
STEPS OF NANOCLUSTER FORMATION:

ENERGETICAL PREDICTIONS FOR CATALYTIC

MECHANISM

Slava V. Rotkin

The two-parameter phenomenological model allows to calculate
formation energies of di�erent nanotubes. The energy, geometry
and size of the optimal tube were found. This tube has the minimal
formation energy at the de�nite number of atoms. A region of
energetical stability of tubes in respect with planar fragment of
graphite sheet was investigated. We accounted for the possible
dangling bond energy passivation, which essentially changes the
energetics of formation process.

We analyze an energy di�erence between a planar round piece of graphite sheet
(which is optimal in a sense) and an optimal tube of the same number of atoms. This
value shows which con�guration is more stable energetically: the planar or cylindrical
one.

It is well known experimentally that the tube is readily grown at some metal
particle. In order to explain the abnormally small nuclei size we propose the catalyt-
ical mechanism of the tube formation. We suppose that the role of the metal is to
decrease the dangling bond energy or to bound completely the bond. Then the re-
sulting perimeter energy decreases in some times � (the new parameter of the model).
It results in the increasing of the nuclei size.

1. TWO-PARAMETER MODEL OF NANOTUBE FORMATION

The simple phenomenological two-parameter model for the calculation of a carbon
nanotube formation energy has been proposed in Ref.[1,2]. We need to repeat main
postulates of the model before starting the next section.

The model operates with an energy of free dangling bond of any carbon nanoclus-
ter which is locally constructed as a curved fragment of graphite sheet. This quantity
is supposed to be approximately equal for all considered clusters and evaluated as the
energy in graphite Eb ' 2:36 eV. The next phenomenological parameter was shown to
be a characteristic energy, the energy which is a microscopical analogy of the hardness
of a sheet to scrolling. This gives the scale of energy per atom related to the curvature
of a surface. For an atom, belonging to three-coordinated graphite-like lattice, it was
deduced in Ref.[3] that a dimensionless energy reads as follows:
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depending on the geometrical curvature along three chemical �-bonds. Here k1; k2
are usual principal curvatures of the surface, H = k1k2 is Gauss curvature, K =
(k1+ k2)=2 is an average curvature. This sum is calculated �rst time in [4], it worths
to note that within the model it depends only on geometrical shape of the surface
and not depends on the local orientation of bonds (in neglecting the bond di�erence).
The di�erence in bonds was partly accounted for, within the model, for the closed
cluster which is topologically equivalent to sphere. Therefore, such a cluster contains
�ve-membered-rings (5MRs) in contrast to all 6MRs in a pure graphite sheet or in a
perfect nanotube (which is, in this sense, topologically equivalent to the plane). The
second phenomenological parameter Ec can be calculated within quantum-mechanical
approach. We derived it from independent computer simulation data, Ec ' 0:9 eV=b2.
We will measure all lengths in units of the bond length b ' 1:4 �A. Then Eq.(1) gives
a ratio of dimensionless energies in the left part and a dimensionless geometrical
parameter of a surface in the right.

The unit cell of the graphite honey-comb lattice has an area 3
p
3=2 in units of b2

and possesses two carbon atoms. Then if one considers the surface with a constant
curvature, for example, a surface of an in�nite cylinder of radius R, the total energy
is the energy Eatom multiplied by a number of tube atoms. The number of atoms is
the ratio of the cluster surface 2�RH (where H is the tube length) to the unit cell
area. Then the curvature energy reads as:
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Let come back to the dangling bond energy. The total dangling bond energy per
cluster is proportional to a number of atoms on the perimeter P. For a tube with
two equal ends it is equal to 2P � Eb=

p
3, where we included a geometrical multiplier

�. It reects that in a concrete cluster a di�erent number of dangling bonds occurs
along the geometrical curve de�ned as perimeter. For example, let consider di�erent
types of tubes: "zigzag" tube has � equal to 1, and � is equal to 2=

p
3 for "armchair"

type from simplest geometry.
The larger the R, typically, the larger the number of dangling bonds. The dangling

bond energy grows compensating the decrease of curvature energy. So it could be a
minimum of energy for a cluster of �xed number of atoms.

2. NANOTUBE AND PLANAR CLUSTER

So far, we able also to investigate the relative energetical stability of clusters. For
example, let us consider a nanotube energy comparing with a planar graphite sheet
fragment. The latter has a number of dangling bonds. It is evident that the round
piece of plane has the smallest number of bonds. So we will compare such a round
planar cluster with a tube. Such planar cluster di�ers from the graphite only by the
dangling bond energy. Let us consider the energy of formation of the in�nite plane



of graphite as the "zero energy" and we will exclude this energy from all formulas
henceforward.

The energy di�erence between two clusters should be, of course, computed at the
same number of atoms. It reads as:
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Here we use the fact that for round fragment 2�Rpl =
q
3
p
3�N . In general, de-

pending on the model parameters, on a geometrical radius of a tube and a number
of atoms, the energy di�erence can change sign. The region of the same sign can be
interpreted as the region of relative stability, where one cluster is more energetically
favourable than other type.

It seems to be useful before calculating the energy di�erence Eq.(3) to investigate
the formation energy of any tube in the region of two geometrical variables (N;R).
We will show that it is the valley in the energy surface which, of course, allows some
optimization of a tube shape.

The optimization of nanotube of a �nite height results from the competition be-
tween two terms of tube formation energy: with Eb and Ec. It is favourable to decrease
the radius in order to diminish the number of dangling bonds. This process costs the
increasing energy of the larger curvature. So there is a minimum of energy for cluster
of �xed number of atoms; let us remind that it reads as: N = 8�RH=(3

p
3).

We will call such cluster as optimal. The height and radius of optimal tube H
and R, are co-dependent and can be uniquely written for a de�nite number of atoms
N :
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Where we introduced a constant R? = 3Ec=Eb having a simple geometrical interpre-
tation, it is a radius of optimal tube which number of atoms is equal to a number
of atoms of sphere of the same radius R?: Nsph = Nopt:t: � N? (note that therefore
H? = 2R?).

The optimal tube energy grows with N moderately as:
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Let now return to the question of the relative energetical stability of a tube in
respect with the planar graphite. The large curvature of fragment is unfavourable due
to the curvature energy. The small curvature results in the larger perimeter which
increases the dangling bond energy. Next �gure shows the region where the tube
is favourable in energy. The line dividing two relative energetical stability areas in
(R;N) plane reads as:



N ' N?3
�
R

R?

�4

�N?2
�
R

R?

�3

(6)

for R� R?. In the opposite limit, R� R? we get
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These two lines de�ne two types of clusters. Owing to its energies are compared with
the perimetral energy of round planar fragment, which is proportional to square root
of the number of atoms, the total energy of such a tube has to be proportional to

p
N

also. For the �rst type of tube the curvature energy can be neglected. The height of
such a tube is proportional to the tube radius H = 4R=3, hence, the shapes of these

tubes are self-similar. Then, evidently, the perimeter of this tube grows as
p
N like

for planar fragment.
The second line, given by Eq.(7), describes tubes with dominating curvature en-

ergy. Indeed, its height grows as H = 12R?(R=R?)3. Hence the tube shape very fast
becomes prolonged and the perimetral energy becomes insigni�cant. Such a depen-
dence of the tube height on the radius provides the total curvature energy to have
the following form: � N=R2 /

p
N . It is selfevident that it depends on the number

of atoms of cluster as the round planar fragment perimeter.
Comparing with the dangling bond energy of the round piece of graphite � EbP it

is bene�cial to scroll the planar fragment into tube (any graphite sheet of other form
is unstable moreover because of the larger perimeter). The most favourable tube for
such scrolling is the optimal tube. The energy di�erence between the optimal tube
and the round piece changes sign:
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where the new number Nt = 27=64N? ' 6 atoms is the maximal size of the energeti-
cally favourable plane (see also Fig.1). This consideration shows that indeed the tube
has the less energy nearly always.
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FIG. 1. Fig.1. The energy di�erence between the optimal tube and the round piece

changes sign at the number of atoms Nt = 27=64N? ' 6 (bottom curve). This result

depends on the bond passivation because of when the variable Eb increases the intersection

point increases as well as N? � E�1
b

, that is shown by the upper curve.

3. IS OPENED CLUSTER STABLE?

The comparison of the formation energy of a tube and a sphere of the same number
of atoms shows that spherical cluster is always favourable [5,6]. The dangling bond
energy is the main factor leading to scrolling and closing of any cluster if we are
staying within the original model.

In our recent paper [6] Eb is suspected to deviate from the bare carbon value in the
actual carbon soot formation process. It means that the energy of break/formation
of a bond can vary. Though it brings one additional parameter into model, the
model becomes exible and possesses new physics. For example, in Ref.[6] the critical
softening of the dangling bond energy is found. At this softening the energy of
spherical cluster becomes larger than the energy of planar round fragment. It occurs
�rst at some critical number of atoms about seventy. In this paper we investigate
how the new parameter �, the softening, shifts the equilibrium between planar round
piece of graphite sheet and a nanotube. This parameter changes the dangling bond
energy to less value: Eb ! �Eb.

The energy of the tube, which shape is given by Eq.(6), is mainly the curvature
energy as it has been discussed in the previous section. Then the leading term in the
energy di�erence between a round planar fragment and this tube of the same number
of atoms reads as:
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Hence, the softening shifts the equilibrium to the tube formation and makes the tube
region narrow.

Let consider next type of tubes. Substituting Eq.(7) into Eq.(3) we conclude that
the leading term in the tube energy is now the dangling bond energy. In neglecting
the curvature energy, the tube is simply fragment of graphite sheet. It is easily seen
that the energy di�erence, �E, between such a tube and a planar fragment does not
depend on the curvature energy. Sequent, it is no di�erence in �E with the softening.
The equilibrium does not shift as well.

On Fig.2 the region in the plane (R;N) shown, where the tube formation is ener-
getically preferable than the planar cluster. The central line represents the bottom of
the energy valley { the line of optimal tubes. The left and right lines corresponds to
two borders of valley, where the energy di�erence between these clusters changes sign.
The left line corresponds to the case when the dangling bond energy of the tube is
insigni�cant, owing to the tube is very long. The right line is de�ned by the interplay
between the dangling bond energies. The tubes are selfsimilar along this line.

The bond passivation shifts the optimal tube line. The more it shifts the left
border. As a result the minimal energetically preferable tube size grows as it was
shown on the �rst �gure.

Summarizing, the bond softening (which can be considered as a passivation of
dangling bonds) leads to signi�cant changes in the process of carbon nanotube for-
mation. Namely, it makes the region, where nanotube is more favourable than the
planar fragment of graphite, more narrow.
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FIG. 2. The region of carbon nanotube energetical stability in respect with the planar

round fragments of the graphite monolayer. Dashed lines shows the result of out original

model. Solid lines give an example of solution for the passivated bond model (see the text).


