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Drift–diffusion model is applied for transport in a one–dimensional field effect transistor.

A unified description is given for a semiconductor nanowire and a long single–wall nan-
otube basing on a self–consistent electrostatic calculations. General analytic expressions

are found for basic device characteristic which differ from those for bulk transistors. We

explain the difference in terms of weaker screening and specific charge density distri-
bution in quasi–one–dimensional channel. The device characteristics are shown to be

sensitive to the geometry of leads and are analyzed separately for bulk, planar and wire

contacts.
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1. Introduction

In the paper we perform a study of carrier distribution and conductivity in a quasi–
one–dimensional (1D) channel placed between two metal electrodes over a backgate
electrode. This structure is in fact a nanowire field–effect transistor (FET) exper-
imentally fabricated and investigated in the recent years 1,2,3 and our main task
is to give an adequate theoretical description of its basic characteristics. The re-
sults can be also applied to such important object as carbon nanotube FET 4,5,6,
with some restrictions due to the fact that we consider the carrier transport in the
drift–diffusion model while short and clean carbon nanotubes are believed to have
a ballistic conductivity 7. That is why the theory below is presumably applicable
only to long enough nanotubes. Due to a very weak screening in 1D channels, the
device parameters are sensitive to the geometry of source and drain contacts and
are analyzed separately for bulk, planar and 1D contacts.
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The schematic geometry of a nanowire–based FET includes the source (x <

−L/2) and drain (x > L/2) electrodes connected by a nanowire of the length L

and the gate electrode separated by a thin dielectric layer of the thickness d. We
assume the wire to be uniformly doped with the linear concentration N . The gate
voltage Vg changes the concentration in a channel controlling the FET transport. We
employ the drift–diffusion model assuming that the scattering rate in the channel
is sufficiently high to support a local charge equilibrium. In the opposite (ballistic)
limit 7, the channel conductance has less influence on the current, which is beyond
the scope of our work.

We measure all potentials from the wire midpoint (x = 0) so that the source
and drain potentials are ∓Vd/2. In this case the potentials along the wire and
concentration changes caused by Vg together with the contact potentials and by Vd

are, respectively, even and odd functions of x and provided with the subscripts s

and a: φs,a(x) and ns,a(x).
The potentials φs,a(x) can be divided into two parts: φ0

s,a(x) created by elec-
trodes and found from the Laplace equation containing no electron charge, and
φ1

s,a(x) caused by the electron charge in a wire −ens,a(x). We assume that the
characteristic length of charge variation along the wire, l = min{L, 2d}, exceeds
noticeably the wire radius a. In this case the relationship between φ1(x) and n(x)
is approximately linear 8,9,10,11 and the current j containing both drift and diffu-
sion components can be written for a nanowire with non–degenerate carriers in the
form 9:

j

eµ
= n(x)

dφ0

dx
−

[
2e

ε
ln

(
l

a

)
n(x) +

kT

e

]
dn

dx
(1)

where n = ns + na, φ0 = φ0
s + φ0

a, µ is the carrier mobility, ε is the ambient
dielectric permittivity. For a nanotube with N = 0 and degenerate carriers, kT

should be replaced by the concentration–dependent Fermi energy. As a result, the
square brackets in Eq.(1) are replaced by en(x)C−1

t with Ct being the nanotube
capacitance derived in 10.

We will solve the differential equation Eq.(1) with the boundary conditions
n(±L/2) = nc assuming the contacts to maintain constant concentration, indepen-
dent of the applied voltage. Two conditions allow us to determine the integration
constant and the value of current j so far considered as some unknown constant. The
case nc = N corresponds to Ohmic contacts not disturbing electric properties of a
wire, nc > N describes the situation where the carriers are supplied by electrodes,
which is often the case for nanotubes, and nc < N corresponds to Schottky contacts.
In the latter case, j is determined by the contact regions with the lowest concen-
tration nc determined by contacts and independent of Vg. Thus for the structures
adequately described by the classical drift–diffusion theory (Eq.(1)), transconduc-
tance will be very small. The only situation of an applied interest is that when the
Schottky barrier has a noticeable tunnel transparency strongly dependent on Vg.

This situation has been recently considered in 7 and will not be discussed below.
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2. Linear conductivity and transconductance

In the first order in Vd, Eq.(1) can be linearized in na and easily integrated. The
knowledge of na(x) gives us the expression for j, which becomes especially simple
for A ≡ (2e2N/εkT ) ln (l/a) � 1 resulting in the ordinary Kirchhoffs law:

j =
Vd

R
, R =

2
eµ

∫ L/2

0

dx

ns
, (2)

which is not surprising since the condition A � 1 is equivalent to neglecting the
diffusion component of current. At arbitrary Vd, the described linear approach fails
and determination of the whole current–voltage characteristic (CVC) j(Vd) requires
solution of the non–linear equation Eq.(1), which can be performed only numerically
and discussed in Sec.3.

The only problem in the described linear approach consists in calculation the
equilibrium concentration profile or, in other words, the potential φ0(x). This profile
and hence all the results depend noticeably on the geometry of structure, particu-
larly, of source and drain contacts. In this section we consider bulk contacts with
all three dimensions noticeably exceeding the characteristic lengths a, d, and L.
Calculation of Φ(x, y), the potential created by this system of electrodes, is rather
cumbersome and to obtain relatively simple analytical results, we assume addition-
ally that the relation d � L often realized in FETs is fulfilled is our system as well.
In this case the potential distribution in the most part of inter–electrode space
will not noticeably change if we neglect the dielectric–filled slit of the thickness d

between the channel and the gate. In other words, we solve the Laplace equation
∆Φ = 0 in the semi–infinite strip −L/2 < x < L/2; y > 0 with the boundary condi-
tions: Φ(y = 0) = Vg; Φ(x = ±L/2) = ±Vd/2 and then, assuming y = d, we obtain
the φ0

s,a(x). For nc 6= N it contains an additional term φc(x) being proportional
to (N − nc) and describing the potential of uniformly charged wire 12 and derived
in 9. This gives

φ0
s(x) = 8e(N−nc)L

π2εa

∞∑
n=0

(−1)n{K0[πa
L (2n+1)]−K0[ 2πd

L (2n+1)]}
(2n+1)2K1[πa

L (2n+1)] cos
[

πx
L (2n + 1)

]
+ 4Vg

π

∞∑
n=0

(−1)n

(2n+1) cos
[

πx(2n+1)
L

]
exp

[
−πd(2n+1)

L

]
; (3)

φ0
a(x) = Vd

[
x
L +

∞∑
n=1

(−1)n

πn sin
(

2πxn
L

)
exp

(
− 2πdn

L

)]
(4)

where K0 and K1 are Bessel functions of an imaginary argument.
For the linear case in the limit A � 1, Eq.(2) gives the explicit expression for

the dimensionless channel conductance σ = jL/(nceµVd):

σ =

[
2

∫ 1/2

0

dt

1 + gΨ(t)

]−1

(5)
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where g = 2εVg/[πenc ln (l/a)] and for nc = N, Ψ(t) =
∑∞

0
(−1)n

(2n+1) cos[πt(2n +
1)] exp[−πd(2n + 1)/L]. The σ(g) dependence has a cut–off voltage g0 = −Ψ−1(0)
characterized by vanishing σ. The exact behavior of σ near the cut–off can be
calculated analytically. It is determined by the point of minimal concentration x = 0
and hence by the properties of Ψ(t) at small t: Ψ(t) ' π/2− arctan[exp(−πd/L)]−
(π2t2/2) sinh(πd/L)/ cosh2(πd/L), which allows us to perform integration in Eq.(5)
and obtain

i =

√
(g − g0) sinh(πd/L)√

2 cosh(πd/L)
, g0 = −

{π

2
− arctan[exp(πd/L)]

}−1

(6)

Thus the transconductance di/dg at T = 0 diverges at the cut–off ∼ (g − g0)−1/2.
If nc 6= N, the function Ψ(t) contains additional contribution from φc(x). This

function, studied in more detail in 9, is not analytical at x → ±L/2 but, similarly
to φg(x), has an extremum at x = 0 and can be expanded in this point. This
modifies the value of g0 and the coefficient in i but retains unchanged the square–
root character of i(g).

The simplified expressions Eqs.(2),(5) neglect the diffusion effects, which is
equivalent to the limit T = 0 when ns = 0 for all points where φ0

s(x) < −C−1
t nc.

The potential φ0
s and the carrier concentration acquire their minimal values at x = 0

and, hence, in the linear approximation, the cut–off voltage g0 corresponds to the
condition φ0

s(0) = −C−1
t nc and at lower g the current is exactly zero. It is evident

that at T 6= 0 the current at g < g0 has an activation character: j ∼ exp(−∆/kT )
where ∆ = e

(
−C−1

t nc − φ0
s(0)

)
. Since φ0

s(0) depends linearly on Vg (see, Eq.(3)),
the activation energy ∆ is directly proportional to g0 − g. This means that the
above–mentioned singularity of di/dg is fictitious and real i(g) has some maximum
right of g0 with a sharp, temperature–dependent decrease at lower g.

3. Current–voltage characteristic of the channel

By measuring concentrations in units of nc, length in units of L, potential in units
of enc/ε, and current in units of e2n2

cµ/(Lε), the basic equation Eq.(1) acquires the
dimensionless form

j = n(x)
dφ

dx
−

[
2 ln

(
l

a

)
n(x) + τ

]
dn

dx
(7)

where τ = εkT/(e2nc) is the dimensionless temperature. The potential consists of
three parts: φ(x) = φc(x) + φg(x) + φa(x) describing the influence of contact work
function, gate voltage and source–drain voltage and proportional, respectively, to
N − nc, Vg and Vd. Their particular form depends on the geometry of contacts
and for bulk contacts is given by Eqs.(3),(4). The dimensionless version of Eq.(1)
for nanotubes can be easily derived from Eq.(7) by assuming τ = 0 and replacing
2 ln

(
l
a

)
→ εC−1

t . Eq.(7) should be solved with the boundary conditions: n(±1/2) =
1.
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Fig. 1. Calculated characteristics of a nanowire with d/L = 0.3 and Ohmic contacts (a,b) and

injecting contacts (c,d). (a,c) CVC for the temperatures τ = 0.05 (1); 0.1 (2), and 0.2 (3): Vg = −12

(dashed line) and Vg = −13.2 (solid lines) in (a) ; Vg = −6 (dashed line) and Vg = −10 (solid
lines) in (c). (b,d) Temperature dependence of linear conductance (at Vd = 0.1) for the same
nanowire at Vg = −12 (1); -12.5 (2); -13 (3); -13.2 (4) in (b); -6 (1); -7.6 (2); -10 (3) in (d).

We perform numerical calculations for two situations: Ohmic contacts with
nc = N and undoped nanowire (nanotube) with injecting contacts: N = 0. For
nc = N the dimensionless threshold gate voltage Vg0 = (πg/2) ln

(
l
a

)
) = −12.8 (in

units of enc/ε) for the chosen set of parameters. Fig.1a shows CVC at two gate
voltages: Vg = −13.2 (below the threshold) and Vg = −12 (above the threshold),
which are superlinear because high driving voltage Vd tends to distribute carriers
uniformly along the channel. In our conditions when powerful contact reservoirs
fix the concentration at the points where it is maximal, such a re–distribution will
increase the minimal value of n at x = 0 and hence increase the conductivity. Such
superlinear behavior is experimentally observed in nanowire–based FETs 1,3,13,14

and differs noticeably from a sublinear CVC typical for bulk FETs and ballistic
short–channel nanotube 6,15,16 structures.

Above the threshold, the channel conductivity is almost temperature–
independent. The CVC curves for Vg = −12 (Fig.1a) at different temperatures
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do not deviate from the dashed line corresponding to τ = 0.2 more than by 10%.
For Vg below threshold, Fig. 1a demonstrates a strong temperature dependence of
the current shown in more details for Vd = 0.1 in Fig.1b. While the two upper
curves, corresponding to above–threshold Vg, have no noticeable temperature de-
pendence, the two lower curves demonstrate such a dependence with the activation
energy growing with |Vg|, in accordance with the predictions of Sec.2. At high Vd,

where contact injection tends to create uniform carrier concentration equal to nc,

different CVC curves merge and temperature dependence collapses.
The case of N = 0 formally differs from that of Ohmic contacts only by the

presence of dφc(x)/dx in Eq.(7). As it can be seen from Eq.(3), this derivative has
singularities at the contacts, which embarrasses numerical calculations. To get rid
of these singularities, we use the following trick. In the closest vicinity of contacts
the first term in the right side of Eq.(7) tends to infinity so that we can neglect
the coordinate–independent left side. The remaining terms correspond to the quasi–
equilibrium carrier distribution with φc playing the role of φ0

s. This formula gives us
the concentration profile in the vicinity of contacts to be matched with the solution
of Eq.(7) far from the contacts. Since in this case φc(x) < 0 (or, in other words,
the electron concentration is lower due to the absence of doping), we obtain lower
absolute value of the cut–off voltage Vg0 and lower transconductance as compared
to nc = N . For the same parameters as above, Eq. (6) gives Vg0 = −7.64. Figs.1cd
present the results of numerical calculations for this case. Qualitatively they are
similar to Fig.1ab but the dependencies on Vg and temperature are weaker. The
above–threshold curve in Fig.1c (Vg = −6) is practically temperature–independent,
as in Fig.1a, with the difference in currents between τ = 0.05 and τ = 0.2 less than
5%.

4. The role of contact geometry

The potential profile φ0(x) and hence all FET characteristics depend on the geome-
try of source and drain contacts. So far we have considered bulk, three–dimensional
contacts but in many cases they have not bulk but planar character representing
highly conducting two–dimensional regions. In this case the profile of electric field
between source and drain has singularities near contacts and differs drastically from
that for bulk electrodes.

To find φ0(x) in this case, we must solve the Laplace equation in the system
of coplanar source and drain semi–planes parallel to the gate plane. The total
potential created by this system consists of symmetric and antisymmetric part:
Φ(x, y) = Φs(x, y) + Φa(x, y) obtained separately from the Laplace equations with
the boundary conditions: Φs(x, 0) = Vg, Φs(x > L/2, d) = 0, ∂Φs

∂x (0, y) = 0 and
Φa(x, 0) = 0, Φa(x > L/2, d) = Vd/2, Φa(0, y) = 0. The potential along the wire
φ0(x) = Φ(x, d).

We find Φ(x, y) with the conformal mapping πz/(2d) = ln
(√

w +
√

w − 1
)

+
β
√

(w − 1)/w transforming the first quadrant at the z = x + iy plane with the
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cut x > L/2, y = d into the upper semi–plane at the w = u + iv plane 17 so
that the source electrode corresponds to the semi–axis u < 0, the semi–axis y > 0
corresponds to the segment 0 < u < 1 and the gate electrode corresponds to the
remaining part of u–axis. The parameter β is to be found from the equation

L

d
=

4
π

[√
β(β + 1) + ln

(√
β +

√
β + 1

)]
(8)

and increases with L/d monotonically. In the (u, v) coordinate system the Laplace
equation with the given boundary conditions can be easily solved:

Φs(u, v) = Vg

{
1− 2

π
Im[ln

(√
w +

√
w − 1

)
]
}

; Φa(u, v) =
Vd

2π
arctan

( v

u

)
. (9)

Though we cannot transform analytically Eq.(9) into the (x, y) coordinate sys-
tem and obtain φ0

s,a(x) explicitly, some analytical results could be, nevertheless,
obtained. The FET characteristics near the cut–off are determined by the concen-
tration profile n(x) in the vicinity of its minimum at x = 0. Thus we need to know
only φ0

s(0) ≡ Φs(x = 0, y = d) and the second derivative of φ0
s(x = 0, y = d)

from the whole solution. In (u, v) coordinates the point (0, d) corresponds to (u0, 0)

where 0 < u0 < 1 and is determined by the equation arctan
√

1−u0
u0

+β
√

1−u0
u0

= π
2 .

It has the asymptotes: u0 ' [πL/(8d)]2 at L � d and u0 ' 1 − 4d2/L2 at L � d.

By substituting this u0 and v = 0 into Eq.(9) we obtain φ0
s(0) with the asymptotes:

φ0
s(0) ' VgL/(4d) at L � d and φ0

s(0) ' Vg[1− 4d/(πL)] at L � d.

Calculations of the transconductance in the linear regime are based on the same
formula Eq.(5) as in Sec.2. The quantitative difference is in a particular profile of
the Ψ(t) function. Though its expansion near the maximum remains quadratic and
hence the final result is again di/dg = A(g− g0)−1/2, the parameters A and g0 may
differ considerably from the case of bulk contacts. The rest of the CVC, as before,
must be found by numerical calculations taking into account the fact that for two–
dimensional contacts not only φc(x) but also φg(x) has singularities at x → ±1/2
and the procedure of matching with the quasi–equilibrium solution near contacts
should be used for Ohmic contacts as well.

Often (especially in the case of carbon nanotubes) contacts to 1D channel are
performed with two thin wires perpendicular to its direction 18. If these wires are
infinitely long (which in fact means that their length considerably exceeds L) and
have the radius ac, then the potentials can be calculated as the sum of potentials
created by 4 cylinders (source, drain and their images in the gate):

φs(x) = Vg +
Vg

ln (L/ac)
ln

(x + L/2 + ac)(−x + L/2 + ac)√
4d2 + (x + L/2)2

√
4d2 + (−x + L/2)2

(10)

and a similar expression for φa(x).

5. Conclusions

We put forward a drift–diffusion model for transport calculation of FETs with a
quantum wire as a channel. The unified approach allows one to apply our results
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equally to the case of semiconductor nanowires and sufficiently long carbon nan-
otubes.

The drift–diffusion equations were written for the 1D FET and solved analyti-
cally for the linear case of small drain voltage and numerically for the rest of the
CVC. We demonstrated for the first time that the week screening in 1D FETs re-
sults in a strong and interesting dependence of the device characteristics on type
and geometry of the leads. We studied the cases of three-, two- and one–dimensional
source and drain contacts, where some analytical solutions are possible. We pre-
sented and compared the solutions for Ohmic and injecting contacts and studied
the temperature dependence of FET current at different gate voltages for these two
cases.

Note added in proof. Since the paper had been written we became aware
of experimental results confirming our prediction of the square root dependence
of subthreshold current on the gate voltage for very long nanotube FETs. We are
grateful to Prof. M. Fuhrer for sharing his data prior to publication and useful
discussions.

The work of one of us (SVR) was supported in part by the Office of Naval
Research grant NO0014–98–1–0604, the Army Research Office grant DAAG55–09–
1–0306, the DoE Grant No. DE–FG02–01ER45932, the NSF Grant No. 9809520.
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