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Abstract

The simple Frenkel exciton model Hamiltonian is applied for calculation of spectrum of

electron-hole excitations in carbon nanoclusters. The group-theoretical approach allows to �nd

analytically mode frequencies as well as wavevectors of excitations.
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Introduction

The �nite carbon nanoscale cluster electronic system stills to be a challenge to a theoretician. It
has the intermediate scale: neither atomic nor 3D-bulk one, which troubles the typical many-body
method application. There are some theoretical and experimental evidence that Coulomb interaction
should be taken into account for these systems. Some interesting analytical results were obtained [1]
for the fullerenes within SO(3) - spherical symmetry approximation - though the actual icosahedral
symmetry group is much lower than the in�nite full group of rotations. We note that the symmetry of
the tight-binding (TB) one-electron Hamiltonian is high enough to obtain, for example, the spectrum
within purely analytical method [2-4].

The high symmetry leads us to consider some simpli�ed Coulomb Hamiltonian for C60-like lattice
of atoms possessing one electron-hole chargeless excitation per site. The Wigner-Ekkart theorem
allows to expand all operators into irreducible operator series for any lattice (here the icosahedral
60-membered lattice is considered). We write Hamiltonian in the standard secondary quantization
(electron-hole) formalism. The next step is obvious { the multipole expansion in the �rst non-
vanishing order for the electron-hole excitation is the dipole approximation. When considering only
next-neighbor interaction, it is the simplest Frenkel-exciton Hamiltonian well known from organic
insulator solid state theory. To be noted, the problem is easily solved numerically. Then we make
use of TB dipole-dipole approximation. One can expect that a number of degrees of freedom is
much larger than for translationaly invariant systems, which makes analytical solution di�cult if
possible. Even so, we showed that the group-theoretical approach gives the exact result for some
modes [5]. For example, we calculated analytically the triply-degenerate optically active excitons
and non-degenerate excitatons of C60 and modes of C12 (three are dipole active ones).

1. Symmetry classi�cation

A number of carbon nanoclusters of high symmetry has been synthesized last years. Along with clus-
ters of perfect geometrical shape a lot of less symmetrical closed (and even opened) macromolecules
of carbon occur in the carbon soot. The main feature of these constructions is a three-coordinated
network of carbon-carbon bonds that allows us treat them as graphite-like surfaces [6]. The most
familiar C60 cluster has an icosahedral (Yh) symmetry, being a perfect truncated icosahedron. This
network (we will also call it the cluster lattice having in mind the correspondence to in�nite lattice
of 2D graphite sheet) can be obtained as some projection of triangular group (2,3,5). The notation
reects the symmetry of basic triangular patch of cluster which has to be rotated by all Yh group
elements to cover all the surface (see Ref.[7] for more details). Last number 5 in the notation shows
that C60 has 5-fold axes (or 5-membered rings). One can consider polyhedrons with 3- and 4-fold
axes which give more examples of carbon clusters with graphite-like curved surface. The �rst is
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truncated tetrahedron which was considered theoretically as C12. The last one represents the trun-
cated cube and will not be considered below. It has only even-membered rings in the lattice that
makes its symmetry slightly di�erent.

We have to note that considered C12 and C60 clusters are the smallest representatives of truncated
tetrahedron and icosahedron family which is formed by substitution of some graphite lattice fragment
instead of single carbon atom in the same lattice (cf. Ref.[8]). The uni�ed approach allows to
calculate the TBA spectrum of these clusters. The matrix TBA Hamiltonian can be expanded in
irreducible representation (IRR) space. The high symmetry results in essential simpli�cation of
secular equations, which are solved exactly for clusters with a simple lattice basis [2-4,7,8]. Let us
consider the Hamiltonian symmetry of C12 cluster in more details.

The TBA Hamiltonian has only two parameters to calculate the one-electron spectrum. There
are a hopping integral t and the zero energy level (which is very naturally omitted in all expressions).
The spin-orbit interaction will not be considered here, hence, the spin index will be omitted and
spin degeneracy is implied. So far, at zero hopping t = 0 the level has 12-fold degeneracy. The
hopping part of TBA Hamiltonian plays role of kinetic energy in Hubbard model. Let us consider
non-zero hopping. We will distinguish between hopping along the bond belonging to triangular and
hexagonal bond. The latter seems to be closer to pristine graphene. We will henceforward note two
hopping parameters as t3 and t. Substituting in Hamiltonian t3 = 0 we get six non-connected pairs
of sites. It is evident that two 6-fold energy levels appear. In the opposite limit of t = 0 we have
four separate triangles with 4- and 8-fold levels.

At the intermediate hopping one has, in general, 5 levels labeled by tetrahedral symmetry. The
degeneracy is 1, 3, 2, 3, 3 from the bottom to top. Three one-electron levels are occupied at half
�lling. Hence, t = 0 case gives the metallic ground state, which becomes "semiconducting" one
at any small hopping parameter with a gap which is linear in t=t3 at small t. We note that all
these three cases are within a supersymmetry space of SO(4) problem. Let us consider the maximal
12-dimensional space of U(12) group (it corresponds to t = t3 = 0). It can be restricted to SO(4)
subgroup in two ways: [3/2,1] and [1/2,5/2] (here we use a standard notation of SO(4) IRR via two
angular moments). However, the �rst representation has only half-integer SO(3) expansions. IRR
[1/2,5/2] has three integer SO(3) representations: j2i+ j3i, j1i+ j4i and j0i+ j5i (here bra-vectors
give angular momentum IRRs of SO(3) group). The same time, the case t3 = 0 can be presented as

the SO(4) state [1/2,5/2] with K
(2)
z = 0. The reduction of symmetry to tetrahedral group results

in the same set of IRRs for all these integer RRs, which correspond to �nite hopping parameters.
The case t = 0 is obtained as half-integer projection of SO(4) state. Of course, the one-electron
level degeneracy does not deal with the real spectrum of the system, though classi�cation in terms
of hopping kinetic energy may occur useful.

In the next section we will consider Frenkel-exciton model as a solution for simplest Hubbard-like
Hamiltonian for chargeless electron-hole excitation spectrum.

2. Frenkel-Exciton model

We suppose that initially the excitation is localized on a single atom. The electron and a hole on
the same site possess a dipole moment, not a charge. Then the resulting excitation is formally an
exciton of small radius, a Frenkel exciton [9]. Let us remind that in the Frenkel Hamiltonian we
preserve, for chosen two-particle electron-hole state, only four terms { a kinetic energy of an electron,
a kinetic energy of a hole, an electron-hole direct Coulomb interaction and an exchange one. The
�rst non-vanishing term in the interaction is dipole-dipole one:
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where the �rst sum is taken over electron states, the second is taken over hole states; H represents
the kinetic energy operator; P is a dipole momentum matrix element, taken with the "bra" and
"ket" vectors of chosen chargeless excitation on site; jR(1� 2)j is a distance between sites 1 and 2.
Operator nabla appears from multipole expansion of Coulomb integral as the �rst dipole term.

The Frenkel exciton approximation consists in a substitution of exciton operator instead of pair
of electron-hole operators B1 = d1a1 and in a subsequent linearization of this expression which leads
to the follows:

HFE =
P
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�

+
P
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(2)

where a kinetic energy part and a direct Coulomb interaction are collected into the �rst diagonal
part of Hamiltonian. The o�-diagonal part is given by exchange dipole-dipole interaction between
sites 1 and 2.

So far the Frenkel exciton model is stated basing on two parameters E =
�
Heh
12 �W (dir)

�
and

P2=b3, where b ' 1:44�A is the distance between nearest neighbors in C60. The self energy E simply
shifts the energy zero level. Hence, we will drop it below when it will not cause misunderstanding.

3. Group-theoretical expansion

The harmonic analysis over the group lattice reduces any site-de�ned problem to ten secular equa-
tions for C60 (and four for C12). Because of there are 10 IRRs of dimensionality 1; 3; 3; 4; 5 in Yh
(and 4 in T { 1; 1; 1; 3). The remaining task is to write an explicit form of given Hamiltonian and
solve it for all IRRs. We will present below the general consideration but will derive all expressions
for C60 lattice, which is more complicated.

The Frenkel Hamiltonian for Yh lattice of C60 cluster is given by the sum of dipole-dipole inter-
action terms over all 60� 60 states:

X

g2Y;f2F

P yi (g)
1

jR(f)j3
�̂ij(g; fg)Pj(fg): (3)

Here summation over g 2Y is a summation over 60 sites of the C60 cluster surface, while summation
over f is restricted by the model over a limited number of neighbors given by some set F �Y (or
over a full unlimited set Y, then we will address it as a Hamiltonian of full dipole-dipole interaction).
The dipole-dipole interaction between the nearest neighbors will be considered in the last part of
the paper. Then the subset F �Y is given by 3 �xed elements for each site g (cf. Ref.[2]). P y

and P are independent variables in the secondary quantization representation. In our old notation
P y(g1) = PBy

1. We single out a distance dependent factor 1=jR(f)j3 from dipole-dipole interaction
and collect an angle dependent remaining part, � , as it is easily seen from Eq.(2). This � is actually
the traceless second-order tensor which is well-known from classical electric-multipole theory.

The operator P yi (g) creates an electron-hole pair on site g. Here a vector g is directed from the
center of cluster, chosen as the global co-ordinate origin, to the site g. We will use below also the
local co-ordinate system (LCS), which will be connected with each site g 2 Y. The LCS on each
site is directed so that any local axes in point jgi goes to jfgi LCS after the proper rotation f 2 Y.

The operator P yi (g) = ayi (g)d
y(g) carries an index i connected with the spinor of the electron-hole

excitation state.
Let us give now the Frenkel Exciton Hamiltonian in the simplest notation:
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where the summation is taken over all indices m;n belonging to the IRR � containing in the direct
product of vector representation T1 and the full dynamical group of the TB Hamiltonian symmetry,
given by the regular representation of Y group (RGR). P yi;�;m;n is the creation operator of electron-
hole excitation of � IRR (more details are in Ref.[5]). For the sake of clarity we suppose here all

bonds to be equal b, the energy scale is given by dipole matrix element P2=b3. D
(�)
m1k

(f), as usual,
is the rotation matrix for IRR �. The dipole-dipole interaction in LCS reads as:

�
(LCS)
ij (f) = D

(T1)
ij (f)� 3(e� f )i(f

�1 � e)j : (5)

It is seen that Frenkel exciton Hamiltonian is reduced to secular equations for each IRR of the
following form:

�
(LCS)
ij (f)
D

(�)
m1k

(f): (6)

This is blockmatrix of dimensionality 3 � d, where d = [�] is the dimensionality of � IRR vector.
For nondegenerate mode � = A, it is 3-row matrix. The resulting three full symmetry A-modes
has di�erent energies, depending on the local symmetry of a mode. There are �ve triply degenerate
dipole-active modes in the Frenkel Exciton Hamiltonian as it follows from group theory. Our model
allows to obtain analytically the mode frequencies as well as the wavevectors for C60 and more easily
for C12 cluster.

SUMMARY

We present a Frenkel exciton model for calculation of optical response of carbon nanoclusters of
high symmetry. The model Hamiltonian includes a dipole-dipole interaction between electron-hole
chargeless excitations. The nearest-neighbor approximation has been used for simplicity of deriva-
tion, though the generalization for full dipole interaction is straightforward. The group expansion of
the problem is described. The analytical expression will be presented elsewhere for mode frequency
and the corresponding wavevectors as a solution of secular equation of much smaller dimensionality
than before expansion. This approach seems to be promising for di�erent lattice problems de�ned
for graphite-like cluster surfaces.
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