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The paper introduces a plasmon-Frenkel-exciton model [1] for fullerene solids and explains a possible reason for the
formation of van-der-Waals C60 cluster complexes. The interaction of the cluster and an organic (non-polar) liquid
solvent will be considered. The motivation of this interest is related also to experiments on the photoclusterization
in the water solution [2] and cluster formation in beams [3].

ENERGY OF VAN-DER-WAALS INTERACTION

Typically van-der-Waals energy is given by shift of plasmon zero-oscillation energy in a solid comparing with a
single cluster. This shift is due to Coulomb interaction between clusters. The origin of the van-der-Waals forces is
the same as the origin of depolarization shift of dipole frequency in a dielectric medium. One can easily calculate this
depolarization shift following the method of the mean �eld for the case of cubic crystal and for rotationally invariant
system (liquid, for example). That is valid for fullerene condensed matter, which forms fortunately face-centered cubic
lattice with four clusters in a cell.
Let us calculate the mode frequencies taking into account a dipole-dipole interaction. It was shown that higher

multipole interaction terms can be neglected [4,5].
The dipole excitation of a single cluster is a basic unit in our consideration. An electron density of C60 is known to

possess a collective mode with the frequency about 25 eV. This is a surface plasmon on the fullerene sphere. It was
obtained within phenomenological model [6] as well as within more sophisticated approach (see [7-10]). We will use
the dipole plasmon as an elementary excitation of the fullerene "super-atom" unit.
The van-der-Waals interaction force can be written using the uctuation-dissipation theorem as an integral over

the frequency of the combination of dynamic polarizability of the C60 cluster and dielectric function of the medium.
Then this integral can be evaluated in the complex plane of the frequency. The collective plasma mode of the cluster,
having the maximal frequency between dipole excitations, makes the main contribution as an excitation having the
maximal oscillator strength.
Let us remind that the frequency of the dipole collective mode of C60 coincides with the plasmon frequency of a

hollow metal sphere [11]:
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here !1 is the dipole mode frequency, !p is the plasma frequency, 240 is the number of valence electrons of the cluster,
m and e are electron mass and charge. The sphere radius R is taken � 3:3 �A to describe the fullerene plasmon
properly. Considering the fullerene solid we use the Lorentz-Lorenz approximation basing on a high polarizability of
the single cluster, �, which reads as:
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We took �(0) ' R3 which is valid with a high accuracy [12]. A packing factor, coming into the dielectric function
along with the dynamic polarizability, is as follows:

� = 4���(0) = 4�
4

d3
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where � = 4=d3 is the density of the clusters, d ' 14:2 �A is the lattice constant. This results in � ' 0:79. The square
of dimensionless plasma frequency is conveniently used as a dynamic variable:

x = !2=!2

1:
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Then the Lorentz-Lorenz formula gives the high frequency limit of the dielectric function:
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1� �=3� x
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xL � x
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(4)

which in turn gives us a plasma longitudinal frequency ! = !1
p
xL ' 26:2 eV along with a transverse excitation

frequency ! = !1
p
xT ' 19:6 eV as zero and pole of the dielectric function �. Then the van-der-Waals energy is

simply a di�erence between the bare plasma frequency of the cluster and the frequency of the modes in the solid. It
reads as:
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2

24
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The only two parameters determining the van-der-Waals energy are the plasmon energy and the packing factor. In
the expression above we used the expansion on the small �. As it is seen from Eq.(5) the �rst order terms are cancelled
out. The interplay between the parameters !1 and � gives us also the plasma frequency on the boundary between
some mediums, in the liquid, in the medium with polarizable dopant and so on. We will discuss it at length elsewhere.
Substituting the numbers into Eq.(5) one gets the van-der-Waals energy about {1.1 eV per cluster in the solid. The
one of the �rst papers containing similar consideration to be mentioned is [8]. In the next section we will compare
the result with the energy in solution.

FULLERENE IN SOLUTION

The plasma frequency in a solution is lower than in a solid phase owing to the depolarization shift is much weaker
in any typical organic solvent than in a fullerene solid. The reason is that the fullerene cluster has the very high
frequency of the bare plasmon due to large number of highly polarizable electrons. A standard medium is nearly
transparent at this frequency. More precisely the dielectric function of the medium is slightly less than the unity at
the frequency of C60 plasmon.
Below we present a correct method of calculation of the frequency of plasma mode of C60 in a liquid insulator.

According [6], the surface plasmon in C60 is a spherical oscillation of electron density �LM . For central symmetry of
the cluster we use expansion of all quantities in complete spherical harmonics P

L
(r)YL;M (
) those form a complete

set on a sphere. In spherical geometry a radial jump in an electric �eld is given by:
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where 'ind is an induced part of the potential; L;M are the multipole power indexes. We close the equation system
by writing a response function, �, for fullerene cluster as:
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where 'act = 'ext + 'ind = 'ext
LM

+ 4�R�
LM

=(2L + 1) + 'sol
LM

is an acting potential. The selfconsistency of the
calculation is proved by using of this acting potential, including an induced potential of C60 plasmon as well as the
potential occurring owing to charge density induced in the solvent. Here �L(!) is the response function of a single
sphere. The equation (7) is easily obtained from classic charge liquid equations [6,7]. This consideration is more
general than our L = 1 case of the dipole plasmon mode. However, for the spherical symmetry Eq.(7) holds for any
multipole.
When the potential induced in the solvent is absent, 'sol

LM
= 0, we return to the bare plasmon frequency. The

corresponding bare dispersion equation reads as:
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We will simply change the unity to the dielectric function to take into account the potential induced in the solvent.
It follows from the substitution of Eq.(7) into Eq.(6) and taking the standard RPA sum. As a result the plasma
frequency in the solution is:
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The frequency is smaller than the bare C60 frequency. So far we obtain the plasmon in the single cluster, in the
fullerene solid and in the solution. We will use for the dielectric function of the liquid solvent the common formula:
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where !L is a typical longitudinal frequency of �(
), and !T is a transverse frequency. With this de�nition the
van-der-Waals energy can be written as:
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here �0 is the static permittivity of the solvent, which is related to the transverse and longitudinal frequencies. The
typical values for �0 is 2.3 for the benzene, 2.4 for the toluene. The van-der-Waals energy is about -0.2 eV for these
solvents. So we have to conclude that by this energetic reason the solid fullerene should be more stable than in the
solution.
Let us consider a fullerene dimer, the similar problem was solved in Ref.[5,6] for C119 molecule. The plasmon

frequency is split in an axial �eld. Therefore new modes bring the energy of interaction between clusters in the dimer.
Then the van-der-Waals energy of the dimer coupling reads as:
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where H ' 8 �A is the inter-cluster distance; here the last term comes from the solvent depolarization, it is a small
correction (about a percent) which will be neglected. The typical value of the van-der-Waals energy of the dimer is
about -0.7 eV.

PLASMON MODES IN ICOSAHEDRAL COMPLEX

Recent experiment shows that in fullerene beams the supercluster is forming [4]. The mass-spectra analysis signs
that the cluster of 13 C60 is especially stable. The most evident structure of such super-cluster is an icosahedron made
by central fullerene and closed packed shell of all other 12 clusters. Our aim is to �nd a solution for self-consistent
high-frequency polarizability of the supercluster and calculate the van-der-Waals forces. The poles of polarizability
as before are given by the frequencies of plasmon modes in (C60)13. We will briey discuss the method of calculation
of these frequencies for icosahedral system.
First of all, one has to evaluate a fullerene-fullerene interaction to obtain the shift of plasmon frequency in the

supercluster. It was shown for the fullerene dimer [6] that the dipole-dipole interaction is enough to be considered
(all higher multipole corrections are negligible). The same dipole approximation will be used below. The shift of
plasmon frequency of the central C60 depends on the acting �eld which is given by the sum of the �elds from all other
external fullerenes. The same time the �eld of the central cluster inuences on the external ones. Besides that each
external C60 has �ve more nearest neighbors acting on it. To account the mentioned above terms one has to solve
the dynamical matrix of dimension 39� 39. Each dipole plasmon has 3 components (which are, in general, not only
shifted but split).
The full solution of the problem will be given elsewhere. Let us show here the mean-dipole-moment approximation

of the problem which possesses the analytical solution and allows to evaluate the van-der-Waals energy. The exact
way to perform this approximation comes from the group-theoretical consideration.
The 13 fullerenes of the supercluster form �0, the reducible representation (RR) of the icosahedral group Y . The

dipole problem stated above has the Hamiltonian (dynamical) matrix forming another RR of Y group which is the
direct product of the dipole representation and �0. It can be expanded into the direct sum of irreducible representations
(IRs) of Y :

T1 � �0 = A+ 4T1 + T2 + 2G+ 3H (13)

where we use the standard notation A; T;G;H for IRs of Y with the dimensionality 1; 3; 4; 5. The triply degenerate
IR, T has an additional label because of there are two distinct IRs of such type in Y . Simple check of the overall
dimensionality judges that the expansion is not false: 1 + 12 + 3 + 8 + 15 = 39. This RR T1 � �0 contains only 3
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dipole active modes. What are them? If one considers the RR of single central cluster, one �nds only one icosahedral
IR, and it is exactly of such a type. The second IR comes from the spherically averaged 12-cluster shell of external
fullerenes. The last mode, having full icosahedral symmetry, has more complicated symmetry and will be discussed
elsewhere. Let us write the dynamical matrix in the following form:

���� x� 1 TC
TC (x � 1)I + TB

���� (14)

where the submatrices T C and T B depict the dipole-dipole interaction of central fullerene with the shell and the
interaction within the shell correspondingly and I is an identity matrix. Each C60 (excepting the central one) interacts
with �ve closest clusters from the shell and the central fullerene. Let describe more precisely the 6� 6 submatrices of
the interaction. The self-energy term x�1 � !2=!2

1�1 is as before given in units of the plasmon energy of the single
fullerene !2

1
. Without interaction this term gives the bare plasma frequency for each dipole plasmon mode, which will

be 6-ly degenerate in this case. The dipole-dipole interaction tensor reads as: �ij(e) =
1

R3
(�ij � 3 ei ej), where R is

the distance between dipoles and e = R

jRj . Then the interaction terms are given by: T B =
P

f2NN

�(f), where the

sum is taken over nearest neighbors (NN), and T C =
P
g2Y

�(g) for central cluster. The total matrix Eq.(14) gives us

all plasma mode frequency shifts.
The result is:

W ' �45
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(15)

here we evaluated the plasmon dipole momentum as eR. L is the distance from the center of supercluster to the
center of C60 in the shell, it could be about 10�A. Van-der-Waals energy of such cluster is about 3.1 eV.
In summary, we used a plasmon mode approximation for calculation of van-der-Waals energies of di�erent cluster

systems. The approach is shown to be consistent for the cluster{medium and cluster{cluster interaction. We applied
the method for the calculation of the van-der-Waals energy of formation of C60�13 supercluster.
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