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The shift of the electron energy level due to the coupling with the surface

electromagnetic mode of the cluster is studied. The energy shift is shown to

depend on the cluster size and to be much larger than the standard Lamb shift

due to the delocalized electromagnetic modes. The angular momentum theory

is developed for the calculation of the high-frequency response of the cluster

and applied, within the spherical approach, for the computation of the energy

shift in the fullerene as an example.

The zero uctuation of the electromagnetic vacuum are well known to manifest itself
as the Casimir force between close surfaces of polarizable substance, as the Van-der-Waals
interaction, as the origin of the radiative lifetime and the shift of the energy levels of the
charge carrier in the system placed in some cavity. The paper considers the shift of the
electron levels in the �eld of the zero-uctuations of the modes connected with the cluster,
the cavity or the quantum box.

The most simple manifestation of the inuence of the zero-uctuation modes is the energy
level shift (Lamb shift) which is the di�erence between the electron levels of the di�erent
symmetry those are to interact with the electromagnetic �eld in di�erent degree. We raise an
issue of the value of the level shift (LS) in a con�ned system (0D object). Its distinguishing
feature is the con�nement of the electromagnetic �eld in the volume of the charge carrier
motion.

=

FIG. 1. The diagram related to the level shift considered in the paper. The main contribution

comes from the plasmon mode which is depicted as the shaded mass operator in the right.

Let us consider LS of the charge carrier semiclassically following the book [1]. The
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frequency of oscillations of the external �eld (of zero uctuations) is much higher than the
inverse period of the electron orbit. Therefore, the adiabatic approximation will be used.
The estimated value of LS results from the short fast deections of the electron from its
original orbit in the high-frequency �eld of the electromagnetic wave of the zero-uctuation.
The shift is given by the second order (see diagram in Fig.1) perturbation theory as

�H = hH(r + �)�H(r)i =
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where H(r) is the unperturbed Hamiltonian and H(r + �) is the Hamiltonian with account
for the electron deection.

The classical charge deects from its path, acted upon by the force e~E . Let us express
all uctuation �elds ~E in terms of the eigen modes related to the speci�c system (cluster or
quantum box). Within the linear response theory (see Appendix A), the electron deection
reads as:
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here e and m are the electron charge and mass, !o is the atomic frequency. The multiplier 2
accounts for two polarisations of the light. It is easy to check that the higher the frequency
of the mode, the larger the partial shift due to this mode. Hence, the local modes of the
maximal frequency, those are plasmons, are of the most importance in expression (2).

The amplitude of the electric �eld ~E� of the �xed mode with the quantum numbers � is
related to its zero-oscillation frequency E2� / �h!�. For example, for surface plasmons of the
fullerene cluster it was calculated in [2]: E2L = �h!L�(L+ 1=2)=R3.

The LS due to the electromagnetic modes of a free space (3D vacuum) follows from
Eq.(2) when one substitutes the wave vector k instead of �. We change the sum into the
integral. This results (in 3D-space) in well-known formula:
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where the wave vector of the electron, which is non-relativistic one, limits the integration
region from above: !max � mc2=�h, while atomic frequency gives the lower limit: !min � !o.
The mean deection is less than the Bohr radius aB ' 0:53 �A in �3 times, where � ' 1=137
is the �ne constant. As a result the LS is quite small and does not a�ect the spectrum
essentially.
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This is not true if one considers the local modes related to some system. Let us calculate
the surface modes of the metallic sphere of the radius R. It was shown that the plasmon
modes in clusters and other nanoscale 0D-quantum con�ned systems (with imposed central
symmetry) can be reproduced with the high accuracy by the classic hydrodynamics of the
charged liquid on the surface of the spherical box. Therefore, the solution for the modes of
the metal sphere gives the plasmon frequencies. The equation system to solve is in Appendix
B. The frequency of the mode is proportional to the multipole index of the mode L

!L =

s
L(L + 1)

2L+ 1

N e2

mR3
(4)

and in contraction limit the dependence is a square root: !L /
q
(L+ 1=2)=R. Here N is

the number of valence electrons.
The local modes donate to the LS and the term in the mean squared deection, additional

to Eq.(3), reads as
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where Lmax is the maximal allowed multipole index de�ned by the box radius.
This results in the anomalous large LS comparing with the LS related to the delocalized

photon modes. The ratio of these shifts, as illustrated by the example of C60, can amount
about 1000. Evidently, the ratio the larger, the less the radius of the system. At the cluster
size 100 times larger than C60 (R ' 3:6 �A), the shift related to the con�ned modes becomes
of the same order than the standard LS.
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APPENDIX A: ON THE LINEAR RESPONSE OF THE ELECTRON

The electron trembling in the high-frequency �eld EL of the plasma oscillator j�i can be
treated semiclassically and its deection � is described by Newton law:
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here e is the electron charge and m is the electron mass which is supposed to be isotropic
within the cluster.

For the Fourier component of the external �eld which is proportional to e�i!t we get the
polarizability of the carrier in the form
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Here we use the fact that the frequency dependence can be decomposed into two terms
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where the last term corresponds to the absorption of the photon and should be omitted for
the zero uctuation �eld.

The total deection is given by the sum of this expression over all � (the integral over k
for 3D photons).

APPENDIX B: ON THE SPHERICAL SURFACE PLASMONS

One of the examples of 0D system, which plasmon can be described within the classical
approach, is the fullerene, the sixty{carbon{atom ball of the high symmetry. The C60

electron structure symmetry reects (i) the local triangular symmetry of graphite-like lattice
distorted by (ii) the global homology of the curved closed surface. The �rst was shown to be
of small importance for the plasmon. The global symmetry | SO(3) spherical topology of
the fullerene | is quantitatively captured within the quantum mechanical model of Spherical
Shell Quantum Well [3]. Then the classical hydrodynamics of the charged liquid on the
surface of the sphere describes the response of 240 valence electrons of the cluster.

The equation system to solve reads as follows:8><
>: @tj = �ne

2

m
r'

@t� +rj = 0
; (B1)

here n = 240=4�R2 is the valence electron density for C60. ' is the acting electrical potential.
� is the surface density uctuation de�ning the lateral current density, j, on the surface of
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the sphere of radius R. r is the 2D nabla operator along the surface. The solution is given
in complete spherical harmonics P

L
(r)YL;M(
). The use of Gauss{Ostrogradskii theorem

(2L+ 1)'
LM

=R = 4��
LM

allows one to relate the potential and the density uctuation.
The plasmon energy corresponds to so-called bubble diagram in the secondary quanti-

zation formalism. Let us consider the space integrals in this matrix element (Fig.2). The
typical integral in the vertex of the diagram is hLM j��j�Mi. Any spherical diagram with
two legs can be rewritten [4] into the closed diagram, which depicts the 3j (or 6j and higher
symmetry) symbol, bearing no dependence on co-ordinates, and into the straight line, which
denotes the angular momentum delta{function, representing the angular momentum conser-
vation through the process. The same argument works for the level shift considered above.
That is why the angular momentum subspaces are treated separately in this paper.

LM L’M’
LM LM LM

(3j)
L M’    ’ =

FIG. 2. The angular momentum diagram [4] shows that the matrix element is equivalent to the

product of the 3j{symbol and the delta{function of the incoming and outgoing angular moments.

The solution of Eq.(B1) is the surface mode of the spherical symmetry with the frequency:
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which goes to the 2D{plasmon frequency when L = kR!1 (the contraction limit).
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