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Frenkel Exciton model is solved for a single fullerene cluster,
which icosahedral lattice has a very high symmetry. That allows to
�nd analytically spectrum and dipole moments of 5 modes which
are optically active.

The problem of many-body calculation is rarely solving in analytical expressions,
especially for a �nite electron system of the intermediate scale: neither atomic one nor
3D-bulk. The essential simpli�cation can be obtained within Fourier-transformation
approach, which is applicable to the system that is invariant relatively to translations.
However, the Abel translation group has very high symmetry and holds not too often.
We are interested in �nite carbon nanoscale cluster electronic system. There are some
theoretical and experimental evidence that Coulomb interaction should be taken into
account. The paper is a step in this direction.

Some interesting analytical results were obtained for the fullerenes within SO(3) -
spherical symmetry approximation. The SO(3) Coulomb interaction can be expanded
into spherical harmonic series (multipole expansion). Though the actual icosahedral
symmetry group is much lower than the in�nite full group of rotations, we note that it
is high enough to obtain, for example, the tight-binding (TB) one-electron spectrum
within purely analytical method.

Here we will consider TB Coulomb Hamiltonian for C60-like lattice of atoms pos-
sessing one electron-hole chargeless excitation. The Wigner-Ekkart theorem allows to
expand all operators into irreducible operator series for any lattice (here the icosa-
hedral 60-membered lattice is considered). We wrote Hamiltonian in the standard
secondary quantization (electron-hole) formalism. Then we make use of TB approxi-
mation which simpli�es the Coulomb interaction to Hubbard terms. The next step is
obviouse - the multipole expansion in the �rst non-vanishing order for the electron-
hole excitation is the dipole approximation. When considering only next-neighbour
interaction, it is the simplest Frenkel-exciton Hamiltonian well known from organic
insulator solid state theory. To be noted, the problem is easily solved numerically.
The less evident step is to try the problem analytically. One can expect that a number
of degrees of freedom is much larger than for translationaly invariant systems. Even
so, the symmetry is high and group-theoretical approach gives the exact result for
some modes. For example, we calculated analytically the triply-degenerate optically
active excitons and non-degenerate excitatons.

Of course, this technique can be applied to any system, though the simpli�cation



obtained is essentially depends on the degeneracy of one-electron levels (on the degree
of symmetry). The lower symmetry, the larger secular equation occurs. Actually the
icosahedral group, probably, is one of amusing examples, which provides the very
variouse physics.

1. MODEL FORMULATION

One of most frequently used approximation for Coulomb Hamiltonian of highly
degenerate system is the Hubbard model. In the paper we intend to consider an
excitation in the lattice given by sixty carbon atom set of single C60 cluster. The
excitation, which will be described, is a chargeless two-particle exciton on the lattice
of carbon atoms of a single fullerene . We suppose that initially the excitation is
localized on a single atom. The electron and a hole on the same site possess a dipole
moment, not a charge. Then the resulting excitation is formally an exciton of small
radius, a Frenkel exciton [1]. This is an excitation on a single cluster opposing to
di�erent computations of Frenkel exciton in 3D arrays of fullerenes. Starting with
tight-binding lattice Hamiltonian, it seems to be very natural to consider also the
nearest neighbor approximation for Coulomb interaction (similarly like it was done
in the Hubbard model).

Let us remind the way leading to Frenkel exciton Hamiltonian. In the secondary
quantization approach we preserve in the Coulomb Hamiltonian, for choosen two-
particle electron-hole state, only four terms { a kinetic energy of an electron, a kinetic
energy of a hole, an electron-hole direct Coulomb interaction and an exchange one.
We suppose that the starting electron-hole excitation is chargeless and is localized on
site. Then �rst non-vanishing term in the interaction is dipole-dipole one:
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where the �rst sum is taken over electron states, the second is taken over hole states; H
represents the kinetic energy operator; P is a dipole momentummatrix element, taken
with the "bra" and "ket" vectors of choosen chargeless excitation on site; jR(1� 2)j
is a distance between sites 1 and 2. The exact sense of notation of nabla operator
will be given just after the next equation.

The Frenkel exciton approximation consists in a substitution of exciton operator
instead of pair of electron-hole operators B1 = d1a1 and in a subsequent linearization
of this expression which leads to the follows:
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where a kinetic energy part and a direct Coulomb interaction are collected into �rst
diagonal part of Hamiltonian. The o�-diagonal part is given by exchange dipole-dipole
interaction between sites 1 and 2, which is represented by well known expression:
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We will use the notation �ij for the angular part of dipole-dipole interaction operator
henceforward.

So far the Frenkel exciton model is stated basing on two parameters E =�
Heh
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and P2=b3, where b ' 1:44�A is the distance between nearest neibghors

in C60. The self energy E is not interesting here because it simply shifts the energy
zero level which is, however, not known exactly. Hence, we will drop it below when
it will not cause misunderstanding.

2. GROUP-THEORETICAL APPROACH

All irreducible representations (IRs) of Yh group are well known (one can follow
one of approaches given in Refs. [2{5]). There are 10 IRs of dimensionality 1; 3; 3; 4; 5.
The harmonic analysis over the group lattice reduces any site-de�ned problem to 10
secular equations. The remaining task is to write an explicit form of given Hamilto-
nian and solve it for all IRs. The dynamical symmetry of Hamiltonian can results in
more or less complicated secular equation for each of IRs. For example, one-electron
tight-binding Hamiltonian has an analytical solution, owing to each IR has a sec-
ular equation of the same dimensionality as this IR matrix (that follows from the
orthonormality relation for IR projection operators).

The Hamiltonian of general form the more complicated, the more equivalent IRs
it is containing within. The group theory allows all of them to be mixed and the
secular equation grows. We will show that for our Frenkel-Exciton Hamiltonian the
result can be given in considerable expressions.

The Frenkel Hamiltonian for Y lattice of C60 cluster is given by the sum of dipole-
dipole interaction terms over all 60� 60 states:
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Here summation over g 2Y is a summation over 60 sites of the C60 cluster surface,
while summation over f is restricted by the model over a limited number of neighbors
given by some set F �Y (or over a full unlimited set Y, then we will address it as
a Hamiltonian of full dipole lattice). P y and P are independent variables in the

secondary quantization representation. In our old notation P y(g1) = PBy
1. The



reason to single out a factor 1=jR(f)j3 from dipole-dipole interaction is that the
remaining part, � , is the angle dependent one but not distance dependent as it is
easily seen from Eq.(3). This � is actually the traceless second-order tensor which is
well-known from classical electric-multipole theory.

We will apply the group-theoretical analysis to the Hamiltonian represented by
Eq.(4). Let us �rst reduce the operator � to most compact form. The operator P y

i (g)
creates an electron-hole pair on site g. Here a vector g is directed from the center of
cluster, choosen as the global co-ordinate origin, to the site g. We will use below also
the local co-ordinate system (LCS), which will be connected with each site g 2 Y.
The LCS on each site is directed so that any local axes in point jgi goes to jfgi LCS
after the proper rotation f 2 Y.

The operator P y
i (g) = ayi (g)d

y(g) carries an index i connected with the spinor of
the electron-hole excitation state. The optical transition should be between states of
di�erent symmetry. Hence, if a hole is single-component, then an elercton has three
components transforming as a vector, the vector of a dipole moment of a transition
Pi, where i = x; y; z.

The term with � has the simplest form in the LCS. The transformation to such
a system is given by a vector rotation operator which changes the global axes to the
local ones de�ned in the point e. We will often refer to this point on the fullerene
sphere as a fundamental base of the group lattice (similar to Brave cell in solid).

The components of the electron-hole state transforms under this rotation as Pi =
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The dipole-dipole interaction between the nearest neighbors will be considered in
the last part of the paper. Then the subset F �Y is given by 3 �xed elements for
each site g.

Each function denoted over a group can be expanded using proper harmonics.
One can do it for creation operators:

P y
i (g) = ayi (g)d

y(g) = D�(�1)
n1m1

(g)ayi;�1;n1m1
D�(�2)

n2m2
(g)dy�2;n2m2

=

C
(�1�2)
n1m1;n2m2;k1k2

ayi;�1;n1m1
dy�2;n2m2

D�()
k1k2

(g)
(6)

where Einstein notation for summation over repeated indices is used; all D�(�)
st (g) are

the Wigner functions for IR � and the proper group rotation g. C
(�1�2)
n1m1;n2m2;k1k2

is the
Wigner coe�cient given, for example, in [6]. Here we changed the co-ordinate basis
to the symmetry adapted basis of IRs.

Last step is to come from two-particle state to an exciton state. For this purpose
we collect terms with the proper symmetry in Eq.(6) and write �nally:
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where P y()
i;k1k2

is the symmetry-adapted �eld operator (the creation operator in the

subspace of de�nite IR) for the Frenkel exciton like P y
i (g) is the �eld operator in the

co-ordinate representation.
Let us give now the Frenkel Exciton Hamiltonian in the simplest notation:
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where the summation is taken over all indices m;n belonging to the IR � containing
in the direct product of vector representation T1 and the full dynamical group of the
TB Hamiltonian symmetry, given by the regular representation of Y group (RGR).
When we suppose all bonds to be equal, the second term gives us the energy scale

together with the dipole matrix element as P2=b3. D
(�)
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(f) as usual is the rotation
matrix for IR �. The dipole-dipole interaction in LCS reads as:
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It is seen that Frenkel exciton Hamiltonian is reduced to secular equations for each
IR of the following form:
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This is blockmatrix of dimensionality d� 3, where d = [�] is the dimensionality of �
IR vector.

For nondegenerate mode � = A it is 3-row matrix. The resulting three full
symmetry A modes has di�erent energies depending on the local symmetry of a
mode. Next �gure shows the symmetry of the mode of highest energy.

FIG. 1. The symmetry of the mode with the highest energy is a full icosahedral symmetry

Ag. This is one from 3 non-degenerate modes of C60. It is optically non-active.



There are �ve triply degenerate dipole-active modes in the Frenkel Exciton Hamil-
tonian as it follows from group theory. We will present below very characteristic shape
of wafe-function of some of them.

FIG. 2. Two of 5 dipole modes of the Frenkel Exciton Hamiltonian of C60. Left: the

lowermost dipole mode which has the largest dipole momentum (shown as a global vector).

It is the direct product of p-type wave-function and the mode shown in Fig.1. Right: the

mode which is the cross product of p-function and triply-degenerate vector mode of TBA

fullerene Hamiltonian.

SUMMARY

We suggested and solved the Frenkel Exciton model for calculation of the electron-
hole two-particle excitation spectrum on the single fullerene cluster. The spectrum
was obtained using two phenomenological parameters to be taken from experiment.
Frequencies and dipole moments of �ve optically active dipole modes were found
analytically as well as three non-degenerate states of full icosahedral symmetry. We
used nearest-neghbour for the sake of clarity, but the full dipole Hamiltonian will be
shown to shift the considered modes slightly.
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