
CALCULATION OF THE POLARITON EFFECT IN THE

FULLERENE MONOLAYER

V.V. Rotkin, R.A. Suris
Io�e Physical{Technical Institute, 26, Politekhnicheskaya st., 194021 St.Petersburg,

Russia.
(April 25, 1997)

The theoretical investigation of the electronic structure of the fullerene
cluster solid predicts that in the high frequency region the optical response of
the chain and layered cluster structures has the polariton phenomena like in
the insulator solid. The dispersion of the dipole collective modes in 1D and
2D systems is presented. The analogy between these fullerene excitations and
the low-dimensional exciton-polariton is traced.

I. INTRODUCTION

The discovery of new arti�cial "atoms" - the fullerenes inspires a ow of publica-
tions on the electronic structure, optical and electrical properties of this new material.
Most stable cluster C60 having the nearly spherical symmetry will be considered below
mainly. We will discuss the particular problem of the collective excitation (plasmon)
in the fullerene polymerized structures. However this narrow problem lights the ques-
tion how is the fullerene solid excitation built. We modeled the collective excitation
in the chain and in the plane of the fullerene clusters supposing that the individual
cluster possesses the dipole collective excitation. Then the excitation in the solid is
the linear combination of the single cluster dipole modes. The algorithm is the same
like for the formation of the Frenkel exciton in organic insulators.
In the spherical approximation the collective intra-cluster modes are multipolar

electrical modes and in the Born limit only the dipolar one is excited by the light. It
is important to know the dielectric function of the clustered solid which determines all
electrodynamical properties of the fullerene structure. In the high frequency region
the excitation of the single cluster is the surface plasmon1;2. It is well-known as from
semi-empirical models as from the more accurate computing (see3{8 for details and ref-
erences). For the solid the Coulomb interaction between clusters should be taken into
account. The problem of the interaction between the modes is very complicated even
though one uses the spherical symmetry approximation. The amount of multipole-
multipole matrix elements of the interaction is huge. However, we showed9;10 that
high-pole interaction can be neglected.
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In the paper we consider only dipole-dipole interaction between the collective modes
on the di�erent clusters and calculated their RPA frequencies for the chain and for
the monolayer of the fullerene molecules. It is well known that in these cases the
dielectric function has the transverse excitation branch due to the inhomogeneity
in the one direction. We calculated for the one-dimensional chain9;11 the dispersion
lows for the bands of the transverse collective inter-cluster modes. We address such
a linear structure result to the orthorombic polymerized phase of the fullerene.
Recently obtained by the photopolymerization and by the vacuum deposition tech-

niques monolayers of the fullerene will be interesting object for this discussion. We
investigated the coupling between the optically active modes of the 2D-plane and the
photons in the soft X-ray region12;13.
The paper is constructed as follows. First, it deals with the bases of the model,

in the Sec. II the hydrodynamic derivation of the fullerene cluster surface plasmon
will be done. In the Section III the Coulomb interaction between the clusters will
be considered in the simplest case of the interaction in the dimer. The next section
is devoted to the calculation of the Frenkel Coulomb excitons in the fullerene low-
dimensional structures without regard for the retardation e�ect. First, in the 1D
case we will obtain the transverse optically active excitations in the fullerene chain
in the soft X-ray region. Then the calculation will be presented for the 2D fullerene
plane. The retarded interaction via the transverse photons will be included into the
calculation in the last section.

II. THE SINGLE CLUSTER: SURFACE PLASMON

It is very natural to consider the C60 molecule as a spherically scrolled graphite
sheet. The 2D graphite is a semi-metal that means that the � electrons of the mono-
layer are delocalized in the plane like a 2D electron gas. The situation is very similar
to the plain semiconductor quantum well which con�nes the electrons in direction
normal to the well.
Let us remember how the spherical plasmon was considered in frame of the spherical

shell model of the fullerene molecule1;2. Following Ref.2 we use the spherical oscilla-
tion of the electron density �LM . For the central symmetry of fullerene sphere we use
the expansion of all quantities in the complete spherical harmonics14 P

L
(r)YL;M(
)

those form a complete set on a sphere. The electric potential is the solution of Laplace
equation for empty space inside, 'in(r < R); and outside, 'out(r > R); the spherical
shell of molecule. We wrote it in multipole power expansion:

'in(r;
) =
P

L;M

'LM

RL
jrjL YL;M(
);

'out(r;
) =
P

L;M 'LMR
L+1 1

jrj

L+1
YL;M(
):

(1)

At the spherical geometry a radial jump in electric �eld is given by:
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2L + 1

R
'
LM

= 4��
LM

(2)

and we get the response of the sphere in the block-diagonal form1 in the subspace of
angular momentum L = const. The next equation can be considered as the de�nition
of �, the response function:

�
LM

= ��
L

'act
LM

; (3)

where 'act
LM

= f'xt + 'indg
LM

= 'xt
LM

+ 4�R�
LM

=(2L + 1) is the acting potential,
L;M are the multipole power indexes (or the angular momentum and its projection
onto z-axis). The selfconsintency of the calculation is provided by the including of
the depolarization of the molecule through 'ind in the full acting potential.
The eigenvalue equation for the single sphere excitation frequency arises from

Eqs.(2) and (3) under the zero external potential. The expressions written above are
based on the classical electrodynamics. The explicit form of the response function
�
L
(!) could be obtained by nonstacionar perturbation theory or some any way1;2.

However it is not false to �nd it classically from the simplest electron liquid model5;15.
The result corresponds to the plasmon on the surface of metal spherical shell of radius
R and electron density n = 240=4�R2. We put the classic charge liquid equations as
follows: (

m _v = �r'
_� + nrv = 0

(4)

The �rst is a Newton low and the second is a linearized continuity equation, where
n; v are the electron liquid density and its velocity. Assuming potential ' to be a
harmonic function we get the response in multipolar expansion:

�L;M =
nL(L + 1)

m�R2!2
'act
L;M : (5)

It is shown16 that the response function and hence the polarizability of the spheri-
cal molecule with closed shell electron structure has no dependence on M -quantum
number.
The momentum substitution (as it has been discussed in1) instead of the ratio of the

angular momentum to the radius leads in the limit L� 1 to the well known formula
of the square root dependence of the surface plasmon energy on its momentum :

!L =

s
2�ne2L

m�R
/
q
kk (6)

Thus the Spherical Shell Quantum Well model transforms in the normal Quantum
Well at the large sphere radius: R ! 1, with the momentum and electron density
�xed: kk =

L
R
= const; n = const.

So far we got the bare cluster polarizability which is incomplete because of the high
electron density providing strong coulomb correlation. We intend to account it in the
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simplest form - Random Phase Approximation (RPA)4;8. The selfconsistent solution
for the dynamic polarizability �

LM
(!) is:

�L = � �L;M
e'xt

L;M

=
�L

1 + 4�R
2L+1

�L
: (7)

It includes a big depolarization factor that reveals the surface electron density screen-
ing e�ect upon the response. The poles of the polarizability determine the excitations
spectrum.

III. COULOMB INTERACTION IN THE DIMER

In the Section II we evaluated the response of C60 which has the pole at the fre-
quency of the single cluster surface plasma excitation. We did it within hydrodynamic
model only for the sake of simplicity. In the solid the single cluster modes do interact
and split. The simplest case of the two interacting clusters was considered in10. Here
we will reproduce some important points which will be useful for us below.
The fullerene dimer was discovered, �rst, as the new bispherical C119

macromolecule17 and, now, it is widely discussed in respect with the polymerization
of the solid fullerene. Each cluster in the fullerene dimer possesses the triply degen-
erated dipole plasmon before the switching the Coulomb interaction on. After the
switching on one expects that the z-polarized plasmon has to split from x-,y-polarized
excitations, where the z-axis is along the dimer axis (see Fig.III).
The potential of the second sphere has to be included into Eq.(3) along with the

external potential for the �rst sphere of the dimer (see10;13). The equation system for
eigenmodes of the dimer reads as:8>>>><>>>>:

�
(1)
LM = �

(1)
L ('ext

LM +
4�R

2L+ 1
�
(1)
LM + (̂ �(2))LM )

�
(2)
LM = �

(2)
L ('ext

LM +
4�R

2L+ 1
�
(2)
LM + (̂ �(1))LM )

(8)

When parameters of two electron systems are equal, � is the same for both globes.
Moreover, we solve the equation for the only collective excitation frequency, therefore
the following equation is substituted for the �L:

4�R

2L+ 1
�
L
(!) ' �!2

L
=!2 : (9)

where: !p =

s
4�ne2

m�R
;

!L = !p

s
L(L + 1)

2L+ 1
=

s
4�ne2

m�R

s
L(L + 1)

2L+ 1
(10)
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is the characteristic frequency of the Lth component of the high frequency response
is the single cluster surface plasmon frequency.
Iterative diagonalization of this system (8) in the space L
L0 will bring frequencies

of all new modes with any accuracy. This is provided by exponential diminishing of ̂
with L+ L0 rising10. Evidently, the coupling as the electrical induction is weaker for
higher multipole degree of potential. It can be compared with the coupling between
planes18, when the electric �eld of plasmon has typical decrement k in z direction,
which can be mapped onto L=R. For simplicity of analysis we will preserve only
dipole-dipole interaction (the same we will resolve Eq.(8) within the �rst order per-
turbation theory on the small parameter (R=H)L+L

0

when this equation is diagonal
in L = L0 indexes). Then the coupling constant reads as LM�LL0 .
Nontrivial solution of Eqs.(8) exists in the absence of the external potential if the

determinant of the system is equal to zero:

det

������������

 
1� !2

1

!2

!
!2
1

!2
1M

!2
1

!2
1M

 
1� !2

1

!2

!
������������
�1L0 = 0 (11)

Here �1L0 stands for the symbol of the reduction of the submatrices in the double
angular momentum representation space L 
 L0 when we omit all terms excepting
dipole-dipole one. The coupling constant 1M will be given explicitly later. Then
the simple variable transformation �g(u) = �(1) � �(2) divides Eq.(11) in two parts {
secular equations for even and odd plasmon modes:

!2
g(u) = !2

1 (1� 
1M
) : (12)

From Eq.(12) we obtain the frequencies of the odd and even dipole modes in the
diagonal approximation:

!g(u) = !1

q
1� 1M = !1

r
1� 1+3(�1)M

2

�
R
H

�3
; (13)

where �h!1 ' 28 eV { frequency of bare dipole plasmon in C60. Eq. (13) corresponds
to dipole-dipole interaction between globes which does not mix di�erent angular
momentum subspaces. The dipole-quadrupole coupling is prohibited and the next
order corresponds to L = 1 ! L + 2, the weak dipole-octuplet coupling. This
correction contains an additional factor (R=H)2 and is neglected.
These two, odd and even, excitations have di�erent symmetry. Even mode can be

described as the dipole of doubled charge. While the potential induced by surface
charge density of the second, odd, mode has only the next quadrupole order in the
multipole expansion. Each mode frequency is splitted into excitations of two polariza-
tions { across and along the molecule axis, see Fig. III. Even mode with longitudinal
polarization with M = 0 (z{type) is slightly, about 7.1%, shifted up from C60 plas-
mon position (29.8 eV), but x{ and y{type modes (M = �1) are shifted down less
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in factor of
p
2 (about 27.2 eV). The reason for the splitting is that the dipole-dipole

interaction energy depends on the dipole orientations as: Wzz = �2Wxx = �2Wyy,
therefore the z-mode lies above the x- and y-modes.

&%
'$
&%
'$6
�
�	

--

6

�
��=

z

x, y
!0

x

z

y

FIG. 1. The dumb-bell model system of two coupled thin spherical shell quantum wells de-
scribes the plasmon excitation in the dimer. Each single molecule possesses a triply degenerated
spherical dipole excitation, - x-, y- and z-polarization plasmons. The splitting between the frequen-
cies of two statesof the dimer , x-,y- and z-plasmon is about some percents of plasmon frequency
(see the text). Two additional odd modes exist. They are not optically active, due to quadrupole
character of these modes, and are not shown in Figure.

Actually, for C119 R=H ' 0:42 and this parameter is not really small factor. We
have made direct numerical diagonalization of matrix (11) up to 45� 45 size to com-
pare exact frequencies of coupled modes. For dipole mode the result converges at 3�3
matrix. The diagonal coupling correction for dipole mode is less than 3%. We deduce
that this mode is mainly (97%) dipolar, hence coupling with higher multipole modes
is small enough. We will discuss it in16 at length. For the polymerized fullerene, the
dimer intercenter distance H is between the bare fullerene nearest neighbor distance,
' 10 �A and the cluster diameter 2R. The details of the crystal structure still unclear.

IV. THE CHAIN: PLASMON MODE DISPERSION

The Coulomb interaction between the dimer clusters which has been evaluated in
the Section III results in the new modes with slightly shifted and splitted frequency.
These plasma modes have di�erent symmetry. What will happen in the case of the
chain and the 2D lattice of the interacting clusters? According to the simplest group
consideration, the plasmons in these systems have the quasi-momentum because of the
Hamiltonian is invariant relatively to the translation. The allowed plasmon frequen-
cies, depending on its quasi-momentum, form the band with the width determined by
the characteristic interaction energy which is much less than the plasma frequency.
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So we will obtain the slightly dispersing 1D or 2D crystal excitation with the di�erent
polarization depending on the mode.
In the simplest case of the linearly polymerized fullerene the composed plasmon can

be constructed from the plasma excitation of the single molecule in the tight-binding
continuum approximation. We replace the variables in a standard way:

�M(k) =
NX
n=0

e�iknH �M(x� nH) (14)

where n = 0; : : :N is the number of molecule in the chain, M is the polarization
index, k is the wave vector of the chain plasmon which obeys to the cyclic boundary
condition.
We will obtain the energy band for this plasmon (the 1D analogy of Eq.(12) ) in

the �rst order of the coupling (diagonal approximation of b / LM�LL0 ). The 1D
lattice sum reads as: X

n

cos(kHn)

n3
: (15)

It is the special Lerch phi-function of 3 order. For the small values of k one can
replace sum by the proper integral and perform the integration preserving the terms
of the order of k2. It gives the asymptotical behavior of the exact result. We will be
interested in the coupling of the chain plasmon with the light, hence the corresponding
wave vector will be small. The plasmon spectrum in this region is well described by
the following expression obtained in continuum approximation:

!(k) ' !1

s
1 +

1 + 3(�1)M
2

�
R

H

�3 �
2�(3)� (kH)2

�
�lnkH +

3

2

��
(16)

here �(3) is the zeta-function which gives the result in the full neglecting of the
spatial dispersion of the dipoles (�(3) ' 1:202). Two modes with the transverse and
longitudinal polarizations are splitted at zero wave vector. The reason for it is the
same as discussed in the end of Section III. Higher one is the longitudinal mode,
i.e. the dipole momentum (and also the electric �eld) is directed along the chain.
It has M = 0. The second is of the transverse type and twice degenerated (x- and
y-polarizations), M = �1. Now we note that the resulted excitation is exactly the
same as a Frenkel exciton in 1D crystals. The Frenkel exciton (the same small radius
exciton) exists in the insulator solid where the charge carriers are quite localized and
corresponds to the collective mode of the interacting indistinguishable dipoles. We
point out that for the 1D chain the interaction can be summed as the special function
(see16 for details).
It is interesting that the expression Eq.(16) results from the hydrodynamic model

for the very thin metal wire similarly the C60 surface plasmon corresponds to the
metal sphere.
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The analytical form for the ends of the plasmon band comes from the nearest
neighbor approximation. It is valid for the large wave vector of the excitation when
the interaction decays very rapidly with the distance. The motion equation for the
plasmon reads as:

�M (z) = ��
1

h
'xt
M + 1M 'M(z + 1) + 1M 'M(z � 1)

i
(17)

whereM is the polarization index, 1M is the corresponding to the polarization dipole-
dipole interaction strength or the coupling: 10 = �2 (R=H)3 and 1�1 = (R=H)3;
'M(z � 1) is the induced potential. It respects to �M(z � 1), the M -th component
of the density uctuation on (z � 1)-th cluster. Similarly to 1D phonon branch
one produces the Fourier transformation of the Hamiltonian (or the motion equation
Eq.(17)), that gives for dipole plasmon two branches as before:

!(k) ' !1

s
1� [1� (kH)2=2]

1 + 3(�1)M
2

�
R

H

�3

(18)

V. PLASMON EXCITON IN THE PLANE

In the very similar manner as for the 1D Frenkel exciton we write the expression
for the coupled modes as:8>>><>>>:

�z(x; y) = ��L
�
'z(x; y) + 'latt

z (x; y)
�

�x(x; y) = ��L
�
'x(x; y) + 'latt

x (x; y)
�

�y(x; y) = ��L
�
'y(x; y) + 'latt

y (x; y)
� (19)

where 'latt
M are the components of the lattice sum of the single dipole potentials. It

is very natural to choose the normal variables as �z with the polarization along the
z-axis, �jj with the polarization along k, the wave-vector of the collective excitation
and �? with the polarization vector in the plane transverse to k. One needs to take
the lattice sum of the �elds from all the interacting dipoles. The calculation can
be carried out in the continuum approximation. The problem is the same as for
the Frenkel exciton when the dipole-dipole lattice sum arises. The motion equation
system reads as follows:8>>>>>>>>>><>>>>>>>>>>:

 
!2

!2
1

� 1

!
'z(p) +

3R

4�

X
q

 
R

rpq

!3

'z(q) = 0 
!2

!2
1

� 1

!
'jj(p)� 3R

4�

X
q

 
R

rpq

!3 (3x2jj
r2
pq

'jj(q)� 'jj(q) +
3x2?
r2
pq

'?(q)

)
= 0 

!2

!2
1

� 1

!
'?(p)� 3R

4�

X
q

 
R

rpq

!3 (
3x2?
r2
pq

'?(q)� '?(q) +
3x2jj
r2
pq

'jj(q)

)
= 0

(20)
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After some cumbersome integration one gets the dispersion of the Frenkel excitons
in the following form:8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

!jj = !1

s
1� 3

2

�
R

H

�3 �
2� 3kH � (kH)2 + o((kH)4)

�

!z = !1

vuut1� 3

2

�
R

H

�3
 
1� kH +

(kH)2

4
+ o((kH)4)

!

!? = !1

vuut1 +
3

2

�
R

H

�3
 
1� 2kH � 5(kH)2

4
+ o((kH)4)

!
:

(21)

where the integrals are the general hypergeometric series which are linear on their
parameter kH at small quasi-momentum k. The value of the characteristic wavenum-
ber k0 = !1=c = �

p
NaB=(R

p
R) is determined by the intersection point of the light

line ck and the X-ray Frenkel exciton frequency !1 ' 28 eV where � = 1=137 is the
�ne structure constant, N = 240 is the number of the valence electrons, and aB is the
e�ective Bohr radius of the electron. The characteristic value of k0 corresponds the
wavelength ' 450 �A. Thus the dispersion of the exciton is linear on its momentum
in the interesting region.
In the very similar manner as for the 1D case we write the expression for the coupled

modes as:8>>>>>>>>>>>><>>>>>>>>>>>>:

�z(x; y) = ��L ('z(x; y) + 1'z(x; y + 1) + 1'z(x+ 1; y)
+1'z(x; y � 1) + 1'z(x� 1; y))

�x(x; y) = ��L ('x(x; y) + 1'x(x; y + 1) + 0'x(x + 1; y)
+1'x(x; y � 1) + 0'x(x� 1; y))

�y(x; y) = ��L ('y(x; y) + 0'y(x; y + 1) + 1'y(x + 1; y)
+0'y(x; y � 1) + 1'y(x� 1; y))

(22)

where 1 = (R=H)3 and 0 = �2(R=H)3 are Coulomb dipole-dipole interaction
parameters for two polarizations as before. To avoid the longer formula we take
the 2D square lattice and suppose the lattice constant to be equal to the nearest
neighbour distance, H. That seems to be close to the actual case of the polymerized
fullerene. In the nearest neighbor approximation, which is valid for large values of
k close to the Brilluene zone end, the spectrum of three plasma branches reads as
follows:8>>><>>>:

!z = !1

q
1 + 2(R

H
)3 (cos(kxH) + cos(kyH)) � !1

q
1 + R

H
)3(kH)2

!jj = !1

q
1� (R

H
)32 cos(kH) � !1

q
1 + 2R

H
)3 (3� (kH)2)

!? = !1

q
1 + (R

H
)3 cos(kH) � !1

q
1� R

H
)3 (6� (kH)2)

(23)
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VI. POLARITON

We derived the Coulomb spectrum of the transverse and longitudinal collective
modes of the planar fullerene structure in the last section. It is well known that the
standard Frenkel exciton couples with the light. The resulting excitation, the exciton
polariton, is derived as pole of the "dressed" Green function.
The derivation of the X-ray Frenkel exciton polariton will be presented here fol-

lowing the Ref.19. First, we de�ne the polarizability of the elementary cell of the
polymerized fullerene layer via the dipole momentum of the single excitation. The
dynamic polarizability relates the induced dipole to the external �eld.

-

6

jj

z

k0 k

!

�!LT

w

FIG. 2. The long wave length part of the plasmon-Frenkel-exciton polariton dispersion for
the fullerene plane. Three branches on the �gure correspond to the longitudinal mode (in the
middle), and two z�polarized branches, because of the transverse retarded polariton exciton has
the spectrum with two branches. The higher branch decays at large k and ends in the point where
the decay becomes larger than the real part of the frequency. The frequency of the lower transverse
branch coincides with the photon line for the small k and coincides with the unperturbed Coulomb
exciton dispersion for the large k. The longitudinal branch frequency does not change due to retarded
interaction.

Because of the longitudinal excitation does not interact with the transverse �eld and
the scalar and longitudinal Coulomb interaction are included in expression Eq.(21)
excepting the retarding interaction, �rst branch will not change. It will be given by
the upper line of the Eq.(21). Let consider then the situation for the transverse mode.
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In general, the mixing between the photon and the dipole excitation results in two
branches. The upper branch is decaying for the low-dimensional excitation. The
transverse modes have to decay because of the photon radiation when the energy
and momentum conservation ful�lled when the energy of the excitation is equal or
larger than the energy of the photon having the same wavenumber as the exciton.
It correspondes to the frequency of this new mixed mode which is higher than the
photon line �hck. The lower branch can not excite the photon in vacuum, therefore
its frequency has zero imaginary part. However, this excitation has the exponentially
decaying �eld along the fullerene plane like the longitudinal exciton. The method of
calculation of the 1D and 2D retarded excitation frequencies is given in Ref.19 and
will not be discussed here in details. As a result, in the region of small k � k0 the
upper branch has the following complex frequency:

!j(k) ' !j(0)

 
1� jkH

"
1� 2�

�
R

H

�3
s

R

Na
B

#!
+ i 4

�
R

H

�3
s

R

Na
B

cHk2 (24)

where the parameter j is
�
R
H

�3
for the z-mode and twice more, 2

�
R
H

�3
for the ?-

mode. The frequency !j(0) is the frequency of the Coulomb exciton at zero wavenum-
ber, taken without the retardation e�ect. Surely we hold in this expression only linear
on k terms in the real part and the lowerest term in the imaginary part is proportional

to the k2. So far the region of the de�ned excitation is k <
q
R=4Hj�k0, for the

larger k the imaginary part of the energy is larger than the real and this polariton
does not exist.

VII. SUMMARY AND DISCUSSION

In summary, we predict in the �rs time that in the fullerene solid the Frenkel-type
transverse excitations exist12. We obtained in the paper the dispersion of the collec-
tive electron excitations in the 1D and 2D crystals of the fullerene clusters including
the radiative decay. The typical frequency of such excitation depends mainly on
the electron density in the single cluster, the frequency of the single cluster surface
plasmon is about 25-28 eV. The calculated band width is about some electron-Volts.
We distinguish the surface plasmon on the single cluster and the Frenkel excitation

in the lattice of the fullerene clusters (1D, 2D or 3D crystal). The excitation of the
single cluster has the de�nite dipole momentum and is localized in the volume of the
cluster. It looks like the simple dipole excitation of the fullerene super-atom. Simi-
larly to the dipolar insulator, the single cluster plasmon mixes with all the neighbors.
The resulting wave of the dipole momentum in the cluster medium is the new delo-
calized excitation which has the X-ray frequency due to the large number of electrons
within a single cluster participate in the charge oscillation. This excitation is the
X-ray plasmon-Frenkel exciton.
We addressed ourselves above only to the dipole excitations because we will be

interested in the optical response of the system. We used the simple hydrodinamical
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model for the estimation of the energy of single cluster mode and then for the calclu-
ation of the cluster polarizability. The linear chain possesses two transverse modes
and a longitudinal one with the di�erent frequency. The similar situation for the
fullerene monolayer di�ers mainly in the value of the mode splitting.
The dispersion of the frequency of the X-ray Frenkel exciton is due to the Coulomb

interaction between the dipoles on the di�erent sites of the lattice. The total energy
of the interaction between two clusters can be expanded in a series on the multi-
pole components of the induced and external �elds. We demonstrated10 that the
dipole plasma frequency is changed virtually due to the dipole-dipole interaction.
The splitting energy is weak by the magnitude. For the Lth multipole cluster-cluster
interaction the small parameter of the problem is the ratio of the cluster radius to
the nearest-neighbor distance (R=H)2L. Hence the splitting decreases very rapidly
with the multipole index L, moreover the mixing between the di�erent multipoles
decreases even faster (see11 for more details).
So far we mentioned all main assumptions of our model: (i) the fullerene cluster is

treated as the spherical, that is right until one interests in the collective excitation
with the multipole index less than 3; (ii) the plasma high frequency limit (or the
classical hydrodynamic approach) we hope to be valid, though the question about
the inuence of the single electron spectrum on the plasma modes stills open; (iii) the
neglecting of the mixing between the di�erent multipoles seems to be very natural, for
the dipole mode it is exactly; (iv) the non-uniformity of the actual polymerized struc-
ture is beyond our scope, it will be considered in respect with the future experiments
on X-ray optics.
In summary, we present the semi-classical simple model predicting the X-ray po-

lariton phenomenon in the polymerized fullerene chain and plane. The frequency
dispersion lows for the transverse and longitudinal polarization excitations were de-
rived in the continuum approximation for the non-retarding part of the Coulomb
interaction. The polariton spectrum was evaluated along with the decay rate for the
small wavenumber region to be compared with future X-ray optics experiment.
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