initial gap	 or the electrode separation	 h�

xo��� � xojW�� �
	�

	� � 	�
h� ����

In the approximation of zero vdWE	 the pull�in voltage is a product of the sepa�
ration	 h	 and the inverse square root of the capacitance at the pull�in	 C�����xo��

Vo��� � VojW�� �

p
	�

	� � 	�

p
�khq
C�xo�

� ����
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If the NEMS electrode is an elastic plate �wide elastic rod�	 this expression simpli�es
to

Vo���j��� �
�

�

p
khq

C�xo�
� ����

and the pull�in gap

xo���j��� �
�

�
h� ����

I receive Vo��� � h���	 substituting C���xo� � xo � h � Eqs�����	���� return the
well�known MEMS result ��� that the pull�in voltage is a ��� power law function of
the separation� However	 the actual dependence of the capacitance on the gap �the
mechanical degree of freedom of the NEMS� has to be taken into account� A change
of this dependence results in the change of the NEMS equation of state and	 thus	 of
the pull�in gap and voltage� An example of an essential change of these parameters
is a nanotube NEMS �to be presented elsewhere��

V� ROLE OF VAN DER WAALS ENERGY IN NEMS CHARACTERISTICS

I present here a limiting case for the general equation of state �� when the elec�
trostatic force can be described via a planar capacitor model� C � co�x and the vdW
contribution can be written as W � 
�h�� For completeness	 I give here all logarith�
mic derivative coe�cients� 	� � �	 	� � �	 �� � � and �� � ��� � ��� Substituting
these values into Eq�����	 I obtain�

�����������
����������

xo �
�

�
h

�
��
�
�
�

�

s
� � ����� ��

W �xo�

kh�
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kh
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�

s
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����

These equations may be further simpli�ed for the small vdW forces� keeping only
leading terms in W 	 I obtain�

��������
�������

xo � h
�

�
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���� ��
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The role of the vdW correction is to decrease the pull�in voltage via increasing the
pull�in gap� at smaller distances the electrostatic term of the Eq���� becomes larger
because the vdW force brings the electrode closer to the ground plane�

The numerical estimate for a selfconsistent solution of the equations ���� is pre�
sented in Fig�� and Fig��� The classical result �MEMS limit� is shown as a dash�
dotted line	 while solid lines represent selfconsistent solutions for the pull�in gap and
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the pull�in voltage� The parameters taken for a numerical estimate are k � 
�nm�	
C � �����

p
kV�nm� Typical value for the 
 is about several eV �A��

1 2 3 4

1

2

4

5

h, nm

xo,
nm

FIG� �� The pull�in gap as a function of the initial device gap� Red �solid� curve represents

the selfconsistent analytical result� Green �dash	dotted� curve shows the dependence in

neglecting the van der Waals correction� Two dashed lines bound an operation region of a

classical MEMS
 �h�� � xo � h�
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2
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FIG� �� The pull�in voltage as a function of the gap� Blue �solid� curve represents the

analytical result explained in the text� Red �dash	dotted� curve shows the dependence in

neglecting the van der Waals correction for the pull�in gap�

In contrast to a classical result	 the pull�in voltage as a function of the initial
separation	 decreases to zero at h � hc �Fig���� This is a critical size of a possible
nano�electromechanical switch as discussed in the Ref� ����

In summary	 I present an analytical model for calculating pull�in parameters of an
electromechanical system� Using continuum model with a single mechanical degree
of freedom	 I demonstrated the role of the van der Waals interaction for nanoscale
devices� A general equation of state and a closed form of solution are derived for a
planar capacitor NEMS� When operating NEMS at low gaps	 the vdW corrections
are written explicitly and it is discussed how the vdW interaction may restrict the
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applicability of the classical MEMS theory at the distances close to a vdW limit�
The theory presented in this paper allows one the calculating of the critical gap as a
function of the material properties of the nanoswitch �to be discussed elsewhere��
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