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Abstract. An extremely quantized 0D system is studied for better understanding of an importance
of many-body corrections to an one-electron spectrum. A new approach is proposed to describe
the correction appearing as a depolarisation level shift of a (confined) electron moving within an
electric field of a (confined) collective mode. For a quantum dot the correction diminishes at
the size about 104−105 atoms, depending also on other system parameters. For a closed-shell
carbon cluster the effect does not depend on the cluster size owing to stronger quantization and
the one-electron estimation does not fit anywhere. For the semiconductor quantum dot system an
experimental method to check the depolarisation model is proposed.

In the paper we study an anomalous large level shift, resulted from the interaction of an
electron in a 0D-system with zero-point oscillations of confined modes of the electric field.
Of course, any complete many-body theory, taking into account all the Coulomb interaction,
gives the correct value for the electron levels, though it is not known for present. We go
to reveal an important correction treating the effect of valence electrons of a 0D object,
which can be a spherical quantum dot and a closed-shell fullerene cluster, selfconsistently.
Then the theory remains to be semi-classical while a nature of the effect is quantum-
electrodynamical. This continues our consideration of C60 in frame of a simple quantum
mechanical model of the spherical-shell quantum well (SSQW) [1].

The energy correction depends on the system radius. This size scaling of the depolari-
sation is computed within an approach proposed by Migdal [2] for a calculation of Lamb
shift in a hydrogen-like atom. The shift of the one-electron level is quite predictable and we
will show that its amount becomes very large for the quantized system. The closed-shell
fullerene depolarisation is of the order of the bare energy and independent of the cluster
radius while the shift in the quantum dot decreases with the increasing number of atoms.
Between two examples — a fullerene carbon nanocluster and a semiconductor quantum
dot structure — the latter has not only theoretical importance. The possible experimental
manifestation of the depolarisation effect is proposed basing on the spectroscopy of the
quantum dot levels for different matrix materials.

1. Theory for depolarisation level shift: C60

1. The use of the group of full rotations, SO(3), allows one to label the one-electron states
and to get analytically the solution for the selfconsistent RPA response function of C60 [1].
A peak of a collective excitation shows up in this spectrum, resulting from fast coherent
oscillations of a total electron density of valence states. This surface density oscillation
can be thought as a confined electrical field mode or the surface plasmon.

We have considered semiclassically the LS for an arbitrary shell object in [3], followed
to Migdal [2]. The frequency of the zero-point fluctuations of the external field is much
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higher than the inverse period of the electron orbit ωp � π/τ . Therefore, the adiabatic
approximation has to be used and one divides the fast (field) and slow (electron) variables.
An electron is subjected to short fast deflections from its original orbit in the high-frequency
field of the electromagnetic wave of the zero-point fluctuation. Then the energy shift is
given by the second order perturbation theory as

δE = 〈H(r + δ)−H(r)〉 =
〈
∇H · �δ + 1

2
∇2H �δ · �δ + . . .

〉
= 1

4
∇2H δ2 + o(δ2) (1)

where H(r) is the unperturbed Hamiltonian and H(r + δ) is the Hamiltonian with account
for the random electron deflection δ. The angle brackets represent the quantum mechan-
ical average over the fast variables of the field (or, the same, over the random electron
deflections). The perturbed Hamiltonian is expanded in series on the δ and a first nonzero
contribution is taken.

The expression for the mean square of the deflection, δ2 was deduced in Ref. [3].
Though the estimation is semiquantitative, the deflection is of the order of atomic unit,
aB  0.53 Å. The δ2 in the SSQW does not depend on the radius, neither on the number
of atoms because of the density of the valence electrons is the same.

Let suppose that one-electron model works for some cluster CN . The one-electron
Hamiltonian reads as [1]:

Ho = En + �
2/2mR2 L̂2, (2)

whereEn is the energy of a lowest level of n-th radial series; an orbital quantization energy
�

2/mR2 defines the SO(3) level spacing between eigenstates of the angular momentum
operator. The SSQW level shift reads as follows:

EL = E
(0)
L

(
1+ κL̂2/N

)
, (3)

where κ ∼ 0.36 is the numerical coefficient depending only on b, the carbon bond length:
κ = √aB/bπ

2/22.5/3.
2. Within the closed-shell model the optical gap occurs between the levels |LF〉 and

|LF+1〉. Within the closed-shell approximation the Fermi momentum fulfills the condition
N = 2

∑LF
L=0(2L + 1) = 2(LF + 1)2. The gap value does depend on the cluster size,

decreasing to the zero as N going to infinity in order to approach the gapless graphite.
The depolarisation makes the gap wider. The renormalisation is universal for any

closed-shell spherical cluster and amounts about 40% to the bare value:

Eg = E(0)
g (1+ κ)  1.36E(0)

g . (4)

where the parameter κ  0.36 is the same as before.

2. Depolarisation energy level shift in QD structure

1. In order to evaluate the LS for the quantum dot (QD) the simplified spherical model in
frame of an effective mass approximation was applied. The size scaling of the depolarisation
shift is not sensitive to the model used, being dependent mainly on the corresponding density
of states of the collective modes.

The simplest QD Hamiltonian is considered to have only the rotational correction which
reads as:

δH = L̂2

2mR2

(
−2

δ

R
+ 3

δ2

R2 + . . .

)
(5)
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where R is about the spherical QD radius; m is the electron mass which is supposed to be
constant within the dot; L̂ is the angular momentum operator.

Nearly self-evidently the bulk plasmon shift is negligible. The small factor, contained
in the 3D LS, comes essentially from the expression for δ2 which scales as 1/N [3], where
N is the number of atoms in the QD. The mean square deflection, caused by the 3D mode
(which is not confined at all), decreases with N too rapidly.

The square of the deflection [3] δ2 = e2/4m2
∫
d3k E2

k /ω
4
k is proportional to the

square of the electric field strength. The field strength can be rewritten as the zero-point
oscillation frequency E2

k = 2π�ωk through the quantized field normalisation. The 3D
plasmon frequency does not depend on the quantum number k. Hence, the mean square
deflection contains the total number of states effecting on the electron level in the QD.
The integral is limited above by kmax ∼ 1/R. In 3D-case it brings the factor R−3 ∼ N−1

claimed in the beginning of the section. Then the depolarisation level shift due to 3D modes
scales with N as follows:

�3D = δE

E(0)
∝ N−5/3. (6)

The rude estimation of the prefactor shows that even for the small QD with N = 100 the
shift is 10−6 of the bare energy and will not be resolved because of a number of other
different factors effecting the level position.

To give a complete picture, the standard LS due to the zero-point oscillations of the
free electromagnetic modes of the vacuum reads as follows: �vac ∝ α3N−2/3, where
α  1/137 is the fine structure constant. Though the slope of the LS in N is much slower
than in Eq. (6) the prefactor is tiny because of α3.

2. Two possible candidates for the confined plasmon modes in the QD system are the 2D
plasmon and the 0D spherical mode. The former mode can arise because of some interface
possibly grown within the structure (see inset in Fig. 1). It might be a wetting layer, if it
is thick enough to confine the electromagnetic field. The 2D plasmon naturally originates
at the boundary between the semiconductor structure and a distinct substrate. The scaling
in N will have a lower exponent that reflects the different density of the confined field
(plasmon) states: �2D ∝ N−7/6. The shift depends on the inverse size nearly linearly.
However, the prefactor dominates at some moderate size of the QD and lessens the LS
to 10−3 for N = 100. The depolarisation is still to be too small to expect experimental
consequences.

3. The δ2 considered above the less, the larger the QD size, that is not the case for the
deflection due to completely localized modes like in Sec. 1. In this section the localized
modes are the surface plasmons of the spherical inclusion (with the dielectric function ε1)
in the matrix (with the different dielectric function ε2). � ∝ N−2/3. Our estimation shows
that the level correction, becoming of the order of 50%, plays the important role for the
QD of 100 atoms and smaller. We collected all studied contributions to the depolarisation
LS and plot them in the log–log scale versus the QD size in Fig. 1.

The depolarisation because of the localized surface QD modes is large enough to propose
an experiment supporting our model. It is easy to check that δ2 ∼ ω−3

L , which is nearly
the frequency of the bulk plasmon in the matrix (with the weak dependence on the mode
angular momentum, see [3]). Therefore, changing the optical properties of the matrix
surrounding the QD, one shifts the levels. If the bare energy level lies deep in the potential
well, its position is nearly independent of the well depth which changes along with the
matrix parameters. The deep bare level energy depends only on the well width. Hence, the
depolarisation LS is distinguishable from the standard space quantization LS.
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Fig. 1. The level shift of the QD electron, calculated for 4 different depolarisation mechanisms.
The slopes and the prefactors of these depolarisation shifts were derived analytically. Inset: The
scheme of the QD structure to model.

In summary, the effect of the zero-point oscillations of the free and confined electromag-
netic field on the level of the confined electron in the 0D-system, as the closed-shell carbon
cluster and the spherical QD, is studied. The depolarisation due to an interaction with
the zero-point fluctuations shifts up the bare one-electron state. The gap renormalisation,
which follows from the angular momentum dependent LS in the fullerene cluster, is shown
to be independent of the fullerene radius. The size dependence of LS in the QDs is different
for 4 modes considered in the paper. Although, in general, the depolarisation decreases
with the QD size, the localized surface electromagnetic mode results in the essential level
shift and is to be possibly resolved experimentally for a QD made from some hundreds
atoms. Another method to detect the effect could be a measurement of a deep level position
of the similar QDs buried by the substrates with distinct optical characteristics.
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Abstract. Resonant tunneling is employed to probe the inhomogeneous strain in silicon-based
quantum dots. When submicron structures are etched from a p-Si/SiGe/Si double-barrier het-
erostructure, the resonant I (V ) peaks shift and develop a fine structure consistent with pronounced
strain relaxation in the SiGe quantum well. We calculate the strain dependence on dot size by finite
element techniques and convert the strain to an effective lateral confining potential. In sufficiently
small dots, we find that the inhomogeneous strain confines carriers not only to the central core, as
in GaAs-based dots, but also to a ring-like region at the perimeter. We probe the resulting density
of states by magnetotunneling I (V, B) measurements.

Introduction

When a semiconductor nanostructure, like a quantum wire or a quantum dot, is fabricated
from strained epitaxially grown material, the originally homogeneous strain is replaced
by geometry-specific strain gradients. The symmetry-based analytic treatment [1] for
handling the biaxial strain in lattice-mismatched materials no longer suffices, particularly
for quantum dots which lack translational symmetry altogether. Instead one turns to finite-
element calculations of the strain field based on linear elastic models, but their applicability
to structures whose size D might be down to tens of lattice constants is not self-evident.
Thus, any experimental technique that is sensitive to inhomogeneous strains provides a
valuable test bed for the validity of finite-element techniques for strained nanostructures−
in our work, the experimental probe will be the resonant tunneling current-voltage I (V )
measurements.

Further, inhomogeneous strain in semiconductor nanostructures is taking on additional
technological relevance, as advances in strained layer epitaxy and ongoing device miniatur-
ization promise the arrival of deep submicron bandgap-engineered devices, such as strained
Si/SiGe HBTs for high-frequency analog and digital applications. Particularly interesting
is the use of strain-driven self-assembly of quantum dots in semiconductor lasers [2] to
enhance gain and shift the lasing wavelength. In such devices, strain relaxation is the key
to the size and morphology of the quantum dots, as well as the optical transition energies.

Finally, it is important to note that inhomogeneous strains in quantum nanostructures
can contribute to carrier localization in unpredictable ways. Over the past decade, quantum
dots have been extensively investigated as systems containing a few spatially confined
charge carriers [3–5]. However, most of these experiments probed dots made from lattice-
matched GaAs/AlGaAs heterostructures, in which the carriers are confined to the central
region of the dot by a roughly parabolic lateral potential arising from the gate potential or
the pinning of the Fermi level at the surface. In our strained Si/SiGe quantum dots, the
inhomogeneous-strain-induced lateral confinement potential is nonmonotonic, leading to
an effective potential minimum near the perimeter of the dot. For sufficiently small dots,
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Fig. 1. (a) SEM micrograph of a representative double-barrier nanostructure with lateral dimension
D ∼ 0.15µm. (b) Self-consistent potential profile of the Si/SiGe double-barrier active region at
V = 150 mV. (c) Resonant tunneling I (V ) of a large D = 2µm device at 1.7 K, with the HH peak
magnified ×35 for clarity.

this potential confines the ground state to a one-dimensional (1D) ring-like region near the
perimeter − a new type of structure expected to have interesting magnetic properties.

1. Tunneling and strain in SiGe double-barrier microstructures

Our devices begin withp-Si/Si1−xGex /Si double-barrier heterostructures described in detail
in previous publications [6, 7, 8]. They are grown on p-Si substrates, with an undoped
active region consisting of Si barriers confining a Si1−xGex QW that is 35 Å wide with Ge
content x = 0.25 or 0.2 (corresponding to a lattice mismatch of∼1 and∼0.8% respectively).
Outside the barriers are p-Si1−xGex emitter and collector regions that serve as reservoirs
for tunneling holes.

When a biasV is applied between the emitter and collector, the holes in the emitter tunnel
via the quantized 2D hole subbands, subject to the usual energyE and transverse momentum
k⊥ conservation rules [9]. In large devices, the strain in the SiGe well can be taken as biaxial
and homogeneous, so the energies of the 2D subbands can be reliably calculated numerically
[6]. Figure 1 shows an SEM photograph of a device, together with a self-consistent potential
distribution in the active region under bias, and the I (V ) characteristic of a largeD = 2µm
Si/Si0.75Ge0.25 device at T = 1.7 K. The peaks correspond to tunneling through the two
confined 2D subbands, labeled HH and LH for the heavy-hole and light-hole branches of
the dispersion. The agreement with the predicted peak positions is excellent [6, 7], so the
peak positions reflect the energies of the quantized states in the SiGe well. In particular,
the energy separation �E between the HH and LH subbands arises in part from the strain-
induced splitting, which lifts the HH-LH degeneracy in the SiGe valence band [1, 10].
Thus, any significant change in the strain should be reflected in �E.
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Fig. 2. I (V ) characteristics with nominal lateral diameters of D = 1.0−0.25µm at 1.7 K. Current
scale corresponds to the smallest device, other curves are rescaled and the HH peaks magnified for
clarity. Vertical lines mark the HH and LH peak positions in large devices.

2. Average strain relaxation in SiGe double-barrier microstructures

When a narrow mesa is etched through the active region of our devices, the biaxially
compressed SiGe strained layers can relax by lateral displacement at the sidewall. We first
observed this effect experimentally some years ago [7] and it has been confirmed by others
[11]. Figure 2 shows the effect in a series of identically fabricated Si/Si0.75Ge0.25 devices
with D ranging from 1 down to 0.25µm. The I (V ) curves exhibit a consistent shift of
HH and LH peaks towards each other as D decreases, even as the I (V ) lineshape remains
largely unaffected. The effect is large, with changes in �E indicating a significant amount
of strain relaxation.

We compared the strain relaxation inferred from the data in Fig. 2 to finite-element
simulations based on a linear elastic model, in which the cylindrical structure was allowed
to relax to a minimum energy configuration [12]. The average values of strain relaxation
predicted by these calculations agree quite well with our experimental data, with the domi-
nant radial strain component εrr relaxing to ∼ 0.7 of the full lattice-mismatch strain when
D falls to 0.3µm. Interestingly, the simulated strain relaxation in the SiGe layers is non-
monotonic in the radial direction r⊥ and significant strain gradients exist throughout the
SiGe well in sufficiently small structures, D ≤ 0.25µm. The inhomogeneous strain leads
to additional lateral quantization in the confined 2D subbands, which we first observed
in [8].

3. Inhomogeneous strain in SiGe quantum dots

The calculated radial strain εrr in the SiGe QW and the corresponding strain-induced lateral
potential for HH states are shown in Fig. 3 as a function of r⊥ forD = 0.1−0.2µm devices
with a Si0.8Ge0.2 well. The inset shows the calculation geometry and lateral displacement
of the strained SiGe layers. First consider the radial strain εrr (r⊥) curves at the top of
Fig. 3. For D = 0.2µm, εrr decreases gradually with r⊥ except for a region of increasing
strain near the perimeter that extends ∼ 100 Å and reaches εrr ∼ 0.6.

This strained ring-like region exists for all D [8], [12], but for devices much larger than
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Fig. 3. The top curves show the calculated radial strain component εrr (r⊥) for D = 0.1−0.2µm
devices at the mid-plane of the Si0.8Ge0.2 well (full strain is εrr = 1). Inset shows the magnified
displacement of the finite-element mesh near the sidewall. The bottom curves are the corresponding
in-plane confining potentials for the HH states as function of r⊥. Dashed lines mark the confined
ring subbands in a D ∼ 0.15µm dot.

D = 0.2µm it can be taken as a perturbation to the inner core. On the other hand, in small
devices, D ≤ 0.15µm, the ring at the perimeter becomes the most highly strained region
in the device. The corresponding confining potential for HH states is shown by the bottom
set of curves in Fig. 3: in the smallest dots, the strain would confine holes to a 1D ring at
the perimeter.

Figure 4 shows the HH I (V ) peak of a D ∼ 0.15µm device fabricated from the
Si/Si0.8Ge0.2 double-barrier material, together with a reference lineshape from a large
device. The I (V ) lineshape exhibits very strong fine structure, corresponding to strong
lateral quantization due to inhomogeneous strain [8]. A full-blown calculation of the
expected density of states in such a quantum dot in the presence of the inhomogeneous
strain is complicated by the anisotropy and nonparabolicity of the in-plane effective mass
in the quantum well, but taking the in-plane HH effective massm∗ ∼ 0.25 we obtain several
radially quantized subbands in the perimeter ring separated by a few meV, see Fig. 3. Since
quantized ring-like subbands overlap in energy with the states in the relaxed central core,
they would be expected to contribute structure on top of the relatively smooth overall HH
peak lineshape. The energy separation of the ring subbands extracted from the structure in
the I (V ) agrees reasonably with the calculations of Fig. 3.

4. Magnetotunneling spectroscopy of strained SiGe quantum dots

The additional ring-like confinement of hole states in sufficiently small inhomogeneously
strained SiGe quantum dots provides a new and interesting system for magnetic field effects.
Figure 5(a) shows the evolution of the HH I (V ) peak fine structure in magnetic fields
B = 0−10 T (B ‖ I ), while Fig. 5(b) indicates the evolution of the I (V ) peaks converted
to an energy scale. In the absence of inhomogeneous strain, the B field would compress
the 2D subband density of states into Landau levels. Given a constant in-plane effective
mass, as in n-GaAs/AlGaAs double-barrier structures, the Landau level separation would
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Fig. 5. (a) Evolution of HH I (V, B) lineshape of theD ∼ 0.15µm dot withB; (b)B-field-induced
shifts and splittings in the density of states peaks in the dot.

be linear in B and the I (V, B) lineshape would show equally spaced features falling on the
usual Landau fan diagram [13]. Given the complex, nonparabolic dispersion of holes in
SiGe quantum wells, the Landau level spectrum is quite complicated even in a uniformly
strained well [14] andB-induced structure has only been seen experimentally at fairly large
B [6]. The data in Fig. 5 shows rather complex behavior, with some of the peaks shifting
towards lower energy with B, others appearing to repel each other, and some even splitting
around B ∼ 5 T. A theoretical analysis of ring-like hole states in a B field remains to be
performed.

5. Conclusions

We have investigated the effects of size-induced strain relaxation in strained SiGe quantum
dots. Our data indicate that large strain relaxation and nonomonotonic strain gradients ap-
pear in deep submicron structures, in agreement with finite element simulations. We also
see evidence for confinement of carriers to ring-like regions at the perimeter due to inhomo-
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geneous strain. Our measurements prove resonant tunneling to be a viable spectroscopic
probe for strain effects in individual nanostructures.
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[6] A. Zaslavsky, D. A. Grützmacher, S. Lin et al., Phys. Rev. B 47, 16036 (1993).

[7] A. Zaslavsky, K. R. Milkove, Y. H. Lee et al., Appl. Phys. Lett. 67, 3921 (1995).
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