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High frequency plasma excitation of C60, which was detected by

optical methods and EELS, is found to consist of two coupled com-

ponents. A comparison with a graphite planar structure shows that

electrons of � and � valence bands with di�erent symmetry partic-

ipate in common oscillations. This oscillation energy is calculated

within a simple model. We investigated some possible mechanisms

of a strengthening of lower collective excitation frequency and found it

to be similar to the acoustic plasma branch in the solids. The frequen-

cies of two branches depend on the plasmon multipole index like the

two-dimensional plasmon frequency depends on the wavevector.

I. INTRODUCTION

The problem of two-dimensional electron gas (2DEG) is in focus of attention

during last decades. In particular, it was �rmly stated that Coulomb coupling be-

tween two layers with 2DEG modi�es the system response and leads to splitting
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between two 2D-plasmon branches [1,2]. In this paper we consider in this paper

a problem of coupling of 2D-plasmons on the surface of a conducting sphere. We

suggest that the obtained result is applicable to the fullerene C60 molecule as well

as to other spherical carbon nanoclusters. The approach considered here was suc-

cessfully applied [3,4] to the recently discovered [5] bispherical C119 macromolecule

and, probably, can be generalized to some quantum dot systems.

In relation to this problem we solved the model of Spherical Shell Quantum Well

(SSQW) for C60 cluster [6{8] and obtained within the model that electrons, freely

moving within a thin spherical shell, behave as a charged liquid at the frequency

higher than all single electron transition frequencies. This system possesses some

collective excitations [9,10] like a conducting sphere. In frame of SSQW model [7]

we calculated plasmon frequency for quasi-spherical C60 molecule as the lowermost

frequency of the dipole excitation of the total electron density of molecule. This

frequency is triply degenerated. For the dimerized molecule with two SSQWs we

considered a coupling between two spherical 2D-plasmons and obtained a new dipole

excitation which frequency is splitted in the axial coupling �eld [3]. We showed that

the model returns the well-known [1,2] result for two coupled metal planes in the

contraction limit of the in�nite radius of the spheres.

At the high frequency the spherical surface plasmon has to determine the optical

response of the spherical nanocluster or the spectrum of electron energy losses. That

is why it is interesting to clear how the simple hydrodynamic picture accords with

the multi-component nature of � and � electron gases in the fullerene.

It was suggested in [9] that two-component plasma on the sphere can be de-
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scribed quantitatively with two phenomenological parameters: the restoring force

for � electron liquid and the displacement of the electron density from the mean

radius of the sphere. However the last quantity was taken the same for both liquids

that is crucial for Coulomb coupling between plasmons calculated in this paper. We

point out that in the limit of "empty lattice" the restoring force should be zero,

so the resulting frequencies of plasma oscillations in [9] remain to depend on the

lattice potential strength, meaningless parameter while the continuous charged 
uid

approximation used.

It was analyzed that Coulomb interaction between two plasma liquids with the

di�erent symmetry gives nontrivial result. It will be shown below that consider-

ing within the free electron model both � and � electrons without any additional

restoring force one gets a new parameter with the dimensionality of frequency e2=�hC,

where e and �h are the electron charge and Planck constant, and C is the capacitance

of the system. It is not very useful for the planar 2DEG (or for an in�nite graphite

sheet) because of the inverse capacitance of the in�nite plane capacitor decreases

as its area. Though it is important for the spherical capacitor. Let us to evaluate

this amount. When one takes all � electron shell density at the distance a=2 away

from the mean radius, R, where the � electron density is placed, the capacitance is

R(4R=a) with an accuracy of the small parameter (a=2R)2 ' 0:1.

We stress that our model qualitatively represents the two-excitation character

of plasma response of the fullerene as a result of the Coulomb mixing between

plasmons, but it easily includes any additional re�ning terms. As a simple example

the hydrostatic pressure will be considered which results in the dispersion of the
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plasma frequency with the angular momentum of the excitation like the volume

plasma frequency with the momentum of the plasmon.

The paper is organized as follows, useful results for SSQW plasmon will be given

in the next section. The Sec.III deals with the Lagrangian formalism allowing us to

include all interesting terms in the consideration. In the Sec.IV the model of C60 is

considered. Last section contains the discussion of the model results.

II. PLASMON IN SSQW

Let us remember how the spherical plasmon was considered in frame of the

spherical shell model of fullerene molecule [6{8]. In accordance with [8] we use

the spherical oscillation of the electron density �LM . For the central symmetry of

fullerene sphere we use the expansion of all quantities in the complete spherical

harmonics [11] P
L
(r)YL;M(
) those form a complete set on a sphere. The electric

potential is the solution of Laplace equation for empty space inside, 'in(r < R);

and outside, 'out(r > R); the spherical shell of molecule. We wrote it in multipole

power expansion:

'in(r;
) =
X
L;M

'LM
RL

jrjL YL;M(
);

'out(r;
) =
X
L;M

'LMR
L+1 1

jrj

L+1

YL;M(
):

At the spherical geometry a radial jump in electric �eld is given by:

2L+ 1

R
'

LM
= 4��

LM
(1)
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and we get response of the sphere in block-diagonal form [7] in subspace of angular

momentum L = const. The next equation can be considered as the de�nition of �,

the response function:

�
LM

= ��
L

'act
LM

; (2)

where 'act
LM

= f'xt + 'indg
LM

= 'xt
LM

+ 4�R�
LM

=(2L+ 1) is the acting potential,

L;M are the multipole power indexes (or the angular momentum and its projection

onto z-axis). The selfconsintency of the calculation is provided by the including of

the depolarization of the molecule through 'ind in the full acting potential.

Like for 2DEG we get the eigenvalue equation for the single sphere excitation fre-

quency arising from Eq.(1) and (2) under the zero external potential. Alternatively,

each pole of the self-consistent polarizability, �
LM

(!) is �xed by the frequency of

the molecular plasma excitation with the angular momentum L. It is easily seen [7]

from the explicit expression for the polarizability:

�L = �
�L;M
e'xt

L;M

=
�L

1 + 4�R
2L+1

�L
: (3)

An explicit form of the spherical response function �L(!) could be obtained using

the perturbation theory (see [7] for more details):

�L(!) =
e2

�hR2

X
ni;&i

X
�;K

2f
�
!

K;�

!2
K;�
� !2

(2� + 1)(2K + 1)

4�

0
BB@ L K �

0 0 0

1
CCA
2

; (4)

where: �h!
K;�

= �h2

2mR2
(K(K + 1)� �(� + 1)) is the energy of the single electron

transition between the levels with the angular moments K and � within the free
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electron (SSQW) model; m;ni; &i are the electron mass, the radial quantum number

and the spin of the electron in the ith spherical shell. The last multiplier is the

Vigner symbol, it comes from the Coulomb-like matrix element integrated over the

spherical angles with the spherical harmonics of the free electron wave functions [7].

We point out that the high frequency limit of the single molecule response func-

tion is ful�lled:
4�R

2L+ 1
�

L
(!) ' �!2

L
=!2. This expression is easily obtained from

the classic charge liquid equations:8>><
>>:

m _v = �r'

_� + nrv = 0
(5)

The �rst is a Newton low and the second is a linearized continuity equation. Assum-

ing potential ' to be a harmonic function as before we get the response in multipolar

expansion:

�L;M =
nL(L + 1)

mR2!2
'act
L;M : (6)

It is shown [12] that the response function and hence the polarizability of the spher-

ical molecule with closed shell electron structure has no dependence on M -quantum

number.

III. LAGRANGE APPROACH

A. Lagrangian of 2DEG in the plane

It is well known that plasma frequency of 2DEG can be obtained resolving the

secondary quantizied Lagrange equation for the interacting electron and electric
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�elds. Here we reproduce this result in order to introduce some useful notations.

Classic Lagrange function for system of electrons with a density n0 reads:

Z
d2x

 
n
mv2

2
�
e'�

2

!
: (7)

This function is easily quantized in terms of variables ', the full electric potential,

and �, 
uctuating part of full density n = n0 + �. They are connected by Gauss-

Ostrogradskii theorem. It shows up as simple expression in Fourier transforms:

e'k =
2�

k
�k. The resulting quantum operator of Lagrangian is given by the next

equation:

L =
1

2

X
k

 
nm

!2�2k
n2k2

�
2�

k
�2k

!
=

1

2

X
k

m!2
k

nk2

 
!2

!2
k

� 1

!
�2k ; (8)

where we subtract !k =
2�ne2

m
k, the frequency of 2DEG plasmon with a wavenum-

ber k. The eigen-frequency equations are not coupled for the di�erent k.

B. Lagrangian of spherical oscillations

First of all we reproduce our result for the sphere with a charged liquid on its

surface from Sec.II. In comparison with the plane one changes the operator of the

electron momentum in the plane with a ratio of the angular momentum to the

curvature radius L̂=R and in the classic limit one obtains k ! (l + 1=2)=R where

l + 1=2 is the classic eigenvalue for the angular momentum operator. So we resolve

the Lagrangian Eq.(7) in terms of spherical harmonics of surface charge density �l;m:

L0 =
1

2

X
l;m

 
nm

!2�2l;m
n2l(l + 1)=R2

�
2�R

l + 1=2
�2l;m

!
=

1

2

X
l;m

mR2!2
l

nl(l + 1)

 
!2

!2
l

� 1

!
�2l;m : (9)
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Here !2
l =

4�n

mR

l(l + 1)

2l + 1
is the frequency of the surface plasmon in SSQW ( [4,7,8]).

R is the radius of the in�nitely thin SSQW. m and n are the mass and the average

surface density of electrons in SSQW respectively. We note that the reducing of the

expression
mR2!2

l

nl(l + 1)
yields to

4�R

2l + 1
that results from previous equation for !l.

To obtain the polarizability of the single molecule in the SSQW model we have

to include the external �eld in the free Lagrangian:

L = L0 +
1

2

Z
e'xt� =

1

2

X
l;m

4�R

2L + 1

" 
!2

!2
l

� 1

!
�2l;m � e'xt

l;m�l;m

#
: (10)

In this expression we surly omit an hermitian conjugated part as well as in all other

expressions. We can prove that it is permissible and this simpli�es the overview of

the problem. We use notation �2 for the product �yl;m�l;m.

We stress that the kinetic energy of the electron liquid is proportional to its

inverse response function according to Eqs.(6,9). Below we will substitute 1=� for

the kinetic energy term in the Lagrangian.

Varying the Eq.(10) on the �yl;m we get:

mR2!2

nl(l + 1)
�l;m �

4�R

2l + 1
�l;m � e'xt

l;m = 0 : (11)

One should recognize in the �rst term the minus sigma divided by the response

function from the Section II. Multiplying all terms by �� we get:

�l;m + �l
�
e'indl;m + e'xt

l;m

�
= 0 ; (12)

where we connect e'ind the induced potential from the sphere charge density 
uc-

tuation with its sigma through Gauss-Ostrogradskii low { Eq.(1). From the other

947



side we can divide the spherical component of the external potential by the minus

proper component of the sigma that gives us the inverse spherical polarizability of

the system:

1

�l
=

1

�l
+

4�R

2l + 1
=

4�R

2l + 1

 
2l + 1

4�R�l
+ 1

!
: (13)

C. Matrix Lagrangian

The Lagrangian in Eq.(10) can be considered as a matrix product of the La-

grangian matrix and the string and column vectors (�l;m)
T and (�l;m; '

xt
l;m). The

matrix Lagrangian has diagonal form, moreover it is block-identical matrix, i.e. it is

proportional to the unity matrix within each subspace of the �xed multipole power

l = const. We point out that the separation of matrixes in the di�erent angular

momentum subspaces is possible only at the lucky chosen the SO(3) symmetry of

the carbon cluster. More precisely that is really required is the "closed-shell" �lling

factor for all cluster single electron orbitals, at this assumption the electron system

becomes invariant relatively to any rotation. We will discuss it at length elsewhere.

Let now the spherical oscillation of the electron density to have more than one

component. This oscillation is conveniently considered as the multicomponent vec-

tor. Consequently, at l; m �xed, we can consider the Lagrangian matrix of 2 � 2

dimension multiplied by the two-component vectors of �. Starting with the free

Lagrangian such as in Eq.(9) one should write the potential energy in the form

4�R

2l + 1
(�1 + �2)

2. Besides the direct self-acting terms �y(i)�(i) the potential energy
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has the crossed inter-acting terms �y(i)�(j), where i; j denote � or � electron liquid.

The following Lagrangian

L0 =
1

2

X
i;j

X
l;m

 
�1

�il
�2l;m(i) �ij �

4�R

2l + 1
�yl;m(i)�l;m(j)

!
(14)

results in the matrix form, which reads:

det

����������

�
1

�
(1)
l (x)

�
4�R

2l + 1
�

4�R

2l + 1

�
4�R

2l + 1
�

1

�
(2)
l (x)

�
4�R

2l + 1

����������
= 0 (15)

The problem is stated as the eigen-value problem for Lagrangian matrix respectively

to the inverse response function argument xi = (!=!
(i)
l )2. Subtracting the common

multiplier
4�R

2l + 1
outside the matrix one gets:

������������

x1 � 1 �1
2l + 1

4�R
e'xt

�1 x2 � 1
2l + 1

4�R
e'xt

������������
(16)

Here we add the right part corresponding to the external �eld. The polarizabilities of

the components of the surface density oscillations result from the resolving Eq.(16)

with respect to 'xt. The calculated polarizabilities are easily veri�ed to be equal to

the right part of the Eq.(3).

We point out that each pole of the � corresponds to each zero of the matrix

determinant, it means that each eigen frequency of the multicomponent electron

system gives a gain into the imaginary part of the selfconsistent polarizability of

the system. The model has no additional excitation besides the spherical surface

plasma excitation due to the special form of � chosen (see Eq.(2)).
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IV. TWO LIQUID MODEL

A. Why electrons in fullerene are distinct

The problem of quantum chemical hybridization of the electron orbital of a

carbon in the nanocluster crystal lattice is not easy to solve. Each carbon has

three nearest neighbors. The same situation in graphite results in s� p2{hybridized

electrons. Their bonds lie in the plane in a stick-and-ball model. When a carbon

atom drops out from the initial plane position, it perforce gives a rise to an electron

energy. In other words, it occurs the rehybridization in the curved graphite-like

surface.

It is naturally to divide in two parts all valence electrons of carbon nanocluster

similarly to the planar graphite. Three of four valence electrons of a carbon form

3 �-bonds. They form the frame of the cluster, their electrons have low mobility.

The rest one electron per carbon is highly mobile and participate in �-band building.

The name � or � is theoretical because of the rehybridization of bonds. The di�erent

kinetic properties of these two types of carriers allow us to distinguish between two

charge liquids.

It was made for fullerene molecule in Ref. [9]. We will not address this result,

but it worths to remind that authors of Ref. [9] took all two liquids on the sphere of

a dumb-bell pro�le in a radial direction for the sake of simplicity. It is more natural

to compute only �-electron liquid as the dumb-bell type. While a �-electron density

should have di�erent symmetry relating to the tangent to sphere surface plane. Let

us show that such clear assumption leads to signi�cant change in the electron system
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response.

The reduced free Lagrangian matrix (like in Eq.(16) without the right side) is

obviously the sum of the diagonal matrix of the kinetic energy and the degenerate

matrix of the potential energy. Consequently the �rst root of Eq.(15) is always zero.

We emphasize that from mathematical point of view any changes in the �rst term

of Lagrangian, in kinetic energy, can not alter the situation. Hence, in order to get

physically correct result, when lower frequency is not zero, one does include a new

potential energy part which di�ers for the two components (as it was done in Ref.

[9] phenomenologically).

The origin of the strengthening of the lower plasmon should be revealed. We pro-

pose to account the di�erence in the radial integrals of the charge density overlap for

the self- and inter-acting parts of the Coulomb energy. It will be shown in Sec.IVB

that even the small overlap di�erence yields the essentially altered response. This

quantity has the classical meaning mentioned in the introduction. It corresponds

to the capacitance of the spherical capacitor with three-layers: the internal and

external ones are connected.

B. Coulomb inter-action energy: Overlap function

In this section we will apply the Lagrange formalism developed in Sec.III B and

IIIC to the two electron liquid model of the fullerene molecule.

The kinetic term in the Lagrangian reads:
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1

2

X
i=�;�

X
l;m

�
1

�
(i)
l

�
(i)
l;m

2 =
1

2

X
i

X
l;m

R2!2

l(l + 1)

m(i)

n(i)
�
(i)
l;m

2 (17)

where 1=�(�;�) is the inverse response of � (�) electrons which is proportional to !�2l ,

hence it is proportional to the electron e�ective mass to the density ratio m(i)=n(i).

Even if the electron mass in Eq.(17) is the same for two bands, the density of �-

electrons is thrice more than �:

L0 =
1

2

X
l;m

"
!2mR2

nl(l + 1)

�
4�

(1)
l;m

2 +
4

3
�
(2)
l;m

2
�
�

4�R

2l + 1

�
�
(1)
l;m + �

(2)
l;m

�2#
; (18)

here n = n�+n� - the total electron density. This expression leads to the Lagrangian

matrix. On the diagonal there are the expressions which are identical to the secular

equations for � (�) modes: �1=�l(x) �
4�R

2l + 1
. One gets the simplest form for

determined above eigenvalue problem for the dimensionless variable x by dividing

all matrix on the characteristic Coulomb energy 4�R
2l+1

. We call this form of the

Lagrangian matrix the reduced Lagrangian:��������
4x� 1 �1

�1 4
3
x� 1

��������
(19)

Without Coulomb coupling between two plasmon modes this equation returns free �

(and �) electron plasma frequency {
q
1=4 !l (and

q
3=4 !l) where !l is the plasma

frequency calculated for the total number of electrons (compare with the common

multiplier in Eq.(18) ). However, when considering plasma oscillation which includes

the Coulomb force, one can not neglect the coupling terms. In the above presented

consideration we believe that the electron liquid is two-dimensional or, equivalently,

the electrons move only on the sphere surface. Actually, despite of the partial
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rehybridization of the chemical bond in the fullerene, in the radial direction the �-

electron liquid is mainly concentrated in a vicinity of the mean radius of the cluster

R. At the same time one naturally thinks that �-electron density has a node in the

radial direction at R, because of the node of the atomic orbital. Hence these two

charge densities are spatially separated. The separation distance a=2 is a parameter

of the model and can be evaluated as the �-electron cloud width being about the

carbon atom size � 1:5 �A.

The discussed Coulomb inter-action changes the non-diagonal reduced La-

grangian matrix elements from 1 to some quantity to be determined from the electro-

statics of the two plasmon charges. We gave a classical estimation of the capacitance

of the uniformly charged triple spherical capacitor in the introduction. Here we ar-

gue that considering the � and � electrons on the spherical surfaces r� = R and

r�� = R � a=2, one gets the Coulomb integral between the modes in the following

form:

1

R
(1� �l) =

Z
r21dr1

Z
r22dr2�1(r1; l; m)

rl<
rl+1
>

�2(r2; l; m)

' 1
R

�
1� l a

4R
� (l + 1) a

4R
+ : : :

� (20)

here �l ' (2l + 1)
a

4R
is the correction to the Coulomb inter-action to be included

in Eq.(19) obtained at the small parameter a=4R � 1. It directly corresponds to

the exponential multiplier in the Coulomb interaction between 2DEGs in a double-

quantum-well structure (see [12] for more details).

Then the Lagrangian matrix reads as:
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��������
4x� 1 �1 + �

�1 + � 4
3
x� 1

��������
(21)

This matrix is readily solved relatively to the dimensionless frequency squared

x = !2=!2
l . It has two roots with the �nite frequency, how it has been clamed

above. Thus, the correction to the Coulomb interaction due to the spatial separa-

tion of the electron liquids in the radial direction leads to the crucial changes in the

plasma spectrum. We found two peaks without any additional terms included in the

Lagrangian. However, in the next section we will discuss what additional feature

can be considered within our approach.

C. Plasmons in � and � bands

It is well known that the e�ective electron mass along the graphite plane is much

smaller than the free electron mass: m� < mo. We assume m, the e�ective mass

of the electron in �-bands, is about mo because of the essentially smaller dispersion

in these bands. It is hard to calculate perfectly the e�ective mass ratio for � and �

electrons in the fullerene. We consider it as a phenomenological parameter in our

model. Precisely speaking we take m� = m=�. It changes the kinetic part in the

Lagrangian like the above counted di�erence in the density of the � and � electrons.

We estimated the mass ratio � considering the experimental data for the dipole

plasma frequencies for the C60. It should be about 6, that seems not incredible when

one compares with the graphite � and � band structure.

Now, we will take into account that the electron liquid potential energy contains
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the hydrostatic pressure term. The including of the term in the Lagrangian leads to

the additional mixing of the plasmons. It will be considered in more details elsewhere

[12] that this term in the potential energy results in the strengthening of the plasma

frequency. When taking into account the pressure in the electron liquid, the second

sound wave solution appears. It corresponds to the spatial dispersion term for the

volume plasma frequency expression (see [1]). The 2D-plasmon frequency depends

on the square root of its wavevector, in particular, it comes from the expression

(8). While the surface plasma frequency !k disperses by itself, the "sound" term

in
uences on the large wavevector asymptotic. The straightforward analogy with

the 2D-plasmon gives us that the square root dependence of !l on the l=R becomes

the acoustic linear dependence for the angular momentum much larger than the

critical value.

This critical angular momentum is none other than the inverse e�ective Bohr

radius a�1B = m(i)e
2=�h2. Hence, the reduced Lagrangian matrix including the "ca-

pacitor" and "sound" terms reads as:

����������������

4x� 1�
�
l +

1

2

�
a
(1)
B

R
�1 + � �

�
l +

1

2

�
a
(1)
B

R

0
@!(2)

l

!
(1)
l

1
A

2

�1 + � �
�
l +

1

2

�
a
(2)
B

R

0
@!(1)

l

!
(2)
l

1
A

2

4x

0
@!(1)

l

!
(2)
l

1
A

2

� 1�
�
l +

1

2

�
a
(2)
B

R

����������������

(22)

where
�
!
(1)
l =!

(2)
l

�2
= n1m2=n2m1 = �=3 � 2.
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V. RESULTS AND DISCUSSION

Thus we showed in Sec.IVB that the Coulomb coupling alters the frequencies of

the coupled plasmons. To summarize we state that the new frequencies are found

from the eigenvalues of the matrix (22). One can see that in order to eliminate the

meaningless zero eigenvalue one should consider two correction terms ("capacitor"

and "sound"). Depending on the parameters m1=m2; a; n2=n1 = 3 for � and �

electrons the solution has di�erent form.

The formulated eigenvalue problem can be easy analyzed when neglecting one

term considering the other. Let �rst the "sound" correction to be zero aB = 0. Then

the value of the lowermost l = 1 plasma frequency of � electrons is shifted up, while

the � plasmon is going down. It is seen from the dependence of the dimensionless

root of the eigenvalue equation for the matrix (22) on the multipole index l. It is

true until l + 1=2 � 2R=a � 2 � 3. When increasing the l > 3 the dispersion of

x on l changes sign. The � plasmon gets more and more Coulomb correction and

the dependence of !l on l becomes linear. The � electron plasma frequency goes to

zero. It occurs at l � 4R=a � 5.

The including of the hydrostatic pressure correction leads to the smoothing of

the dispersion of x on l. At de�nite values of the parameters it can be no solutions

for the non-zero lower plasmon branch. It seems not to be the case of C60 cluster.

The above discussed results of the model are schematically depicted in the �gure.
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FIG. 1. The schematical representation of the spectrum of the fullerene cluster

plasma modes. The Coulomb coupling and the hydrostatic pressure in the electron gas

are taken into account.
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