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Abstract. A theory of drift–diffusion transport in a low–dimensional field effect transistor is developed. Two cases of a
semiconductor nanowire and a single–wall nanotube are considered using self-consistent electrostatics to obtain a general
expression for transconductance. This quantum wire channel device description is shown to differ from classical device
theory because of the specific nanowire charge density distribution.

In the present work we consider carrier distributions and pa-
rameters of a field effect transistor (FET) with a quantum wire
channel, which may be a semiconductor nanowire or a carbon
nanotube. The structure includes source and drain electrodes
connected by a nanowire/nanotube −L/2 < x < L/2, and a
gate electrode separated by a thin dielectric layer of the thick-
ness d. We assume the wire to be uniformly doped with 1D
density N = const(x). When the structure is in operation,
the source-drain voltage Vd causes a current j along the chan-
nel and a re-distribution of carrier concentration as compared
with the initial specific density. A voltage Vg is applied to the
gate and changes the concentration, which controls the FET
transport.

All potentials are measured from the middle point of the
wire (x = 0) so that the source and drain potentials are−Vd/2
andVd/2. In this case the potentials along the wire and concen-
tration changes caused by Vg together with the contact poten-
tials, and byVd are, respectively, symmetric and antisymmetric
functions of x and are given the subscripts s and a: φs,a(x) and
ns,a(x).

The potentials φs,a(x) can be divided into two parts: the
components φ0

s,a(x) created by electrodes and contact poten-
tials, which should be found from the Laplace equation con-
taining no channel charge density and the components φ1

s,a(x)

caused by the electron charge in the channel −ens,a(x). We
assume that the characteristic lengths L and d determining the
potential and density distribution along the channel, notice-
ably exceed the nanowire/nanotube radius a. In this case the
relationship between φ1

s,a(x) and ns,a(x) is approximately lin-
ear [1–4] and for a nanowire with non-degenerate carriers, the
current j can be written as:
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where n = ns + na , φ0 = φ0
s + φ0

a, ε is the ambient dielectric
susceptibility, µ is the carrier mobility and l has the order of
min{L, 2d}.The second term describes the drift in the self-
consistent field−∇φ1

s,a(x) and the last term corresponds to the
diffusion current, which in one–dimensional transport cannot
be neglected in comparison with the drift component. For
a nanotube with degenerate carriers, the thermal energy kT

should be replaced by the Fermi energy and (1) reads as:

j
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= n(x)

dφ0

dx
− eC−1

t n(x)
dn

dx
, (2)

where C−1
t = C−1

g +C−1
Q is the inverse capacitance of the nan-

otube derived in [3] and containing both logarithmic geometri-
cal capacitance, C−1

g ∼ln(l/a), similar to (1) and the quantum
capacitance of the 1D electron gas, CQ = 1/(e2ν) � 0.31
for one degenerate subband of a single wall nanotube. The
same simplified expression is also derived from (1) in the limit
A = 2e2N ln(l/a)/(εkT )� 1.

The boundary conditions n(±L/2) = nc assume the source
and drain to support constant concentration at the contacts, in-
dependent of the applied voltage. For nc �= N our formulae
require some modification. In the closest vicinity of contacts a
finite charge density e(N − nc) exists in the channel. To pro-
vide equipotentiality of metallic contacts, we must assume the
presence of oppositely charged images inside the contacts. But
this means discontinuity of charge density at x = ±L/2 and
makes doubtful the adequacy of continuum approach assuming
smooth charge and potential variations. To avoid this difficulty,
we measure n from nc by assuming n(x) = nc +&n(x) with
the simultaneous inclusion in potential the component φc(x)

representing potential of a wire with uniform charge e(N−nc)

between metallic contacts x = ±L/2 calculated in [2].
Now we can find the carrier concentrationn(x) and the elec-

tric current j caused by the voltages Vg and Vd. The problem
is relatively simple if we restrict ourselves to the linear case
of small Vd . In the zeroth approximation both φ0(x) and n(x)

contain only a symmetric component: ns(x) = nc +&ns(x).

&ns(x) should be found from (1) with j = 0 and φ0(x) =
φc(x)+φg(x) where φg(x) is the potential created by the gate
electrode. When ns(x) is found, (1) can be linearized in na and
solved with the conditions na(0) = na(L/2) = 0. This gives
the concentration profile and the current j, which appears es-
pecially simple for a single-wall nanotube or A� 1 where the
problem is reduced to the ordinary Kirchhoff’s law:

j = Vd

R
, R = 2

eµ

∫ L/2

0

dx

[nc +&ns(x)]
. (3)

The resulting j depends on the gate voltage Vg through the
functions φ0(x) and &ns(x), which allows us to calculate the
transistor transconductance dj/dVg.

The potential profile φ0(x) and hence all the results de-
pend noticeably on the geometry of the source and drain con-
tacts. We consider in detail bulk contacts representing metallic
or heavily doped semiconductor regions with all three dimen-
sions considerably exceeding a, d and L and thus assumed to
be infinite. By solution of corresponding Laplace equation we
find the potential distribution 5(x, y) created by this system
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of electrodes in the absence of a wire. The resulting 5(x, d)

contains two terms: that proportional to Vg and correspond-
ing to φg(x) and that proportional to Vd which corresponds to
φ0
a(x).

If the simple expression (3) is applicable, the dimensionless
current i = jL/(n0eµVd) has an explicit form:

i =
[

2
∫ 1/2

0

dt

1+ gN(t)

]−1

(4)

where g = 2εVg/[πen0 ln (l/a)] is the dimensionless gate
voltage and for nc = n0,

N(t) =
∞∑
0

(−1)n

(2n+ 1)
cos[πt(2n+ 1)] exp[−πd(2n+ 1)/L].

The channel conductivity near the cut-off is determined by the
point of minimal concentration, which in a symmetric structure
is x = 0, and hence is determined by the properties of N(t) at
small t . Expansion of N(t) allows us to perform integration
in (4) and obtain

i =
√
(g − g0) sinh(πd/L)√

2 cosh(πd/L)
,

g0 = −
{π

2
− arctan[exp(−πd/L)]

}−1
. (5)

Thus the transconductance di/dg increases in the vicinity of
cut-off ∼ (g − g0)

−1/2.

In the structures with two- and even quasi-one-dimensional
contacts the potential profiles φc, φg and φa have essentially
different x-dependence with singularities near contacts [2]. In
our case it means a different profile for the N(t) function. Its
expansion near the maximum is, of course, also quadratic and
hence results in the same qualitative final result di/dg= B(g−
g0)

−1/2, with particular values of the cut-off voltage g0 and the
coefficient B different from the case of bulk contacts.

The simplified expressions (2), (4) neglected diffusion,
which is equivalent to the limit of zero temperature. The
formula &n0(x) = Ctφc(x) resulted from (2) in equilibrium
simply gives n = 0 for all points where φ0(x) < −C−1

t nc.

Thus in the linear approximation, the cut-off voltage g0 corre-
sponds to the condition φ0(0) = −C−1

t nc and at lower g the
current is exactly zero. It is evident that at non-zero tempera-
tures the current at g < g0 will have an activation behaviour:
j ∼ exp(−&/kT ) where & = e(−C−1

t nc − φ0(0)). Since
φ0(0) depends linearly on Vg , the activation energy & is di-
rectly proportional to g0 − g.

In the case of arbitraryVd when the linear approach fails, the
problem requires numerical solution of the general non-linear
equations (1) or (2) with the potential consisting of three parts:
φ0(x) = φc(x) + φg(x) + φa(x) describing, respectively, the
influence of contact work function, gate voltage and source-
drain voltage and calculated earlier. Two boundary conditions:
n(±L/2) = nc determine the integration constant and the so
far unknown value of j . Since φg(x) is proportional to Vd

and φa(x) is proportional to Vd, the resulting solution gives
us the current-voltage characteristic (CVC) j (Vd) for various
gate voltages.

To calculate it quantitatively, we choose particular values
ln(l/a) = 3 and d/L = 0.3. As an illustration, we consider the
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Fig. 1. (a) CVC of a nanowire with d/L = 0.3 atVg = −2.5 (dashed
line) and Vg = −2.8 (solid lines) for τ = 0.05 (1), 0.1 (2), and
0.2 (3). (b) temperature dependence of the current at Vg = −2.5 (1),
−2.6 (2), −2.7 (3), −2.8 (4).

ideal Ohmic contacts with nc = N where the dimensionless
threshold estimated with (5) g0 = −2.7. Figure 1(a) shows
CVC at g = −2.8 (below the threshold) and g = −2.5 (above
the threshold). All characteristics have a superlinear character,
which has a simple explanation. High drive voltage Vd tends
to distribute carriers uniformly along the channel. In our con-
ditions when powerful contact reservoirs fix the concentration
n at the points where it is maximal, such a re-distribution will
increase the minimal value n in the center of channel and hence
increase conductivity of the latter.

Figure 1(a) presents also information on temperature de-
pendence of the channel conductivity. Above the threshold
this dependence is practically absent. The CVC curves for
g = −2.5 at different temperatures does not deviate from the
dashed line corresponding to εkT /(e2nc) = 0.2 more than by
10% and are not shown in the figure. For Vg below threshold
and not very high Vd , Fig. 1(a) demonstrates a strong tem-
perature dependence of the current shown in more details in
Fig. 1(b) calculated for low enough Vd corresponding to the
linear initial part of CVC. While the two upper curves for
the above-threshold Vg have no noticeable temperature depen-
dence, the two lower curves demonstrate such a dependence
with & growing with |Vg|, in accordance with the predictions.
At high Vd, where contact injection and electric field tend to
create uniform carrier concentration equal to nc, the different
curves merge and temperature dependence collapses.
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