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Abstract. Excitonic states in single-wall carbon nanotubes have been studied within the tight-binding approximation. An
analytical expression for the dielectric function of the nanotube has been obtained in the random phase approximation. It
was demonstrated that calculations with the static dielectric function yield an overestimated exciton binding energy
exceeding the nanotube energy gap. Self-consistent calculation of the exciton binding energy with the frequency-dependent
dielectric function has been performed. The binding energy to energy gap ratio has been shown to have no dependence on
the nanotube radius and to be a universal constant ∼ 0.87 for given resonance integral γ0 = 2.7 eV.

Introduction

There is two reasons for a large exciton binding energy in car-
bon nanotubes. First is decreasing of the spatial confinement
energy due to the one-dimensionality. Second is the spatial dis-
persion of the dielectric function of nanotubes. The screening
is strong at the distances less than the nanotube radius and is
ineffective at the large distances. Actually, the dielectric func-
tion with zero angular momentum goes to unity in the long
wavelength limit. This is consistent with the fact that infinitely
long dielectric cylinder does not screen the longitudinal exter-
nal electric field [1].

In this paper, the dielectric function was calculated within
a random phase approximation (RPA). The tight-binding ap-
proximation was used to describe π -electron. The calculation
of the exciton binding energy with the static dielectric func-
tion gives the binding energy exceeding the nanotube energy
gap. It means that the ground state of the nanotube is not sta-
ble. However, this result is not correct. As the matter of the
fact, the dielectric function has the singularity at the �ω = Eg ,
caused by one-dimensionality of nanotubes. We present the
results of the self-consistent calculation of the exciton binding
energy with the frequency-dependent dielectric function.

1. 1D exciton approximation

We suppose electron and hole are in the subband that are sep-
arated by minimum energy gap. The Fourier transform of the
Coulomb potential is given by [2]

Vq,m = 2e2I|m|(|qR|) K|m|(|qR|). (1)

We neglect the Coulomb matrix elements with nonzero angu-
lar momentum in the calculation of the exciton binding en-
ergy. This approximation is valid due to the small values of
these Coulomb matrix elements and sufficiently large distance
between subbands. The coupling of the excitons in different
subbands can be taken into account in the second-order pertur-
bation theory.

2. Dielectric function of the nanotube

In the RPA the dielectric function is given by

εq,m(ω) = 1+ 2 e2

π
I|m|(|qR|) K|m|(|qR|)

×
∑

α,β=c,v; (k,n)∈1stBz

∫
dk

×|〈k + q, n+m,α|eiqzeimφ |k, n, β〉|2
Ek+q,n+m,α − Ek,n,β − �ω

× [f (Ek,n,β

)− f
(
Ek+q,m+n,α

)]
(2)

where |k, n, α〉 denotes the state of theα band with longitudinal
momentum �k and angular momentum n, f is Fermi function.
It was pointed above, we are interested in the dielectric function
with zero angular momentum.

The electronic states near the Fermi point, where energy
gap is minimal and matrix element is maximal, give the main
contribution in the polarizability. Expanding the matrix ele-
ment in the powers of the wavevector and keeping only linear
term, we obtain

〈k+q,mgap, c|eiqz|k,mgap, v〉 ≈−3

2

iqR

1+9(k−kgap)2R2 . (3)

Here kgap and mgap are the wave vector and angular momen-
tum value corresponding to the conduction band minimum and
valence band maximum. R is the nanotube radius. Lineariz-
ing spectrum in the vicinity of the Fermi point [3], the energy
difference in the denominator of Eq. (2) can be presented as

Ek+q,mgap,c − Ek,mgap,v ≈ Ek+q,mgap,c − Ek,mgap,v

≈ γ0
b

R

√
1+ 9(k − kgap)2R2. (4)

Here γ0 = 2.7 eV is the resonance integral and b = 0.142 nm
is the distance between the neighbour carbon atoms. Using the
Eqs. (2, 3) we obtain an analytical expression for the dielectric
function

εq,0(ω) = 1+ 8e2

πbγ0
A(() q2R2 I0(|qR|) K0(|qR|) (5)

where ( = �ω/Eg and A(() is the frequency-dependent part
of the dielectric function

A(() = 3

2

π
2 − arcsin

(√
1−(2

)
−(

√
1−(2

(3
√

1−(2
. (6)

In the static limit A goes to unity. The dependence A(() is
shown in Fig. 1. When the frequency approaches to the energy
gap, the dielectric function has the singularity caused by one-
dimensionality of nanotubes.

A(() ≈ 3π

4
√

2

1√
1−(

, 1−(� 1. (7)
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In 2D systems such a singularity is logarithmical and it vanishes
in 3D case.

In the calculation presented, we took into account only sub-
bands separated by minimal energy gap. The contribution of
the subband with the next energy gap value can be found by
the similar way. In the static case, it is 4 times smaller than
the contribution of the subband with minimal energy gap. The
role of other subbands is negligible. For the frequencies of
interest (�ω < Eg) we can neglect the frequency dispersion of
the second subband contribution in the dielectric function.

3. Self-consistent calculation of the exciton binding energy

For the accurate description of the screening we have to take a
Fourier component of the dielectric function at the frequency
of the relative motion of the electron and hole, i.e. for the
frequency corresponding to the exciton binding energy. Then
the Schrödinger equation for the exciton wavefunction in the
k-space has the following form

�
2k2

2µ∗
Nk −

∫
dq

Vq, 0

εq,0 (Eb/�)
Nk−q = −EbNk (8)

whereEb > 0 andµ∗ is the exciton binding energy and reduced
mass, correspondingly. The dependence of the reduced mass
and energy gap on the nanotube radius is given by [3]

µ∗ = m∗/2 = �
2

9bRγ0
Eg = γ0

b

R
. (9)

Substituting (9) in (8) and entering the dimensionless wavevec-
tors like q̃ = qR we obtain the universal equation with no
dependence on nanotube radius

9

2
k̃2N

k̃
− e2

bγ0

∫
dq̃

2I0(q̃)K0(q̃)

1+ 8e2

πbγ0
A
(
Eb/Eg

)
q̃I0(q̃)K0(q̃)

×N
k̃−q̃

= −Eb

Eg

N
k̃
. (10)

In order to solve the equation, we fix the value of the dispersion
factor A and find numerically the eigenvalues of Eq. (10) as a
function on A, Eb/Eg = F(A). After that, we find the bind-
ing energy solving the equation F−1(Eb/Eg) = A(Eb/Eg)

where the last function is defined in Eq. (6). The procedure is
illustrated in Fig. 1 for the ground and the first exited states.
Because the dielectric function increases infinitely when the
frequency approaches the energy gap, the binding energy can
not exceed the energy gap value. For the next excited states is
not necessary to use the self-consistent method due to the weak
A(() dependence at their binding energies.

The correction to the binding energy due to the Coulomb
matrix elements with nonzero angular momentum can be es-
timated in the second-order perturbation theory. For a ground
state a rough estimate for correction to theEb/Eg value is 0.04.

4. Conclusions

Using the tight-binding approximation, an analytical expres-
sion for the dielectric function of the nanotube has been ob-
tained in the random phase approximation. In the calculations
with the static dielectric function, the exciton binding energy
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Fig. 1. Self-consistent calculation of the exciton energy levels. Solid
line is defined by Eq. (6), dashed and dash-dotted lines shows the
depending of the exciton binding energy on the frequency-dependent
factor A for ground and first excited states. Table shows the energies
and characteristic lengths of the six exciton levels.

exceeds the nanotube energy gap due to the weak screening of
the longitudinal electric field in 1D systems. In fact, the exci-
ton binding energy can not be larger than the energy gap due
to the singularity of the dielectric function at �ω = Eg . Self-
consistent calculation of the exciton binding energy with the
frequency-dependent dielectric function has been performed.
The exciton binding energy to energy gap ratio and exciton
characteristic length to nanotube radius ratio are found to be
independent on the nanotube radius in the framework of our
model.
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