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The electronic structure of C60 has been in the focus of interest of physicists
during the last decade. A variety of different theoretical approaches from purely
phenomenological to ab initio calculations has been applied to find the electron
energy structure and explain main experimental features. Among the experi-
mental data, the high frequency peak (∼ 25 eV) in the response of the cluster
calls our attention owing to the self-evident collective nature of the correspond-
ing excitation. It is clear now that the collective electronic excitation of C60

is the surface plasmon mode on the spherical cluster. Any Coulomb-including
calculation has to reproduce this feature. However, it is rarely pointed out that
mainly the global symmetry (SO(3) spherical topology of the cluster) influ-
ences the collective mode. The C60 electron structure symmetry reflects the
local triangular symmetry of the graphite-like lattice distorted by the global ho-
mology of the curved closed surface. The first will be shown to be of small
importance for the plasmon.

In relation to this we proposed a quantum mechanical model of spherical
shell quantum well (SSQW) for the C60 cluster [1, 2]. We found that elec-
trons freely moving within a thin spherical shell behave as a charged liquid at
high enough frequency (see below); for example, the SSQW gives a quantum-
mechanical description of the single cluster plasmon [1]. At high frequencies
the spherical surface plasmon determines the optical response of the spherical
nano-cluster or the spectrum of electron energy losses [3–5]. That is why it
is of interest how the simple hydrodynamic picture accords with the multi-
component nature of the σ and π electron system of the fullerene.

The spherical collective mode has a definite angular momentum, hence
its electric field is the field of a definite charge multipole. Of course, this
simplification fails in the case of a lower symmetry, for example, in a crystal.
This means that all spherical single-cluster collective modes have to interact.

The plasmon frequency is the highest frequency of the dipole excitation of
the total electron density of a quasi-spherical C60 molecule. This mode is triple
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Fig 1. The spherical shell quantum well (upper left) has a radial potential well at
the distance R from the coordinate origin (lower left). The energy levels of radial
quantization are shown schematically over the well. Two components of the electron
system correspond to two collective plasma modes. The dispersion law of plasma
frequency on the angular momentum of excitation (lower right) of σ-upper branch is
typical of the excitation of full symmetry, which is seen also in the potential radial
distribution (upper right) with one maximum at R. In contrast, the potential of the
π-lower plasmon has two maxima related to the shape of the π-electron wave function.

degenerate. Proper lowering of the SO(3) symmetry results in a splitting of the
degenerate mode, and, in general, mixing with different angular modes occurs.
When the dipole plasmon will interest us below, we will consider the dipole
plasmon frequency splitting due to the interaction and drop the mixing with
other excitations having higher multipole indices.

We discussed the particular problem of the collective excitation in the poly-
merized fullerene structures. We modelled the collective excitation in the chain
and in the plane of the fullerene clusters, supposing that an individual cluster
possesses a dipole plasma excitation. Then the excitation in the solid is a linear
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combination of single cluster dipole modes. The algorithm is the same as in the
case of formation of the Frenkel exciton in organic insulators, since no charge
transfer from cluster to cluster occurs.

We calculated the RPA frequencies for a chain and a monolayer of fullerene
molecules. It is well known that in these cases the dielectric function has a
transverse excitation branch owing to the inhomogeneity in a single direction.

1. Spherical shell quantum well

Being extremely simple, the heuristic model of SSQW is able to reproduce the
“closed shell” structure of C60. Within the model only three possible one-
electron configurations are ruled out in [2]. Moreover only the set which has 3
radial series is suitable for fullerene description. SO(3) symmetry allows one
to resolve the RPA dynamic polarizability of cluster. We used the sum rule in
the low-frequency limit to find the static polarizability of fullerene

α(0) = R3 1
1 + a/4R

(1)

where R and a are the shell quantum well radius and width (see Fig. 1).
Contrariwise, the high frequency limit [1, 2] reveals the classical polarizability
of the charged liquid [6] on the sphere surface

α(ω) = R3 1
1− ω2/ω2

1

(2)

where ω1 is the plasmon frequency. This limit of the frequency, higher than
all single electron transition frequencies, shows that the plasmon mode is in-
sensitive to the local lattice symmetry. The small parameter of the model, the
shell-width to shell-radius ratio, allows us to consider only the optical transi-
tions within the single radial series of SSQW. Then the transition frequency
within the model is the distance between two levels of orbital quantization for
an electron revolving in an orbit with radius R' 3.6 Å

~ω f ,i =
~2

2mR2
[Lf (Lf + 1)− Li(Li + 1)] (3)

for a transition between levels with angular moments Li and Lf , with m being
the electron mass.
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2. Interacting collective modes on the spheres

The SSQW system possesses some collective excitations like a conducting
sphere. Their frequencies read as

ωL = ωp

√
L(L + 1)

2L + 1
=

√
4πne2

mR

√
L(L + 1)

2L + 1
(4)

here ωp is the bare plasma frequency depending on the averaged surface electron
density n, effective electron mass mand charge e; L is the angular momentum of
the excitation. The larger the radius of the C60 sphere, the closer the collective
mode to the surface plasmon [7] of the 2D electron gas of the metal plane

ωL →

√
2πne2L

mR
∝
√

k‖ (5)

this limit R→∞, L→∞ is traced for the SSQW model in [1].
Two conducting planes possess a pair of plasmon modes [8], owing to

Coulomb interaction split depending on the mode wave number. A similar
situation is shown to exist for the fullerene dimer. However, we argue that the
picture is so simple only in the limit of infinitely large radius. For a dimerized
molecule (two coupled SSQWs) we considered a Coulomb interaction between
two spherical 2D-plasmons within the multipole expansion, showed numerically
that it converges fast and obtained a new dipole excitation. Its frequency is split
in the axial coupling field [9]

ωdim ' ω1

√
1±

1 + 3(−1)M

2

(
R
H

)3

(6)

here M = 0,±1 denotes 3 polarizations of the dipole mode, H ∼ 8–10 Å is the
center-to-center distance for dimer clusters. This analytical formula for splitting
is given as the first non-vanishing term in the multipole series, expanded in the
second power of the radius to the inter-cluster-distance ratio [10].

The high polarizability of the cluster leads to the coincidence of the quantum
mechanical result and the simple classical calculation [2, 6] if one includes the
interaction between electrons accurately, at least in RPA. It was suggested ear-
lier [6] that the two-component plasma on the sphere surface can be described
quantitatively with two phenomenological parameters: the restoring force for
the σ electron liquid and the displacement of the electron density from the
mean radius of the sphere. We point out that for the “empty lattice” the
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Fig 2. Each radial quantization level in SSQW results in a series of orbital quantization
levels (left). The selection rule for dipole-allowed transition leads to one strong optical
transition within each series and some weaker ones between the series. With the weaker
transitions neglected, the RPA polarizability α is plotted as function of the excitation
frequency ω (right). The last pole corresponds to the plasmon.

restoring force is zero, so the resulting frequencies of plasma oscillations still
depend only on the lattice potential strength, a meaningless parameter for the
continuous charged fluid approximation used. Instead of that we proposed the
Coulomb coupling between two plasma liquids with different radial symmetries
as a new possible origin of the σ–π plasmon splitting.

Within the SSQW model one gets a new parameter with a dimensionality of
frequency, e2/~C, where e and ~ are the electron charge and Planck constant,
and C is the capacitance of the system. When one takes the whole π electron
shell density to a distance ±a/2 away from the mean radius, R, where the σ
electron density is located, the capacitance is R(4R/a) within a small parameter
(a/2R)2 ' 0.1. We stress that our model represents qualitatively the two-
excitation-peak character of the plasma response of the fullerene as a result of
the Coulomb mixing between plasmons, but it easily includes any additional
terms. Hydrostatic pressure was considered in [11] as a simple example, which
results in the dispersion of the plasma frequency with the angular momentum
of excitation (see Fig. 2) like the volume plasma frequency disperses with the
momentum of the plasmon.

3. Plasmon–Frenkel-exciton in the clustered solid

In the spherical approximation, the collective intra-cluster modes are multipolar
electrical modes, and in the Born limit only the dipolar one is excited by
light. It is important to know the dielectric function of the clustered solid,
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which determines all electrodynamical properties of the fullerene structure. In
the high frequency region we described the excitation of the single cluster as a
surface plasmon. For the solid, the Coulomb interaction between clusters should
be taken into account. The problem has to be considered using the spherical
symmetry approximation and multipole expansion. The approximation of a
single oscillator strength holds, because all other dipole oscillator frequencies
for the clustered solid are split of and lie far below our plasmon frequency.

It is enough to consider only the dipole-dipole interaction between the collec-
tive modes on different clusters, neglecting the dipole-octupole interaction and
next-order terms. The one-dimensional-chain-plasmon was considered in [9].
The plasmon spectrum reads as

ω(k) ' ω1

√√√√1 +
1 + 3(−1)M

2

(
R
H

)3

2
N∑

n=1

cos(kHn)

n3
(7)

where k is the excitation wave number, M = ±1 denotes double degenerate
transverse branch naturally split off from the longitudinal excitation branch with
M = 0. We ascribe such a linear structure to the orthorombic polymerized
phase of the fullerene. The plasmon band dispersion laws were obtained in the
long-wave continuous limit kH� 1 analytically

ω(k) ' ω1

{
1 +

1 + 3(−1)M

4

(
R
H

)3 [
2ζ(3) − (kH)2

(
ln

1
kH

+
3
2

)]}
(8)

here the sum equals ζ(3) ' 1.202 at k = 0. The inhomogeneity of the system
in a single direction results in the appearance of a transverse branch. This
collective mode decays radiatively and can be excited by vacuum ultraviolet
(VUV) light.

The monolayer of the fullerene, recently obtained by photopolymerization
and by the vacuum deposition technique, is an interesting object for further
discussion. We investigated the coupling between the optically active modes
of the 2D-plane and the photons in the VUV region [12, 13]. Despite being
localised on the surface of the clusters, the single cluster plasmons in the lattice
are mixed via their electric field. This results in a new crystal excitation—
plasmon–Frenkel-exciton (PFE) [14]. As usual, the dipole–dipole interaction
calculation faces the lattice sum problem, hence we considered analytic asymp-
totes. For example the transverse-longitudinal splitting at k = 0 is

∆ωLT = ω1

(√
1 +

9
4

(R
H

)3
−

√
1−

3
4

(R
H

)3
)
' ω1

3
2

(R
H

)3
' 1.6 eV (9)
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Fig 3. The result of a numerical analysis of the dispersion law of 2D plasmon–Frenkel–
exciton. Two polarizations of plasmon excitation are shown: the dipole is aligned with
the wave vector of exciton (left) and the dipole is orthogonal to the wave vector and to
the normal to the plane (right).

The characteristic wavelength is about 400 Å which proves the continual dielec-
tric function harnessing. The PFE band structure and the dielectric function
calculation are very routine [15], excepting the excitation frequency region.
Since in our case the Frenkel exciton is constructed on the base of the plasmon,
the corresponding energy lies around 25–28 V.

4. Summary

The SSQW model demonstrated a transition from the quantum mechanical de-
scription of the collective mode determined by the global topology of the 2D
closed cluster surface to the phenomenological hydrodynamics. The proposed
method of calculating the Coulomb interaction between the plasmon modes
of two electron-liquids allows one to find consistently the single-cluster multi-
component response as well as to follow the analogy with collective excitations
in condensed matter. The longitudinal and optically-active transverse (for 1D
and 2D systems) excitations in the lattice of clusters have the same description
as the Frenkel exciton in an insulator. Their frequencies were computed us-
ing standard dielectric function formalism in the VUV region, thus simplifying
significantly the VUV spectroscopy data analysis.
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