
International Journal of High Speed Electronics and Systems
c©World Scientific Publishing Company

ELECTROSTATICS OF NANOWIRES AND NANOTUBES:
APPLICATION FOR FIELD–EFFECT DEVICES

ALEXANDER SHIK, HARRY E. RUDA

Centre for Advanced Nanotechnology, University of Toronto,
Toronto M5S 3E4, Canada

SLAVA V. ROTKIN†

Physics Department, Lehigh University,
16 Memorial Drive East, Bethlehem, PA 18015, USA

†rotkin@lehigh.edu

Received (received date)
Revised (revised date)

Accepted (accepted date)

We present a quantum and classical theory of electronic devices with one–dimensional
(1D) channels made of a single carbon nanotube or a semiconductor nanowire. An
essential component of the device theory is a self–consistent model for electrostatics of
1D systems. It is demonstrated that specific screening properties of 1D wires result in a
charge distribution in the channel different from that in bulk devices. The drift–diffusion
model has been applied for studying transport in a long channel 1D field–effect transistor.
A unified self–consistent description is given for both a semiconductor nanowire and a
single–wall nanotube. Within this basic model we analytically calculate equilibrium
(at zero current) and quasi–equilibrium (at small current) charge distributions in the
channel. Numerical results are presented for arbitrary values of the driving current.
General analytic expressions, found for basic device characteristic, differ from equations
for a standard bulk three–dimensional field–effect device. The device characteristics are
shown to be sensitive to the gate and leads geometry and are analyzed separately for
bulk, planar and quasi–1D contacts. The basic model is generalized to take into account
external charges which can be polarized and/or moving near the channel. These charges
change the self–consistent potential profile in the channel and may show up in device
properties, for instance, a hysteresis may develop which can have a memory application.

Keywords: electrostatics of low–dimensional systems; device physics; nanotube and
nanowire transistors.

1. Introduction

A basic trend in modern electronics is the wider device application of nanostruc-
tures, having at least one geometric size a less than some characteristic electron
length: de Broglie wavelength λ, electron mean free path ltr, or Debye screening ra-
dius rs. For a ∼ λ the electronic properties of nanostructures are strongly modified
by size quantization of the energy spectrum, while for a < ltr transport acquires bal-
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listic character. Influence of these two phenomena on the characteristics of various
low–dimensional devices has been widely discussed in the literature. In the present
paper, partially based on our short communication 1, we consider modification of
the screening phenomena in nanowires and nanotubes with the radius a less than
rs and apply this knowledge to the problem of a field–effect transistor (FET) based
on these quasi–one–dimensional (quasi–1D) nanostructures.

All low–dimensional systems are characterized by dramatic suppression of elec-
tron screening as compared to bulk semiconductors. Therefore, a different theo-
retical approach has to be used for the calculation of a screened potential φ. In
bulk materials, φ(r) is found from the Poisson equation where the induced charge is
proportional to the Laplacian (second derivative) of φ. In low–dimensional systems,
for determination of φ(r) one should solve the Laplace, rather than Poisson, equa-
tion containing the screening charge in boundary conditions. For two–dimensional
electrons (see, e.g., 2) the surface charge density is proportional to the field, the
first derivative of potential. Similar dimensional analysis for quasi–1D nanowires 3

shows that for slow charge and potential variations (with the characteristic length
l À a), the one–dimensional charge density η(x) is simply proportional to local
value of an induced potential at the nanowire surface:

φind(x, a) ' 2
ε

ln
(

l

a

)
η(x) (1)

where ε is the dielectric constant of the medium outside nanowire. The weak screen-
ing in 1D case is due to the fact that any charge in a system creates electric field in
the whole environment, including both the wire and the surrounding medium, while
the carriers responsible for screening are severely restricted in their motion to one
single direction along the wire. This differs drastically from bulk semiconductors
with carriers present in all points where electric field exists and providing effective
screening by re–distributing in this field.

On the basis of Eq.(1) a self–consistent electrostatics of quasi–1D systems can be
easily formulated and used for modelling of a number of 1D applications, including
transport and memory devices 1,4, optics 5, nanoelectromechanical systems 6, and
even artificial ion channels 7. In the present paper we restrict ourselves to electronics
applications.

The paper proceeds as follows. Sec.2 presents the basic equations to be solved
to calculate the charge density and current in 1D FET. Sec.3 gives a solution of
these equations for the case of bulk electrodes. We show in Sec.4 that an analytical
treatment of the model is possible at low drain voltage. The next section presents
numerical results for an arbitrary drain voltage, that are given separately for Ohmic
and injecting contacts in Sec.5.1 and 5.2 respectively. In this part of the paper we
closely follow our earlier results (published in 1,4), which review is needed to em-
phasize on the role of the contact geometry in last two sections. Though, it follows
from the general expressions of Sec.2 that the potential profile along the channel is a
function of the contact geometry, in this paper we add new evidence for this. Sec.6
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deals with the cases of 2D and 1D contacts, presenting for the first time analytical
expressions for equilibrium charge distribution and, thus, transconductance of the
1D FET. Last section reviews the role of the charge injected into the substrate and
gives a description for the hysteresis in a real 1D FET structure.

2. Formulation of the problem: Device geometry

We consider a 1D FET in which the channel is a semiconductor nanowire or a carbon
nanotube. The schematic geometry of such FET is shown in Fig.1. The structure
includes the source (x < −L/2) and drain (x > L/2) electrodes (in our model they
are assumed to be identical) connected by a nanowire of the length L. The gate
electrode is separated by a thin dielectric layer of the thickness d. We assume the
wire to be uniformly doped with the linear concentration N = const(x) (in pristine
nanotubes N = 0). In the absence of source–drain voltage the equilibrium carrier
concentration in the channel has some symmetric profile n0(x), which may differ
from N and be coordinate–dependent. This profile is due to the contact potentials
between the channel and electrodes determined by their work function difference,
any electric potential induced by charges in the environment (in particular, movable
charges), and the gate voltage Vg. When the structure is in operation, the source–
drain voltage Vd causes a current j along the channel and thus a re–distribution
of carrier concentration as compared with n0(x). The voltage Vg (and also the
potential of the variable charge in the environment, which is presented in the case
of a nanotube nonvolatile memory, for example 26,27,28) changes the concentration
in a channel controlling the FET transport. We employ the drift–diffusion model
in this paper and assume that the scattering rate in the channel is sufficiently high
to support a local charge equilibrium assumption. This is likely valid for the most
of the nanowire FETs and, at least, for some of nanotube devices. In the opposite
(ballistic) limit, discussed in 8, the channel and contact geometry influences the
device characteristics via lowering the tunnel barriers at the source and/or drain.
Nevertheless, the device electrostatics is one of the most important factors for the
total conductance. In this work we restrict ourselves to the case of drift–diffusion
transport when the modulation of the channel conductance is determinant for the
transport through the whole device.

We measure all potentials from the middle point of the wire (x = 0) so that
the source and drain potentials are −Vd/2 and Vd/2. In this case the potentials
along the wire and concentration changes caused by Vg together with the contact
potentials and by Vd are, respectively, symmetric and antisymmetric functions of x

and will be denoted by the subscripts s and a: φs,a(x) and ns,a(x). The potential of
any external charges, movable or not, has no specific symmetry. This is a random
function of x and has to be averaged over the distribution of the charge centers (a
possible averaging procedure for 2D charge impurities can be found in 9). Since the
movable charges in the environment obey the same electrostatics as the movable
charges in the tube, it is rational to assume that their potential, on average, will
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Figure 1: Possible geometry of contacts to a 1D FET: (A) 3D contacts (all di-
mensions are much larger than the channel width), (B) 2D contacts and (C) 1D
contacts. The potential profile along the weakly screening 1D channel depends on
the dimension (and other geometry) of the contacts, which results in a different
device behavior.

have also a similar coordinate dependence as the total electrostatic potential. For
the sake of clarity, in the most part of the paper, except for Sec.7, no external
movable/polarizable charge will be considered.

The potentials φs,a(x) can be divided into two parts: the components φ0
s,a(x) cre-

ated by electrodes and contact potentials, which should be found from the Laplace
equation containing no wire charge, and the components φ1

s,a(x) caused by the elec-
tron charge in a wire −ens,a(x). We assume that the characteristic lengths L and d

determining the potential and concentration distribution along the wire, exceed no-
ticeably the wire radius a. In this case the relationship between φ1

s,a(x) and ρ(x) is
given by the linear formula Eq.(1). Using this relationship, the current j containing
both drift and diffusion components∗can be written for a semiconductor nanowire

∗Contrary to three– and two–dimensional electron systems where the role of diffusion current at the
distances much larger than the screening length is negligible, in quasi–one–dimensional electron
systems its contribution is parametrically the same as that of drift current caused by φ1 and cannot
be ignored.
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with non–degenerate carriers in the form 10:

j

eµ
= n(x)

dφ0

dx
−

[
2e

ε
ln

(
l

a

)
n(x) +

kT

e

]
dn

dx
(2)

where n = ns + na, φ0 = φ0
s + φ0

a, µ is the carrier mobility, and the characteristic
length of charge variation along the wire l in our case has the order of min{L, 2d}.
For a nanotube with N = 0 and degenerate carriers, kT should be replaced by the
concentration–dependent Fermi energy and, instead of Eq.(2), we have 11,12:

j

eµ
= n(x)

dφ0

dx
− eC−1

t n(x)
dn

dx
, (3)

where C−1
t is the inverse capacitance of the nanotube derived in 11 and containing

both logarithmic geometrical capacitance similar to Eq.(2) and the quantum capac-
itance of the 1D electron gas, 1/(e2ν) ' 0.31 for one degenerate subband of a single
wall nanotube with the density of states ν.

Eq.(3) is easier to solve than Eq.(2) and in this connection it is important to
note that at some conditions the latter can be also reduced to a simpler form. It can
be easily shown that at A ≡ (2e2N/εkT ) ln (l/a) À 1 the last term in Eq.(2) can be
neglected and it acquires the form of Eq.(3) with C−1

t = (2/ε) ln (l/a) . This has a
rather simple explanation. Two terms in the square brackets in Eq.(2) correspond,
respectively, to drift in a self–consistent electric field and to diffusion. In degenerate
nanotubes these terms have exactly the same appearance and may be written as
a single term with the coefficient C−1

t . In a non–degenerate system the terms are
different but for A À 1 the diffusion term can be neglected.

We will solve the first order differential equation for n(x) given by Eq.(2) or (3),
with the boundary conditions

n(±L/2) = nc (4)

assuming the source and drain to support constant concentration at the contacts,
independent of the applied voltage. The two conditions Eq.(4) allow us to deter-
mine the integration constant and the value of current j so far considered as some
unknown constant.

Depending on the relationship between nc and N, three possible situations can be
realized. The condition nc = N corresponds to ideal Ohmic contacts not disturbing
electric properties of a wire, nc > N describes the situation where the carriers
are provided by electrodes, which is often the case for nanotubes, and nc < N

corresponds to depleted Schottky contacts. In the latter case, the regions near
contacts have the lowest carrier concentration and determine the current through
the structure. At the same time, this concentration is fixed by Eq.(4) and does not
depend on Vg. As a result, for the structures adequately described by the classical
drift–diffusion theory (see Eq.(2)), transconductance will be very small. The only
possible situation of an applied interest is that when the Schottky barrier has a
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noticeable tunnel transparency strongly dependent on Vg. This situation has been
thoroughly considered in 8,13 and will not be discussed below.

3. Potential profile: 3D bulk electrodes

The first step in calculating characteristics of a particular FET consists in finding
the potential profile φ0(x) along the channel. For nc = N it can be done by direct
solution of the Laplace equation determining the potential Φ(x, y) created by the
given system of electrodes†. However, for nc 6= N the basic formulae of the previous
section require some modification. In the closest vicinity of contacts there exists a
finite charge density e(N−nc) in a wire. To provide equipotentiality of metallic con-
tacts, we must assume the presence of charges of the opposite sign (image charges)
just beyond the contacts. This means discontinuity of charge density at x = ±L/2
and makes doubtful the adequacy of Eq.(1) assuming smooth charge and potential
variations. To avoid this difficulty, we will measure n from nc by assuming in Eq.(2)
n(x) = nc + ∆n(x). In this case, the boundary conditions Eq.(4) are replaced by

∆n(±L/2) = 0 (5)

but the potential acquires an additional term φc(x):

φ0
s(x) = φc(x) + φg(x) (6)

where φg(x), as earlier, is determined by the gate, source and drain electrodes at
Vd = 0 while φc(x) is a potential of a wire with uniform charge e(N − nc) between
metallic contacts at x = ±L/2. This is just the charge which, together with its
images, may have discontinuities at the contacts.

In this section we calculate φ0(x) for the case of bulk contacts representing
metallic or heavily doped semiconductor regions with all three dimensions consid-
erably exceeding the characteristic lengths a, d and L. In this case the contact size
can be assumed infinite as it is shown in Fig.1A. Exact calculations are rather cum-
bersome and to obtain relatively simple analytical results, we make some additional
approximation. Let us assume that the relation d ¿ L, often realized in 1D FETs,
is fulfilled in our system as well. In this case the potential distribution in the most
part of inter–electrode space will not noticeably change if we neglect the dielectric–
filled slit of the thickness d between the channel and the gate. In other words, we
solve the Laplace equation ∆Φ = 0 in the semi–infinite strip −L/2 < x < L/2;
y > 0 with the boundary conditions: Φ(y = 0) = Vg; Φ(x = ±L/2) = ±Vd/2 and
then, assuming y = d and adding the expression for φc(x)derived in 10, obtain the
following formulae for φ0

s,a(x):

†Here and henceforth Φ(x, y) represents the complete solution of the Laplace equation whereas
φ(x) ≡ Φ(x, d) is the potential along the wire.
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φ0
s(x) = φc(x) + φg(x) =

8e(N − nc)L
π2εa

×
∞∑

n=0

(−1)n

(2n + 1)2

{
K0

[
πa
L (2n + 1)

]−K0

[
2πd
L (2n + 1)

]}

K1

[
πa
L (2n + 1)

] cos
[
πx(2n + 1)

L

]

+
4Vg

π

∞∑
n=0

(−1)n

(2n + 1)
cos

[
πx(2n + 1)

L

]
exp

[
−πd(2n + 1)

L

]
; (7)

φ0
a(x) = Vd

[
x

L
+

∞∑
n=1

(−1)n

πn
sin

(
2πxn

L

)
exp

(
−2πdn

L

)]
(8)

where K0 and K1 are Bessel functions of an imaginary argument 14.

4. Linear conductivity and transconductance

Now we can calculate the carrier concentration ∆n and the electric current j caused
by the driving voltage Vd. The problem is relatively simple if we restrict ourselves to
the linear case by assuming Vd to be sufficiently small. In the zeroth approximation
j = 0 and both φ0(x) and n(x) contain only a symmetric component and are the
same as in equilibrium: φ0

s(x) = φc(x) + φg(x), ns(x) = nc + ∆n0(x) where the
equation for ∆n0(x) is:

[nc + ∆n0(x)]
dφ0

s

dx
−

{
2e

ε
ln

(
l

a

)
[nc + ∆n0(x)] +

kT

e

}
d(∆n0)

dx
= 0. (9)

Direct integration of Eq.(9) with the boundary conditions Eq.(5) transforms it
into an algebraic equation for ∆n0:

ln
(

1 +
∆n0(x)

nc

)
+

2e2

εkT
ln

(
l

a

)
∆n0(x) =

eφ0
s(x)
kT

. (10)

For degenerate carriers in a nanotube (or for A À 1), the problem is much simpler
since, according to Eq.(3), ∆n0(x) is proportional to φ0

s(x):

∆n0(x) = Ctφ
0
s(x). (11)

We emphasize that Eqs.(2),(3) were derived in the drift–diffusion approximation.
On the contrary, the expressions of this section, being equilibrium, remain adequate
beyond the drift–diffusion model.

To the first order in Vd, the differential equations (2),(3) can be linearized in na.
The equation for a nanowire reads as:

[
2e

ε
ln

(
l

a

)
[nc + ∆n0(x)] +

kT

e

]
dna

dx
+

[
2e

ε
ln

(
l

a

)
d(∆n0)

dx
− dφ0

s

dx

]
na(x)

= [nc + ∆n0(x)]
dφ0

a

dx
− j

eµ
. (12)
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Since φ0
a(x) is proportional to Vd, both na(x) and j are also linear in Vd. Eq.(12),

being solved with the conditions na(0) = na(L/2) = 0, gives the current–induced
change of concentration profile na(x) and the implicit expression for the current j:

L/2∫

0

exp




x∫

0

[
2e
ε ln

(
l
a

) d(∆n0)
dx′ − dφ0

s

dx′

]
dx′

2e
ε ln

(
l
a

)
[nc + ∆n0(x′)] + kT

e




[
[nc + ∆n0(x)]dφ0

a

dx − j
eµ

]
dx

2e
ε ln

(
l
a

)
[nc + ∆n0(x)] + kT

e

= 0.

(13)
The resulting j depends on the gate voltage Vg through the functions φ0

s(x) and
∆n0(x), which allows us to calculate the transistor transconductance s = dj/dVg.

For A À 1 the problem is essentially simplified and, as it has been already
mentioned, this case coincides with that for a degenerate nanotube. Instead of
Eq.(12), we have:

C−1
t [nc + ∆n0(x)]

dna

dx
= [nc + ∆n0(x)]

dφ0
a

dx
− j

eµ
(14)

which gives us directly

na(x) = Ct

{
φ0

a(x) +
Vd

2
− j

eµ

∫ x

−L/2

dx′

[nc + ∆na(x′)]

}
(15)

where

j =
Vd

R
, R =

2
eµ

∫ L/2

0

dx

[nc + ∆n0(x)]
. (16)

The last expression is the ordinary Kirchhoff’s law, which is not surprising since
the condition A À 1 is equivalent to neglection the diffusion component of current.
Taking into account Eq.(11), we can re–write the last expression in terms of the
dimensionless channel conductance σ = jL/(nceµVd):

σ =

[
2

∫ 1/2

0

dt

1 + gΨ(t)

]−1

(17)

where
g =

2εVg

πenc ln (l/a)
(18)

and for nc = N,

Ψ(t) =
∞∑
0

(−1)n

(2n + 1)
cos[πt(2n + 1)] exp[−πd(2n + 1)

L
]. (19)

The σ(g) dependence has a cut–off voltage g0 = −Ψ−1(0) characterized by van-
ishing σ and strong increase of dσ/dg to the right of g0. The exact behavior of these
characteristics near the cut–off can be calculated analytically. They are determined
by the point of minimal equilibrium concentration, which in a symmetric structure
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is x = 0, and hence by the properties of Ψ(t) at small t. It can be easily shown that
in this region Ψ(t) ' π/2−arctan[exp(−πd/L)]−(π2t2/2) sinh(πd/L)/ cosh2(πd/L),
which allows us to perform integration in Eq.(17) and obtain

σ =

√
(g − g0) sinh(πd/L)√

2 cosh(πd/L)
,

g0 = − 1
π/2− arctan[exp(πd/L)]

.

(20)

Thus the transconductance s = dσ/dg diverges at the cut-off ∼ (g − g0)−1/2.

If nc 6= N, the result given by Eq.(20) will not change qualitatively. In this
case the function Ψ(t) contains additional contribution from φc(x). This function,
studied in more detail in 10, behaves non–analytically at x → ±L/2 but, similarly
to φg(x), has an extremum at x = 0 and can be expanded in this point. This
modifies the value of g0 and the coefficient in i but retains unchanged the square–
root character of σ(g) and the divergence of s.

The simplified expressions Eqs.(11),(14),(16),(17) neglected diffusion effects, which
is equivalent to the limit of zero temperature. The resulting carrier distribution
Eq.(11) does not take into account activation processes and simply gives ns = 0 for
all points where φ0

s(x) < −C−1
t nc. The potential φ0

s and the carrier concentration
acquire their minimal values at x = 0 and, hence, in the linear approximation, the
cut–off voltage g0 corresponds to the condition φ0

s(0) = −C−1
t nc and at lower g the

current is exactly zero. At non–zero temperatures the current at g < g0 will have
an activation character because of thermal tails of the carrier distribution function:
j ∼ exp(−∆/kT ) where ∆ = e

(−C−1
t nc − φ0

s(0)
)

is the barrier height. Since φ0
s(0)

depends linearly on Vg (see, for instance, Eq.(7)), the activation energy ∆ is directly
proportional to g0 − g. This means, in turn, that the above–mentioned singularity
of dσ/dg is fictitious. In fact, its g–dependence will have some maximum at g0 with
a sharp, temperature–dependent decrease at lower g. We do not consider here a
tunnelling, though this effect may be important, especially if the carrier effective
mass is small, as in the case of a single–wall nanotube. The tunnelling is easily in-
cluded in a Wentzel–Kramers–Brilloin approximation 15 (details of the calculation
for single–wall nanotubes can be found elsewhere 16).

5. Current–voltage characteristic of the channel

So far we have dealt with the linear channel conductivity and transconductance at a
low source–drain voltage Vd. Another important FET characteristic — the channel
current–voltage characteristic (IVC) — and its dependence on the gate voltage and
the temperature, can be obtained only by a numerical solution of the Eqs.(2),(3). It
is convenient to use dimensionless variables measuring concentrations in units of nc,
lengths in units of L, potentials in units of enc/ε and current in units of e2n2

cµ/(Lε).
The new dimensionless gate potential is related to the parameter g introduced in
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Sec.4 as Vg = (πg/2) ln (l/a) . For these dimensionless units the basic equation (2)
acquires the form

j = n(x)
dφ

dx
−

[
2 ln

(
l

a

)
n(x) + τ

]
dn

dx
(21)

where τ = εkT/(e2nc) is the dimensionless temperature. The potential consists of
three parts: φ(x) = φc(x) + φg(x) + φa(x) describing the influence of contact work
function, gate voltage and source–drain voltage and proportional to N −nc, Vg and
Vd, respectively. The particular form of these terms depends on the geometry of
contacts and, e.g., for bulk contacts is given by Eqs.(7),(8). The dimensionless
version of Eq.(3) for nanotubes can be easily derived from Eq.(21) by assuming
τ = 0 and replacing 2 ln (l/a) → εC−1

t .

Eq.(21) should be solved with the two boundary conditions: n(±1/2) = 1, which
determine the integration constant and the so far unknown value of j. Since φg(x)
is proportional to Vg and φa(x) is proportional to Vd, the resulting solution gives
us the IVC of a nanowire j(Vd) for various gate voltages.

For our numerical calculations we choose particular values ln (l/a) = 3 and
d/L = 0.3. Calculations were performed for two situation: ideal Ohmic contacts
with nc = N and undoped nanowire (nanotube) with injecting contacts: N = 0.

5.1. Ohmic contacts

In this case the component φc(x) in Eq.(7) is absent and the dimensionless threshold
voltage Vg0, being estimated with Eq.(20) (that is, in the limit of low temperatures),
is equal to -12.8 for our set of parameters. Fig.2 shows IVC at two gate voltages:
Vg = −13.2 (below the threshold) and Vg = −12 (above the threshold). All charac-
teristics have a superlinear character, which has a simple explanation. High driving
voltage Vd tends to distribute carriers uniformly along the channel. In our condi-
tions when powerful contact reservoirs fix the concentration n at the points where
it is maximal, at the source and the drain, such a re–distribution will increase the
minimal value n in the center of channel and hence increase conductivity of the
latter. Such superlinear behavior experimentally observed in nanowire–based tran-
sistors 17,18,19,20 differs noticeably from a sublinear dependence typical for both bulk
FETs and ballistic nanotube 21,22,23 structures. We assume that the mechanism of
the IVC saturation is due to the contact resistance Rc not included in our the-
ory. When the channel resistance becomes much less than the contact resistance,
R ¿ Rc, almost all the bias drops at the contacts and the current saturates at
Vd/Rc.

Fig.2 presents also information on temperature dependence of the channel con-
ductivity. This dependence is practically absent above the threshold. The IVC
curves for Vg = −12 at different temperatures do not deviate more than by 10%
from the dashed line corresponding to a fixed temperature τ = 0.2, and for this
reason are not shown in the figure. For Vg below the threshold and for not very
large Vd, Fig.2 demonstrates a strong temperature dependence of the current shown
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Figure 2: IVC of a 1D FET with d/L = 0.3 and Ohmic contacts at different gate
voltages: Vg = −12 (dashed line) and Vg = −13.2 (solid lines) for the temperatures:
τ = 0.05 (1); 0.1 (2), and 0.2 (3). (Curves for all three temperatures and Vg = −12
coincide.)

in more details in Fig.3. The current is calculated for low Vd = 0.1, correspond-
ing to the initial linear part of the IVC. Two upper curves, corresponding to the
above–threshold Vg, have no noticeable temperature dependence. In contrast, two
lower curves demonstrate such a dependence with the activation energy growing
with |Vg|, in accordance with the predictions of Sec.4. At high Vd, where contact
injection and electric field tend to create uniform carrier concentration equal to nc,

different IVC curves become closer and the temperature dependence collapses.

5.2. Injecting contacts

Though this case formally differs from that considered in the previous subsection,
it is only due to the presence of a term dφc(x)/dx in Eq.(21). As it can be seen
from Eq.(7), this derivative has singularities at the contacts, which complicates
the numerical calculations. To get rid of these singularities, we use the following
trick. In the closest vicinity of contacts the first term in the right side of Eq.(21)
tends to infinity so that we can neglect the coordinate–independent left side. The
remaining terms correspond to a quasi–equilibrium carrier distribution described by
Eq.(10) with φc playing the role of φ0

s. This formula gives the concentration profile
in the vicinity of contacts, which allows us to solve Eq.(21) numerically far from
the contact regions and match with this quasi–equilibrium profile as the boundary
condition.
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Figure 3: Temperature dependence of the 1D FET conductance in the linear regime
(Vd = 0.1) for the same device as in Fig.2 at Vg = −12 (1); −12.5 (2); −13 (3);
−13.2 (4).

Since in our case φc(x) < 0 (or, in other words, the electron concentration
is lower in the channel due to the absence of doping), we must obtain a lower
absolute value of the cut–off voltage and a lower transconductance as compared to
the previous subsection. For the same parameters as in Sec.5.1, the cut–off voltage
Vg = −7.64 as obtained by expanding Eq.(7) near the middle point instead of
expression (19) useful only for nc = N . Fig.4 presents the numerical results for the
case of injecting contacts. Qualitatively IVCs have the same character as in Fig.2
but a weaker dependence on Vg and the temperature is seen. The above–threshold
curve in Fig.5 (Vg = −6) is, as in Fig.3, practically temperature–independent (the
difference in the currents at τ = 0.05 and τ = 0.2 is less than 5%).

6. The role of contact geometry

6.1. 2D planar contacts

Due to a very weak screening in thin nanowires and nanotubes, the potential profile
φ0(x) and hence all FET characteristics depend noticeably on the geometry of source
and drain contacts 8,10,30,38. So far we have considered bulk, three–dimensional con-
tacts (Fig.1A). In many cases contacts to a wire have not bulk but planar character
representing highly conducting regions with macroscopic lateral sizes but very small
thickness (Fig.1B). In this case the profile of electric field between source and drain
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Figure 4: IVC of a 1D FET with d/L = 0.3 and injecting contacts at different gate
voltages: Vg = −12 (dashed line) and Vg = −13.2 (solid lines) for the temperatures:
τ = 0.05 (1); 0.1 (2), and 0.2 (3). (Curves for all three temperatures and Vg = −6
coincide.)

differs drastically from that for bulk electrodes. To confirm this statement, it is
enough to remember that in the absence of a gate the electric field between the
bulk electrodes is uniform, whereas for the two–dimensional electrodes it has sin-
gularities near the contacts.

To find φ0(x) in 2D case, we must solve the Laplace equation in the system
of coplanar source and drain semi–planes parallel to the gate plane. We split the
total potential created by this system, Φ(x, y), into symmetric and antisymmetric
part: Φ(x, y) = Φs(x, y)+Φa(x, y) and find these parts separately from the Laplace
equations with the following boundary conditions:

Φs(x, 0) = Vg, Φs(x > L/2, d) = 0,
∂Φs

∂x
(0, y) = 0;

Φa(x, 0) = 0, Φa(x > L/2, d) = Vd/2, Φa(0, y) = 0 (22)

and then we find φ0(x) = Φ(x, d).
To solve these problems, we apply the conformal mapping

πz

2d
= ln

(√
w +

√
w − 1

)
+ β

√
w − 1

w
(23)

transforming the first quadrant at the z = x+ iy plane with the cut x > L/2, y = d

into the upper semi–plane at the w = u + iv plane 24 so that the source electrode
corresponds to the semi–axis u < 0, the semi–axis y > 0 — to the segment 0 < u < 1
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Figure 5: Temperature dependence of the 1D FET conductance in the linear regime
(Vd = 0.1) for the same device as in Fig.4 at Vg = −6 (1); −7.6 (2); −10 (3).

and the gate electrode — to the remaining part of u –axis. The parameter β in
Eq.(23) is to be found from the equation

L

d
=

4
π

[√
β(β + 1) + ln

(√
β +

√
β + 1

)]
. (24)

It increases monotonically with L/d with the following asymptotes: β ' [πL/(8d]2

at L ¿ d and β ' πL/(4d) at L À d.

In the (u, v) coordinate system the Laplace equations with the boundary condi-
tions Eq.(22) can be easily solved:

Φs(u, v) = Vg

{
1− 2

π
Im

[
ln

(√
u + iv +

√
u + iv − 1

)]}
; (25)

Φa(u, v) =
Vd

2π
arctan

( v

u

)
. (26)

Note that in Eq.(26) the argument of (arctan x) is in the (0, π) interval. These
equations along with Eq.(23) determine implicitly the potential profile created by
two–dimensional electrodes.

Though we cannot transform analytically the solution Eqs.(25),(26) into the
(x, y) coordinate system and obtain φ0

s,a(x) explicitly, some analytical results could
be, nevertheless, obtained. The FET characteristics near the cut–off are determined
by the concentration profile n(x) in the vicinity of the minimum of φ(x). We will
perform expansion of φ(x) in Taylor series near this point. For small Vd this is the
point x = 0 which means that we need to know only φ0

s(0) ≡ Φs(x = 0, y = d) and
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the second derivative of φ0
s in this point. In (u, v) coordinates the above–mentioned

point is (u0, 0) where 0 < u0 < 1 and is determined by the equation

arctan
√

1− u0

u0
+ β

√
1− u0

u0
=

π

2
. (27)

Fig.6 shows the dependence of u0 on the parameter L/a obtained from Eqs.(24),(27)
and having the following asymptotes: u0 ' [πL/(8d)]2 at L ¿ d and u0 ' 1−4d2/L2

at L À d. By substituting this u0 and v = 0 into Eq.(25) we obtain φ0
s(0) also

shown in a Fig.6. It has the asymptotes: φ0
s(0) ' VgL/(4d) at L ¿ d and φ0

s(0) '
Vg[1− 4d/(πL)] at L À d. The curvature d2φ0

s/dx2(x = 0) was also calculated and
presented at the same figure.

6.2. 1D wire–like contacts

It is appealing to fabricate the contacts to the 1D channel in the form of two thin
wires perpendicular to the channel (see, e.g., 25). This is geometry of a 1D contact
as it is shown in Fig.1C. If we assume these wires to be infinitely long (which means
that their length considerably exceeds L) and have the radius ac, then the potentials
can be calculated relatively simply as the sum of potentials created by 4 cylinders
(source, drain and their images in the backgate):

φs(x) = Vg +
Vg

ln (L/ac)
ln

(x + L/2 + ac)(−x + L/2 + ac)√
4d2 + (x + L/2)2

√
4d2 + (−x + L/2)2

; (28)
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φa(x) =
Vd

2 ln (L/ac)
ln

(x + L/2 + ac)
√

4d2 + (x + L/2)2

(−x + L/2 + ac)
√

4d2 + (−x + L/2)2
. (29)

Calculations of the transconductance in the linear regime are based on the same
formula Eq.(17) as in the Sec.4. The quantitative difference is in a particular profile
of the Ψ(t) function. Though its expansion near the maximum is, of course, also
quadratic and hence it gives qualitatively the same final result di/dg = A(g −
g0)−1/2, the expansion coefficients are different. As a result, the cut–off voltage
g0 and the coefficient A may differ considerably from the case of bulk contacts.
The whole IVC, as before, must be found by numerical calculations taking into
account the fact that for two–dimensional contacts not only φc(x) but also φg(x)
have singularities near the contacts. Thus one has to match the numerical solution
in the middle of the channel with an analytical quasi–equilibrium solution in the
region near the contacts as described in Sec.5.2, even for the Ohmic contacts.

7. Hysteresis and memory effects

The theoretical model considered in the previous sections gives a general physical
picture and qualitative regularities describing electrical parameters of 1D FETs but,
being general, cannot account for all specific features observed experimentally. For
instance, some recent studies 26,27,28 demonstrated that IVCs of nanotube–based
FETs have a strong hysteretic effect revealed as a difference in the threshold gate
voltages measured for Vg swept in positive and negative direction. A similar hys-
teresis is known to exist for Si devices and exploited for the memory elements 29. By
analogy, it was supposed that these nanotube FETs may also become nonvolatile
memory elements operating at the few–(single–)electron level even at elevated tem-
peratures. In Si devices hysteresis is usually explained by generation/recombination
of electrons at the traps in the oxide layer (the so–called slow surface states). In
our case, we may expect a similar recharging stimulated by the channel–gate elec-
tric field (the Fowler–Nordheim effect). This field in quasi–1D–systems is ∼ a−1

in the vicinity of channel and, hence, can be very high. One may therefore expect
the memory effects to be observed at lower Vg, as compared to classical FETs.
The described electron tunnelling to (or from) dielectric layer causes potential re–
distribution in the system resulting in a shift of the threshold voltage. Due to a
low tunnelling probability, the characteristics time of corresponding charge trans-
port may exceed the inverse frequency of Vg sweeping, which is consistent with the
observed hysteresis.

For further phenomenological description we assume that the distribution of this
charge is cylindrically symmetric. For FET model with a cylindrical gate (see, e.g.,
30) it is definitely the case. Moreover, we may expect this assumption to be also
correct even in the planar gate geometry discussed in the previous sections if the
nanotube/nanowire is completely buried in the oxide. According to the general ex-
pressions of Sec.2, we can claim that the shift of threshold voltage due to recharging
of traps in the dielectric
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δVg0 =
eδN(0)

Ct
, (30)

where δN(0) is the linear density of such charged traps taken at x = 0 since this
point plays the role of a ’bottleneck’ determining the offset of channel current.

The value of δN(0) is found from the generation–recombination equation de-
scribing recharging of traps through the Fowler–Nordheim mechanism. If the max-
imal possible δN(0) is limited by the total density of empty traps in a thin shell
accessible for tunnelling electron, N0,

‡then its dynamics is dictated by the equation

dδN(0)
dt

=
Jσ

e
[N0 − δN(0)] . (31)

Here σ ' 10−17cm2 is the cross–section of the generation (and recombination) 31,
and we estimate N(0) = 1013 cm−2 33. The Fowler–Nordheim current density
depends on the electric field near the FET channel E , which in turn depends on the
potential and the radius of the 1D channel R (and logarithmically depends on the
gate distance d): E = φ/(R ln(d/2R)).

J = Aφ2 exp(−B/φ) (32)

where the constants A ' 105 A cm−2V−2 and B ' 150V are known for tunnelling
in typical materials 32 and depend mostly on the effective mass of the carriers and
the trap level.

Eq.(32) has been solved numerically and the result depends on the sweeping
rate (SR) and the sweeping range of Vg that reflect the specifics of a particular
experiment with a nanotube or nanowire FET. The physics of this dependence is
clear: the slower Vg is swept and the larger is the sweeping range, the larger the
density of injected electrons (cumulative charge in the substrate in our case), and
thus the larger the hysteresis in accord with Eq.(30). The results of our modelling
are presented in Fig.7. The potential of the ionized impurities creates an additional
term (30) in the external potential as given by Eq.(7). This term is plotted in the
figure as a function of the gate voltage. This extra term shifts the threshold voltage
as given by expression (20). The shift is different for different direction of the gate
voltage sweep, because the traps are charged/discharged when the voltage is swept
up/down.

The dependence of the hysteresis width, H, on the sweeping rate is close to
logarithmic. We explain this by the exponential dependence of the steady state
solution of the Eqs. (31,32) on the electrostatic potential, then, the potential itself
is roughly proportional to the log δN which is proportional in turn to the sweeping
rate. Similarly, the hysteresis increases with the sweeping range as shown in Fig.8.

‡For large N0, the maximal δN(0) can be limited not by the absence of empty traps but by the
drop of the local channel–gate electric field making the tunnelling rate too small to be observed
in real time.
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Figure 7: The potential induced by ionized traps vs. the sweeping rate of Vg. Inset:
log–linear plot of the hysteresis width, H, vs the sweeping rate.

Following the theory of Sec.4, we can write the FET drive current density in
a linear regime via the integral of the inverse quasi–equilibrium charge density,
Eq.(16). Since in this section we are mostly interested in describing the effect of
the hysteresis, for clarity of the presentation, we apply a toy model with the full
axial symmetry of the cylindrical gate and trap potential. This approximation may
though give a realistic estimate for the device with planar gate geometry which was
discussed in the rest of the paper. This is because the transport at the threshold
mostly depends on the potential profile at the middle of the channel, where it is
almost flat. We note that in this model the effects of the fringe fields at the channel
ends and all contact phenomena are fully neglected.

If all potentials have full cylindrical symmetry, the integration along the channel
length is trivial and gives for the driving current density:

j = Vd
eµ

L
(nc + ∆n0(x)). (33)

where µ = 9000 cm2/Vs, d = 500 nm and L = 10d = 5µm is the effective length
of the FET channel (the length over which the potential can be considered flat
within the cylindrical model). We conclude that in the cylindrical gate model, the
current in the linear regime is a linear function of the channel charge density as in a
standard MOSFET. Substituting the parameters as specified above, we obtain the
IVCs, shown in Fig.9.

8. Conclusions

The present work is devoted to the theory of nanowire and nanotube based transistor
structures, which represents an important step towards developing a general theory
of nanoscale 1D devices. In the framework of our problem we model a carrier
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distribution and a conductivity in a quasi–1D channel placed between two metal
electrodes over a backgate electrode. This structure is in fact a 1D FET. For details
on the fabrication and experimental investigation of nanowire FETs in the recent
years we refer to publications 18,20,34. To give an adequate theoretical description
of basic characteristics of a 1D FET is the main task of our calculation. These
results, with some restrictions, can be applied to such important object as a carbon
nanotube FET 22,35,36. The mentioned restrictions are due to the fact that we treat
the carrier motion in a channel within a drift–diffusion model while short carbon
nanotubes are believed to have a ballistic conductivity 8,13,37. That is why the
universal nanowire and nanotube model presented above is presumably applicable
to the nanotube devices with a long enough channel only. We note that our theory
in the part related to the induced potential profile is still applicable to any 1D
device which is at the equilibrium (or very close to it) because the calculation of
the equilibrium charge distribution does not depend on any assumption about the
charge transport mechanism.

We focus in this paper on a universal analytical solution for the transport equa-
tions in a 1D channel under the drift–diffusion approximation, which has not been
formulated previously. An essential difference for the 1D–FET model as compared
with a standard planar FET model is due to the poor screening at the low dimen-
sions. Thus, the channel resistance, which is shown to depend on the self–consistent
charge density in the channel, can be more effectively controlled by the gate voltage.
Although the operation principle of the 1D–FET is similar to the planar device, dif-
ferent electrostatics for the 1D channel results in a different behavior and in different
device characteristics. For example, the transconductance at the threshold, unlike
in a bulk FET, has a typical dependence ∼ 1/

√
Vg − Vg0. With a lower (leakage)

OFF currents observed recently in 1D–FET, this makes these devices very attractive
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for electronic applications.
We have shown above that our transport model may have a straightforward

generalization to a case of existence of movable/ionizable charges placed around
the channel. This problem has a direct relevance for nanotube FETs and for a
few of nanowire devices (to be discussed elsewhere). The model of the hysteresis,
responsible for the memory effects in nanotube FETs, is presented. We calculated
the typical IVCs taking into account the generation/recombination at the charge
traps within a simple toy model (of a cylindrical gate) for an effective channel
resistance. We note that a similar approach describes adequately the 1D FET with
a chemically or bio–functionalized channel (to be published elsewhere).
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