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A phenomenological model for calculation of formation energy of (CNC) carbon nano-clusters of
de�nite shape was suggested.
The model uses three energetic parameters, Ec and W5, being determined from comparison with

experimental data and results of computer simulation for various CNC, and dangling bond energy.
We showed that there is a optimal opened tube having minimal energy keeping number of atoms

N constant. Both tube length L and diameter D are determined uniquely by N and co-dependent
as L / D2 so L� D.
We calculate energies corresponded to spheroidal CNC and polyhedra-shape clusters of Y{

symmetry, being topological equivalent to spheroids. First are energetically favorable for the bigger
N but it was shown that under proper parameters chosen a such region of cluster size exists where
fullerenes of polyhedral con�guration have lower energy.

Introduction. Fullerenes and other carbon nanoscale clusters (CNC) have drew our attention due to, �rst, a
regular geometrical shape, second, a variety of size and structure, third, certain stability of these products. It was
attractive to search for some relation between geometrical and physical-chemical properties of such objects as ball-like
fullerenes or their polyhedral-shape modi�cations, opened bucky-tubes of �nite or in�nite length, closed tubes or
capsules. To begin with, now we present phenomenological model of formation of CNC. We try to calculate formation
energy W

CNC
for above-listed clusters in a common way. Within this model we need only three parameters those will

be discussed below in detail.
Recent years a number of groups obtained some results concerned energetics of various CNC [1{7,9]. Despite of

di�erent computation approaches and certain di�erence in quantities to calculate we found these computer modeling
data to be a good ground. We able to �t most of data and to explain some particular results of Refs. [1{7,9] using
our model. Also we have made a number of predictions discussed below.

Energy of curved graphite-like surface. It stays unaccountable fact why only carbon in periodic system
displays a great number of di�erent structures. We have to stress that as concerning pure CNC each carbon atom has
3 chemical bonds like a graphite carbon atom. It was been noted previously [4] that degree of hybridization of carbon
bonds in CNC vary from graphite to diamond depending on all 3 �-bonds and last �-orbital co-orientation, but this
change is directly connected with electron energy change. From other side, in conjunction three-coordinated carbon
atoms make up geometrical net with regular polygon cells usually. Number of polygons in de�nite CNC is governed by
Gauss-Bonnet theorem (considered also in [9]). Some CNC could be formed from only graphite hexagon net. Covering
of other CNC consists of hexagons and pentagons. We believe that energy of any CNC is fully determined by all
atom true positions through quantum chemical computation but hope that for cluster of high symmetry it could be
empirically calculated depending on a few shape parameters.
We try to �nd energy dependence on radius for simplest case of in�nite tube to start with. Gauss-Bonnet theorem

allows us to cover with only hexagons a plane and equivalent body as cylinder and truncated cone. We suppose that
all carbons of in�nite tube are placed on surface of cylinder and arranged in regular hexagons. That means we neglect
possible relaxation of bonds when atom displaced inside or outside of regular surface and for simplicity we not include
change in bond length too, we will discuss this assumptions elsewhere.
To account additional energy of in�nite tube in relation to graphite sheet of the same number of atoms we suppose

energy of curved surface depends on squared curvature. We refer this additional curvature energy to one bond energy:
Ecurv
bond = Ec �2, where Ec is �rst phenomenological parameter of model, in a stick-and-ball picture � is angle between

bond direction and its not curved planar original position. It is equal to zero in planar graphite structure and can
be derived through bond length, b, and curvature radius, R, in limit of small angle � ' b=R. Throughout the paper
we will use dimensionless length in units of bond length, b ' 1:4�A taken roughly about graphite value in order to
evaluate energy. We suppose that there are quantum mechanical reasons for atom with 3 � bonds displaced from
planar position to have higher energy. Actually, direct computation of Ec is much beyond this consideration. Any
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way if local geometry of bonds determines the curvature energy, it could be rewritten in terms of �.
Note that dimensionless curvature of cylinder k simply coincides with � determined above. Next point to stress

is that curvature along the cylinder axis is zero and it is 1=R on perimeter. So we need substitute in equation for
curvature energy e�ective k� along original planar �-bond direction that makes angle ' with cylinder guide. It seems
us very natural to suppose that in CNC of great radius angles between 3 �-bonds of each carbon atom are equal to 2�

3

original value for graphite. In that assumption curvature energy per CNC is calculated by simple integration over the
CNC surface of energy per atom (we make use of continuous model of graphite-like slightly curved surface to change
summation over all atoms positions with integration) as a sum over �-bond directions { some kind of invariant in case
of C3 atomic symmetry

Ec
atom =

X
�1;2;3

k2� =
9K2

2
� H

2
=

3(k1 + k2)
2

4
+

3(k1 � k2)
2

8
(1)

where we write usual two principal curvatures of surface k1; k2 and its combination Gauss curvature H = k1k2 and
mean curvature K = (k1 + k2)=2. All curvatures in general are functions of surface point but we will consider for
clarity only surfaces with no dependence as cylinder, sphere, plane or some connected parts of these bodies. In this

case integration gives us the CNC speci�c area producted by Ec
atom. Note that graphite unit cell has area 3

p
3

2
in

units of b2 and possesses two carbon atoms. For cylinder of radius R it gives
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where CNC area is S = 2� LR, L is tube length, and we obtain Ec parameter from speci�c energy per unit length of
in�nite tube computer simulation [5] to be about 0.9 eV. Within our model we get that any local orientation of �-bond
relatively to guides or axes of CNC is energetically equivalent, that depends only on assumption of C3 symmetry of
each carbon atom �-orbitals with respect to neighborhood. We point that it demands not only local atomic symmetry
but touches a few atoms in vicinity. When believing this model, we get energy per length of in�nite tube to have no
dependence on local geometry of regular hexagon net but only a tube radius or number of atoms per length. It was
widely discussed that there are a number of tubes of same radius with di�erent covering. It is self-evident if consider
tube as folded and glued parallelogram which is cut from graphite sheet. An angle of parallelogram possesses discrete
values in order to superimpose two glued sides of tube atom in atom. In our model energies of such di�erent clusters
are same. We conclude that this prediction �ts to data from [5] quite well (see Fig. 1).

Size of optimal tube. On the base of model de�ned in last section we made optimization of tube formation energy.
In the case of in�nite tube speci�c energy diminishes as inverse radius squared. We de�ne speci�c energy asW

CNC
=N

additional energy per atom comparing with planar graphite sheet. Number of atoms N = 2S=Sun:cell = 8�RL

3
p
3

is

speci�c CNC area. Minimum of speci�c energy of in�nite tube is reached at in�nitely large radius, i.d. for graphite.
First non-trivial optimization can be proceeded if one considers in�nite tube with a number of dangling bonds. Energy
of dangling bond is well known [5,6] for graphite Eb = 1=3Ecarb:at: = 2:36 eV and we mind that it is not so di�er
from actual value for CNC.
The dangling bond energy is proportional to number of atoms on a tube perimeter and depends on R only:

2 2�Rp
3
� Eb, where geometrical multiplier � is included for di�erent types of tube, e.g. for tube of "zigzag" type (cf.

[9]) it is equal 1, and 2=
p
3 for "armchair" type depending on density of dangling bonds. Under larger R this energy

grows compensating the decrease of curvature energy. So there is a minimum of energy for cluster of �xed number of
atoms. Such cluster is called optimal and its energy is determined from minimization of function:
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where �rst term is curvature energy, the second is perimeter energy and � is inde�nite Lagrange multiplier to be found
from condition of �xed number of atoms. Length and radius of optimal tube are co-dependent and can be uniquely
written for de�nite number of atoms N0:
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Evidently when the radius of optimal tube grows the length increases rapidly so optimal tube is prolonged and it is
more emphasized for bigger CNC. It is worth to note that for usual d dimensional (2D, or 3D) body a length is scaled

as N
1

d , in this sense optimal cluster radius has 3D character but length behaves as 3D area. Energy of optimal tube

grows as 3
�
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that shows that optimal cluster curvature energy is two times less than its perimeter energy.

Sphere and polyhedra shape CNC comparison. We have used in our model only 3 phenomenological
parameters. We need two above de�ned ones for description of cylindrical tubes. Now we will consider ball-like
fullerenes and new term in formation energy appears. It originates from pentagon unit cells on spheroidal CNC
surface. According Gauss-Bonnet theorem any closed spheroid does have 12 pentagons excepting arbitrary number of
hexagons. We have no direct proof, but as a rule pentagons try to lie as far each from other as possible. It results from
school geometry that 12 centers placed at maximal distance on sphere are located in vertexes of regular icosahedron.
When a real CNC has Yh symmetry of truncated icosahedron its geometry is simple. We calculated formation energy
for such type of ball-like fullerenes within our model.
There are two principal ways to construct Yh spheroid. The �rst developed in Ref. [6,7] is to make so-called Holdberg

polyhedron that consists of 20 deltagonal faces as simple icosahedron but each face is combined from unit cell hexagons.
In vertex pentagon is placed and can be arranged in two ways, depending on that number of CNC atoms is given by
20� n2 or 60� n2 where n is natural. We will use here only second type due to similarity in calculation. Number n
determines number of hexagon rings between two pentagons, from other point of view it corresponds to CNC mean
radius. We stress that pentagons slightly diminish mean radius, having less area than unit cell. Such polyhedron
should be considered as 20 triangles cut from graphite sheet with sharp boundaries between. In other words, all
surface curvature is concentrated in edges excepting a global topological curvature included in 12 pentagons according
Gauss-Bonnet theorem. Note that this polyhedron geometry �xes the curvature degree both at vertexes and on edges.
These quantities are expressed trough "golden section" � = (1+

p
5)=2: for vertex �2vert =
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and for edge �2edge = 1� 1

4(1� 1

4�2
)
. The corresponding curvatures amount about 5 and 3 �A.

Closed spheroid has no dangling bonds but additional term in energy comes from pentagon formation. This is
constant additive term for any ball-like CNC and is the third parameter of our model. We suppose energy of curved
pentagonal bond to be the same as for hexagon Ec, it could be, generaly, treated as next �tting parameter. Due to
number of "curved" bonds on edges scales as a length and other terms in polyhedron energy have no any dependence,
total energy is linear on R of polyhedron. So speci�c energy decreases as inverse radius squared:
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where E5 is constant formation energy term for spheroid. It was extracted through comparison with experimental
data of C60 cluster formation energy [10]. Depending on polyhedron degree n, speci�c energy depends on R, mean

radius of spheroid, determined as N = 60� n2 = 16�R2

3
p
3
.

Then let us consider "really" ball-like fullerenes such as C60, those evolvements are identical to correspondent
Holdberg polyhedra but curvatures are constant on the surface. Atom belonging to hexagon has 3 bonds with equal
energy similar to in�nite tube in �rst section, pentagon atom has two bonds with �xed energy (included in ball-like
CNC constant term) and one bond with same energy as in hexagons. With radius or number of atoms grows total
energy of sphere grows up to constant value that corresponds topological di�erence between sphere of in�nite radius
and sheet of plane:
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First term is the constant pentagonal energy, second term comes from all atoms in hexagons, and third is connected
with each pentagon atom bond shared between hexagons. In the case of sphere we also have only trivial speci�c
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energy minimum at R ! 1. It seems to be clear that in�nite radius cluster prefers to be shaped uniformly as a
sphere rather than to have sharp edge. We replot data from Ref. [5,7] on inverse number of CNC atoms in order to
compare model calculation for spherical and polyhedral shape clusters (Fig. 3). For all data we �nd our results �t
quite well except energy of very high mass cluster N = 960 that can be beyond the calculation accuracy.
We made a comparison of spherical and polyhedral shape cluster energy under equal number of atoms. In Figure 4

we plot the formation energy di�erence between sphere and polyhedron (Eq.(7), Eq.(8)). Surprisingly we found that
energy di�erence changes sign. It means that there is a cluster mass region when formation of Holdberg polyhedron
of order n is energetically favorable: 1 < n < 4.

Conclusions. We suppose phenomenological model to calculate fullerene nanocluster formation energy. Within
the model we made predictions about energetically preferable shapes of some CNC. Nevertheless we consider only
a few types of clusters we hope that in general model is not false because of it �ts well to independent di�erent
computation data. We will proceed elsewhere [11] some forward calculation within the model concerning some other
types of CNC and will complicate model in order to analyze its stability on small shape or bond length deviations.
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