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Abstract— We performed tight-binding calculation of the elec-
tronic properties of carbon nanotubes in a perpendicular electric
field. Within the linear response limit, the dielectric function of
a doped carbon nanotube is found to depend not only on its
symmetry, but also on the Fermi level position and tube radius.
Upon increasing the field, the mixing of neighboring subbands
results in metal-semiconductor transitions in both quasi–metallic
and semiconducting nanotubes. The characteristic field strength
of the transitions is calculated as a function of the tube radius.
An optimal radius range to be used for band gap engineering is
estimated for both types.

I. INTRODUCTION

In most of carbon nanotube-based electronic devices, carbon
nanotubes (CNTs) are subject to an environment of external
electric fields [1]. Since the device performance is largely
determined by electronic response of CNTs, we study how the
external fields modify the response of a CNT in vacuum. Semi-
classical one-dimensional models, which assume a uniform
charge and potential distribution along the CNT circumference
and a rigid band model, have been widely used to describe
the potential profiles along the CNT axis in both transport
devices [2] and nano–electromechanical systems [3]. When the
component of the electric field perpendicular to the nanotube
is not negligible, a non-uniform charge distribution is built up
along the CNT circumference. Moreover, when field strength
is large enough to mix different subbands, new features of
the bandstructure arise, leading to significant changes in the
electron conducting properties [4]. In this article, we report
on the dielectric response of CNTs to a perpendicular electric
field and the modulation of the bandstructure and conducting
properties of CNTs due to the axial symmetry breaking. We
use a single π orbital tight binding (TB) method in a self-
consistent way to account for the screening effect by the
nonuniform charge distribution along the CNT circumference.

We obtain the following results: (i) the perpendicular com-
ponent of the dielectric function tensor, ε⊥, of a single CNT
is slightly different for metallic and semiconducting nanotubes
and is ∼ 5 in the static limit (ω = 0). (ii) A closed expression
for ε⊥ is derived in a �k · �p approximation, which sheds light
on the dependence of the dielectric function on the Fermi
energy (charge injection/doping level) and the temperature.
The role of these two factors is to allow extra interband
transitions between neighboring conduction/valence subbands
and effectively increase the dielectric constant. (iii) We demon-
strate the bandstructure modulation due to the perpendicular

field. In particular we show the band gap closing/opening
for semiconducting/quasi–metallic CNTs respectively, as a
function of the applied field. Energy band bending and lifting
of subbands degeneracy are also observed. (iv) A transfor-
mation of the bandstructure of a metallic CNT into multi-
valley bands with large enhancement of the density of states
(DOS) near the Fermi level EF can be used to modulate the
conducting properties of CNTs. We speculate on a possibility
of application of these effects in CNT devices.

The paper is organized as follows. In Sec.II, we calculate
the dielectric response of CNTs under a perpendicular electric
field. Within the limit of relatively weak fields, the potential
variation along the circumference is much smaller than the
typical energy difference of neighboring subbands, VCNT =
eER � ∆Em ∼ vF /R, and the bandstructure is only slightly
perturbed. Here m is the quantum number to indicate the
angular momentum of the wave function; vF = 3ac−c|t|/2
is the Fermi velocity, and parameters t = −2.5 eV and
ac−c = 1.44 Å are the hopping integral and C–C bond
length respectively. Using a linear response approximation, we
study the dependence of the dielectric constant on the CNT
symmetry, radius, Fermi level position and the temperature.
We then examine the CNT bandstructure in Sec.III. When the
fields are relatively strong but not too strong to distort the
π orbitals, i.e. VCNT ≥ ∆Em and eEac−c < |t|, the energy
subbands of the nanotube are mixed considerably. We calculate
the characteristic field strength for the band gap opening and
closing to occur in quasi–metalic and semiconducting zigzag
nanotubes, and estimate the optimal radius range of CNTs to
be used for band gap engineering.

II. DIELECTRIC RESPONSE

The external electric field Eext induces a dipole moment p
on the CNT surface, which is related to the resulting total field
Etot inside the nanotube by the unscreened polarizability α0
with p = α0Etot. The dielectric constant ε⊥ and the actual
polarizability α can be retrieved from α0(ω) by including the
screening effect from the induced dipoles:

ε⊥(ω) = Eext/Etot = 1 + 2
α0(ω)
R2 , (1)

α(ω) =
α0(ω)
ε⊥(ω)

. (2)
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We obtained a universal expression for α0 in the static limit
within a TB calculation [4]. It is quadratically proportional to
the tube radius and is dependent of the symmetry of the tube:

α0 = CR2, C ≈
{

1.96, metallic
2.15, semiconducting,

(3)

and the corresponding dielectric function ε⊥ is

ε⊥ ≈
{

4.92, metallic
5.30, semiconducting,

(4)

where the numerical values are consistent with previous pub-
lications [5], [6].

An analytical expression for the polarizability follows from
a �k · �p scheme [7]. This approximation assumes a linerization
of the electron energy dispersion in the vicinity of the Fermi
points K and K ′ of the two-dimensional graphite and gives a
universal description for CNTs of arbitrary chirality (details
can be found in [4]). The ratio α0/R2 ≈ 1.41 and 1.58
are obtained respectively for metallic and semiconducting
nanotubes, which agrees qualitatively with (3) and can be
improved by including contributions from higher subbands.
The universal expressions of ε⊥ (equally for metallic and
semiconducting tubes) justify the validity of extending (3) and
(4) to chiral tubes.

For a macroscopic system, the dielectric function is a
property of the material and we would not expect a dependence
on the system size. Similarly, a radius-independent dielectric
function is derived in (4) for neutral CNTs with half-filled
energy bands [4]–[6]. However, at non-zero charge level the
dielectric function becomes dependent on the product of the
specific charge density and the CNT radius. We notice that
some nanotubes are naturally doped during the growth process,
in which case the Fermi level EF would shift from the
charge neutrality level and similarly under conditions of charge
injection or application of an external bias to the nanotube.
The occupation of the energy subbands thus varies, which is
expected to change the dielectric response of CNTs. Below,
we estimate the correction for metallic tubes at low Fermi
energies using both TB calculation and the �k · �p method [4].

Let us assume EF > 0 and define the dielectric constant
for a metallic tube as

εmet
⊥ (EF , R) = εmet

⊥ (0) + ∆εmet,1
⊥ (EF , R)

+ ∆εmet,2
⊥ (EF , R) + · · · , (5)

where εmet
⊥ (0) is given by (4) and ∆εmet,i

⊥ (EF , R) accounts
for the contribution due to the occupation of ith conduction
subband. ε⊥(EF ) of a [10, 10] nanotube calculated from the
TB method is shown in Fig. 1. The dielectric constant first in-
creases quadratically at low Fermi energies, then the increasing
rate slows down when the Fermi level enters higher subbands.
The analytical �k ·�p result is also plotted for comparison, which
agrees very well with the numerical results.

If one considers the low energy properties of nanotubes, the
�k · �p method provides a reasonable approximation. When the
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Figure 1. Fermi energy dependence of ε⊥ for a [10,10] nanotube. The
vertical dashing line indicates the bottom of second subband Eb2.

Fermi level lies within the first subband, the dielectric constant
for a metallic tube of radius R can be expressed as

εmet
⊥ (EF , R) ≈ εmet

⊥ (0) + 2
4e2

πvF

(
EF R

vF

)2

, (6)

where the prefactor 4e2/πvF is the dimensionless density of
states of the first subband.

Most CNT-based electronic devices are working at a finite
temperature, which is expected to modify the occupation prob-
ability of the electronic states as well as the dielectric constant.
Our calculation shows that the temperature contribution adds
to the dielectric function in (6) as

∆εmet
⊥ (T,R) ≈ 2π2

3
4e2

πvF

(
kBTR

vF

)2

, (7)

where kB is the Boltzmann constant. At room temperature, the
temperature correction to εmet

⊥ (0) is less than 10% for tubes
with a moderate radius (R < 32Å).

Similar effects were calculated for semiconducting nan-
otubes except that the Fermi level needs to be brought close
enough to the conduction band bottom or valence band top to
observe any substantial change of the dielectric response.

So far we have discussed the dielectric behavior of CNTs
within the linear response theory and the external field was
weak that only the first order perturbation terms were con-
sidered. At strong fields, the screening capability of CNTs
is effectively enhanced [8], which is consistent with previ-
ous investigation, in which the CNTs were found to screen
out large parallel electric fields just as perfect metals [9].
Moreover, in the strong field limit, the bandstructure of CNTs
is severely distorted, leading to interesting features in the
electronic properties, as we will discuss in the next section.

III. BANDSTRUCTURE MODIFICATION

When the applied field strength eER ≥ vF /R, the rigid
band approximation breaks down and considerable modifica-
tion of the CNT bandstructure is expected. Below we present
the results for both metallic and semiconducting CNTs by
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Figure 2. Bandstructure (a,b,c,d) and DOS (e,f,g,h) of a [10,10] armchair
tube at various perpendicular electric fields: E = 0, 0.1, 0, 2, 0.3V/Å. Higher
bands (E > 2.5eV) are not displayed

using a full-band TB calculation and E is referred to the total
electric field. Fig. 2 shows the energy bands of a [10, 10]
armchair nanotube in electric fields of different strength rang-
ing from 0 to 0.3V/Å. We emphasize that the two lowest
subbands always cross, even at very large fields, although
the bandstructure has already been noticeably modified. At
E = 0.1V/Å (see Fig. 2 (b)), the Fermi points shift toward
the Γ point (k = 0) and the two lowest subbands are flattened
near the Fermi points. At the same time, all states that were
degenerate with respect to the angular momentum, ±m, split.
The splitting becomes more obvious closer to the lowest
subbands. The large degeneracy at the first Brillouin zone
(FBZ) boundary k = π/a is also lifted, and bending is
observed for all subbands at this point.

As the field strength increases, the two lowest subbands
show oscillatory bends with multiple nodes generated, while
the first node moves even closer to k = 0 (Fig. 2 (c, d)). For
other subbands, the splitting of ±m subbands become more
significant.

This bandstructure modification is clearly seen in the density
of states of the nanotube, as shown in Fig. 2 (d–h). A bump
appears in the low energy plateau upon application of the field
and increases with the field strength. The enhanced DOS near
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Figure 3. Band gap variation of a [17,0] zigzag nanotube with increasing
field strength. Inset: same plot for a [18,0] nanotube.

E = 0 is due to the flattening and bending of the two lowest
subbands. On the other hand, the lifting of ±m degeneracy of
all doublets and the bending at the FBZ boundary shift and
split the single VHS peaks into multiple ones.

For quasi–metallic zigzag tubes, the physics is quite differ-
ent. At weak fields, a band gap opens at the Fermi point k = 0,
as shown in the inset of Fig. 3 for a [18,0] nanotube. The gap
increases quadratically with the field strength until reaching a
critical field Ec. The value of the critical field depends on the
radius and is fitted to be

eEcR ∼ vF /R, (8)

when the total potential drop becomes comparable with the
energy distance between neighboring subbands. As the field
increases beyond Ec, the energy band minimum shifts away
from the original Fermi point k = 0 and the gap starts to
decrease and oscillates further on.

It may be interesting for electronics applications to be able
to modulate locally the gap of the nanotube. Our study shows
that for quasi–metallic zigzag CNT one can, indeed, open
the gap. However the gap cannot exceed some critical value
beyond which a further increase of the field begins to close
the gap. The band gap opening at Ec is obtained within a
degenerate perturbation theory:

Eg ∼ (eEcR)2

6|t|
∼ v2

F

6|t|R2 , (9)

which is almost negligible for nanotubes with R > 8 Å at
room temperature. On the other hand, we notice that for very
narrow CNTs, the σ − π mixing may result in the opening of
secondary gaps, which may prohibit using very narrow CNTs
for band modulations.

Semiconductor zigzag nanotubes, on the other hand, exhibit
a drastic change at the presence of a perpendicular electric
field. Fig. 3 shows the band gap variation of a [17,0] nanotube
with increasing field strength. The band gap first remains
almost constant at weak fields. When the perturbation is
comparable to the original band gap, i.e. eEcR ∼ Eg ≈
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0.53 eV, the energy band minimum shifts away from the
original Fermi point k = 0 and the gap drops sharply and
closes at large fields. Again, the critical field strength Ec

is inversely proportional to R2, as in the case of quasi–
metallic nanotube. Since the band gap of a semiconducting
nanotube scales as R−1, by using CNTs of a large radius
(R ∼ 20−40Å), it is possible to render a significant band gap
depression (Eg ∼ 0.1−0.2 eV) without resorting to extremely
strong fields.

We stress that many experimental techniques, ranging from
Raman scattering to scanning tunneling spectroscopy (STS)
use high electric fields to probe the electronic properties of
a nanotube, which may perturb the electronic structure. Our
theoretical results may help to understand the disagreements
between experimental measurements and predictions for band
gap, local of density states (LDOS), effective masses and
the locations of VHS peaks. On the other hand, the novel
behaviors of CNTs under large fields provide an effective way
to electronically tune the CNT properties and modulate the
device performance.

IV. CONCLUSION

We investigate the electronic properties of CNTs under
external electric fields, which is important both for under-
standing the physics of CNT–based electronic devices and
predicting their behaviors. We have modeled the following
material properties of CNTs: dielectric function, band gap
and DOS in the vicinity of the Fermi level. Several factors
that influence the dielectric response of CNTs are discussed.
It is found that the dielectric constant of a doped CNT ε⊥
grows quadratically with the product of EF and R at low
Fermi energy, leading to an enhancement of screening with
the doping level. With an increase of the applied field, the
bandstructure of CNTs is considerably modified due to the
lowering of symmetry. Armchair tubes always remain metallic
while band gap opening and closing are induced in quasi-
metallic and semiconducting zigzag nanotubes respectively.

The critical field strength for the metal-semiconductor transi-
tion is calculated, which is within feasible field range (E ∼
0.1 V/Å ∼ 10 MV/cm) with a proper choice of the nanotube
radius. A small radius (R < 8 Å) is preferred for quasi-
metallic CNTs, due to the R−2 dependence of the critical
band gap opening. For semiconducting CNTs, a large radius
(R ∼ 20 − 40 Å) is more favorable, for which a smaller
field strength is needed to close the band gap. This property,
together with the variation of low energy DOS at strong fields
can be used for band gap engineering and for modulating the
CNTs properties in electronic switching devices.
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