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11.1 Introduction

Nanostructure research is defined by a scale — the nanometer length scale. Simulation of nanostructures, 
however, must be multiscale in its very nature. It is not the nanostructures themselves that open the 
horizon to new opportunities and applications in all walks of life; it is the integration of nanostructures 
into large systems that offers the possibility to perform complex electrical, mechanical, optical, and 
chemical tasks.

Conventional electronics approaches to nanometer dimensions and simulation techniques must 
increasingly use atomistic methods to compute, for example, tunneling and size quantization effects as 
well as the features of the electronic structure of the solids that define the nanometer-sized device. The 
atomistic properties need then to be linked to macroscopic electromagnetic fields and to the equations 
of Maxwell and, ultimately, to systems performance and reliability. The transition from the quantum 
and atomistic scale to the classical macroscopic scale is of great importance for the accuracy of the 
simulation. It can be described by the Landauer–Buettiker formalism, by Bardeen’s transfer Hamiltonian 
method, or by more demanding methods such as the Schroedinger Equation Monte Carlo approach.1

To encompass all of these scales and transitions, a hierarchy of methods (sets of equations) that supply 
each other with parameters is needed even for conventional silicon technology. Similar hierarchical 
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approaches will be needed for future devices and their integration in electronics as well as electrome-
chanics. One can already anticipate the demand for simulation methods that merge electronics, mechan-
ics, and optics as well as the highly developed methods of chemistry.

A theoretical tool of ever-increasing use and usefulness is density functional theory (DFT). DFT 
describes, for example, the electrical and optical properties of a quantum dot (the prototype for future 
electron devices) and is also widely used in chemistry. The simulation methods become altogether more 
fundamental and powerful as simulation of nanostructure technology, both present and more futuristic, 
progresses. For example, the same simulation methods that have been developed in the last decade for 
silicon technology can also be applied to some biological systems, the carbon-based devices of nature, 
and the newly emerging field of carbon nanotubes. In turn, the methods developed in biochemistry 
become increasingly useful to answer questions in electronics and electromechanics at the nanoscale.

It is currently not possible to give an overview of all these opportunities in the limited space of this 
chapter. We present therefore only four vignettes that demonstrate the wide range of knowledge that 
is needed in nanostructure simulations and what can be anticipated in the future for simulations 
ranging from silicon-based electronics and nanoelectromechanics to biological systems such as protein-
based ion channels.

11.2 Nanostructure Studies of the Si-SiO2 Interface

In this section we discuss modeling of the Si-SiO2 interface, mostly in the context of Metal-Oxide-
Semiconductor Field-Effect Transistors (MOSFETs). New insights are gained by explicitly calculating 
material properties using nanostructure and atomic-level techniques. This section thus offers an example 
of how nanostructure simulation is already necessary for conventional silicon technology as encountered 
in the highly integrated chips of today.

11.2.1 Si-H Bonds at the Si-SiO2 Interface

Hydrogen has long been used in the processing of MOSFETs in order to passivate electrically active defects 
that occur, for instance, at the Si-SiO2 interface. The Si-H binding energy was commonly assumed to be 
the threshold energy for H-related degradation in MOSFETs.2 We have used density functional calcula-
tions to investigate the energetics of the hydrogen dissociation process itself.3–8 These calculations show 
that there are several mechanisms by which hydrogen can desorb through processes that involve much 
lower energies than the Si-H binding energy of ~3.6 eV. These results explain continued hot-electron 
degradation in MOSFETs even as operating voltages have been scaled to below 3.6 eV.5 Moreover, a 
distribution of dissociation energies due to disorder at the interface is expected. Such a distribution 
indicates that the probability of degradation will increase dramatically as MOSFETs are scaled to sub-
100 nanometer channel lengths.9,10

11.2.1.1 Density Functional Calculations

Density functional theory (DFT) has become the leading theoretical tool for understanding nanoscale 
phenomena in physics and chemistry. This is because DFT allows an accurate determination of electronic 
structure and also efficiently scales with the number of atoms in a calculation. We have performed a 
comprehensive DFT study of the mechanisms of Si-H bond breaking at the Si-SiO2 interface. We have 
used several atomic models of the interface including the cluster model shown in Figure 11.1. These 
studies demonstrate how DFT can be used to model electronics on the nanoscale.

Our main results for Si-H at the Si-SiO2 interface are as follows. The energy needed to dissociate an 
isolated silicon–hydrogen bond (placing the hydrogen in a vacuum state at infinity) is found to be ~3.6 
eV. For an Si-H bond at the Si-SiO2 interface, if the dissociated hydrogen atom enters bulk SiO2, then 
the dissociation or dissociation energy is also 3.6 eV because atomic hydrogen interacts only weakly with 
the rather open, insulating oxide. However, the Si-H dissociation energy can be significantly reduced for 
Si-H bonds at the Si-SiO2 interface because hydrogen can desorb by first entering bulk silicon. The energy 
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needed to place a neutral hydrogen atom, arising from the silicon dangling bond site, into bulk silicon 
far from any defects is ~2.5 eV. As hydrogen diffuses to a surface or interface, it can passivate other defects 
or combine with another hydrogen atom to form H2. At a surface or an open interface such as the Si-
SiO2 interface, H2 molecules can easily diffuse away, leaving behind the silicon dangling bonds. Experi-
mentally, the thermally activated dissociation of hydrogen from the (111)Si-SiO2 interface is measured 
at 2.56 eV. This is consistent with our calculated mechanism with H entering bulk silicon before leaving 
the system as H2.

In addition to the above considerations, the threshold energy for hot-electron degradation can be 
greatly reduced if dissociation occurs by multiple vibrational excitations. For low voltages, Si-H dissoci-
ation involving multiple vibrational excitations by the transport electrons becomes relatively more likely. 
Because hydrogen is very light, the hydrogen in an Si-H bond is a quantum oscillator. Hot-electrons can 
excite the hydrogen quantum oscillator from the ground state into an excited state. Because the Si-H 

FIGURE 11.1   Atomic ball-and-stick model of an isolated Si-H bond at the Si-SiO2 interface. Smaller balls represent 
oxygen atoms, and larger balls represent silicon.

FIGURE 11.2   Example of failure function for interface trap generation.
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vibrational modes are well above the silicon phonon modes, the excited state will be long-lived, allowing 
for multiple vibrational excitation. In this case, the Si-H dissociation can take place at channel electron 
energies lower than 2.5 eV and perhaps as low as 0.1 eV, the vibrational energy of the Si-H bending mode.11

11.2.2 Reliability Considerations at the Nanoscale

11.2.2.1 Increasing Effect of Defect Precursor Distribution at the Nanoscale

For micron-sized devices, many Si-H bonds at the Si-SiO2 interface must be broken before the device has 
significantly degraded. For nanoscale devices, a much smaller number of defects (possibly on the order of 
10s or lower) could cause a device to fail. Because of the smaller number of defects required, there is an 
increasing probability with decreasing device size of having a significant percentage of defect precursors 
with lifetimes in the short-lifetime tail of the Si-H dissociation energy distribution mentioned above. This 
results in an increasing number of short-time failures for smaller devices. In order to quantify this result, 
the shape of the distribution of dissociation energies must be known. Fortunately, this shape can be 
determined from the time dependence of trap generation under hot-electron stress, and from this the effect 
of deviations from this distribution on the reliability can be calculated. To understand how the reliability 
can be understood, we specifically look at the example of interface trap generation in nMOSFETs.

11.2.2.2 Hot-Electron Interface Trap Generation for Submicron nMOSFETs

A sublinear power law of defect generation with time is observed for the generation of interface traps at 
the Si-SiO2 interface. Because the hydrogen is relatively diffusely spread throughout the interface (with 
only around one silicon–hydrogen bond for every hundred lattice spacings), it is clear that any process 
which breaks these bonds will be first order in the number of Si-H bonds. That is, the rate equation for 
this process can be written

where N(Eb) is the number of silicon–hydrogen bonds (which must be a function of Eb, the bond energy), 
and τ is some lifetime that, for a hot-electron-driven process, would involve an integration of the electron 
distribution with the cross-section for defect creation, also a function of the bond energy. In order to 
get the true number of defects as a function of time for an average device, the solution to this rate 
equation must be integrated over the distribution of bond energies. This gives

This integral is what produces the sublinearity of the time dependence of the generation of interface 
traps. The importance of this integral lies in the fact that it relates the sublinearity of the time dependence 
of the generation of interface traps with the average distribution of defect energies, which can be related 
to the distribution of defect generation lifetimes. This distribution can be used to determine the failure 
function for the failure mode involving this type of defect. One can extract the defect activation energy 
distribution from this integral once one knows the sublinear power law for defect generation with time.12

11.2.2.3 Reliability from Defect Precursor Distribution

Again utilizing the assumption of independent defects, the failure function of a device (defined as the 
probability of having a sufficient number of defects that will fail before some time t) will be a binomial 
or, approximately, a Poisson distribution. One of the characteristics of this failure function is an expo-
nential increase in the probability of failure as the number of defects required to cause failure gets small. 
This is demonstrated in Figure 11.2, where we compare the reciprocal of the number of devices on a chip 
(which gives an idea of how much the reliability of a single device on that chip must increase) with the 

dN Eb( )
dt

------------------
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τ Eb( )
--------------–=

Ntot t( )  f Eb( )N0
t
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-------------– 
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0

∞
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variation in the Poisson distribution with the number of interface traps required for the failure of a 
device. This is done for four gate lengths, with the gate lengths and number of devices at a given gate 
length taken from the semiconductor roadmap. The number of defects required for device failure comes 
from ISE-TCAD simulations. Notice the number of failures increases exponentially as the gate length is 
reduced below 100 nanometers.

Using knowledge of the type of defect involved in a degradation process, one can analytically derive 
the expected failure function for that type of degradation. This is not restricted to interface trap generation 
by Si-H dissociation, as the assumptions that went into the model are very few: first-order kinetics and 
a distribution of dissociation energies.

11.2.3 Tunneling in Ultra Thin Oxides

The thickness of gate oxides in MOSFETs is approaching 1–2 nm, i.e., only a few Si-O bond lengths. Conse-
quently, gate leakage currents have become a major design consideration. For such ultra thin oxides, it is 
increasingly important to understand the influence of microscopic structure and composition of the oxide and 
its interface with silicon on the magnitude of oxide transmission probabilities and tunneling currents.

To fully explore the microscopic nature of gate leakage currents, an atomic-orbital formalism for 
calculating the transmission probabilities for electrons incident on microscopic models of Si-SiO2-Si 
heterojunction barriers was implemented.13–15 Subsequently the magnitude of leakage currents in real
MOSFETs was calculated by incorporating the incident electron density from device simulations.16,17 Such 
an approach allows one to examine the influence of atomic structure on tunneling. Significant results 
include assessing the validity of the bulk band structure picture of tunneling, determining the energy 
dependence of tunneling effective mass, and quantifying the nature of resonant tunneling through defects. 
Below, we will briefly discuss the most important details and results.

The microscopic supercell models of Si[100]-SiO2-Si[100] heterojunctions that have been used were 
constructed by sandwiching unit cells of (initially) tridymite or beta-quartz polytype of SiO2 between 
two Si[100] surfaces. The models are periodic in the plane perpendicular to the interface with periodic 
lengths of 0.5–1.5 nm. As more detail is desired, e.g., to examine the effects of interfacial morphology, 
the lateral periodic length scale can be increased with added computational costs. As an example, Figure 
11.3 shows a ball-and-stick skeleton of a tridymite-based cell.

Reflection and transmission coefficients of the supercells described above were calculated using a 
transfer-matrix-type scheme embedded in a tight-binding framework. We solve the Schrodinger equation 
with open boundary conditions for the whole junction at a fixed energy E (measured relative to the 
silicon conduction band minimum on the channel side of the oxide) and in-plane momentum k|| (that 
is a good quantum number due to the lateral periodicity) in a layer-orbital basis. An empirical sp3 tight-
binding basis with second-nearest neighbor interactions for both silicon and the oxide were used. The 
tight-binding parameters were chosen to yield experimental bulk band gaps and to reproduce density 
functional calculations of the effective masses of the lowest conduction bands. An electron state propa-
gating toward the oxide from the channel side of the junction, characterized by E, k|| and its wavevector 
component normal to the interface (kperp,in), is scattered into sets of reflected and transmitted states 
(characterized by wavevector components kperp,out). From the scattering wavefunctions, transmission 
amplitudes and dimensionless transmission coefficients are obtained.

The present microscopic models allow one to predict the intrinsic decay properties of the wave-
functions into the gate oxide. Because of the local nature of bonding in the oxide, a bulk picture of 
tunneling persists qualitatively even for the thinnest oxide barriers. We have analyzed the complex 
bands of the present bulk oxide models and find that (1) only one single complex band is relevant for 
electron tunneling; (2) several different bands are involved in hole tunneling; and (3) all complex 
oxide bands are highly nonparabolic. Because of the mismatch in the Brillouin zones for the oxide on 
top of the silicon, the bulk silicon k|| is not conserved and different states have differing decay constants. 
The energy dependence of the integrated transmission is shown for oxide thicknesses between 0.7 and 
4.6 nm in Figure 11.4, which also includes effective–mass-based results with a constant (EM) and the 
© 2003 by CRC Press LLC
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energy-dependent (EM*) electron mass, which was fitted to our tight-binding complex band structures. 
The parabolic effective mass approximation overestimates the transmission for oxides thinner than ~1 
nm. As oxide thicknesses increase, the tight-binding transmission is underestimated at low energies 

FIGURE 11.3   Ball-and-stick model of an Si[100]-SiO2-Si[100] model heterojunction based on the 1.3 nm thin gate 
oxide based on the tridymite polytype of SiO2. (Dark = oxygen and light = silicon.)

FIGURE 11.4   Integrated transmission (TI) vs. the energy of the incident electron for tridymite-based oxides with 
thicknesses of 0.7, 2.3, and 4.6 nm. Results are for calculations with our atomic-level tight-binding method (TB, 
solid line), effective mass approaches with constant (EM, dotted line), and energy dependent (EM*, dashed line) 
effective masses.
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and overestimated at higher energies. The higher slope of the transmission obtained in the parabolic 
effective mass approximation is consistent with the findings for the tunneling masses and explains 
previous errors in oxide thicknesses derived from tunneling experiments and a constant parabolic 
effective mass model.13 Using the correct tight-binding dispersion of the imaginary bands in an effective 
mass calculation (i.e., the EM* results in Figure 11.4) leads to qualitatively correct slopes for trans-
mission; however, the absolute values are typically overestimated by one to two orders of magnitude. 
A possible reason for much of this discrepancy may be that the effective-mass-based transmission 
calculation underestimates the full band structure mismatch of silicon and its oxide.

The transmission coefficients were combined with electron densities and the corresponding distribu-
tion functions at the Si-SiO2 interface of prototypical MOSFETs with channels of 50 nm and 90 nm. 
These quantities were obtained from full-band Monte Carlo simulations and were used to calculate the 
absolute magnitudes for gate leakage currents which, for oxide thicknesses smaller than ~4 nm, are 
dominated by tunneling of cold electrons in the source and drain contacts for defect-free oxides. As a 
consequence, the tunneling current densities (integrated over the entire gate length) decrease upon 
applying a drain-source voltage. The elastic gate leakage currents were recalculated including oxygen 
vacancies for a given energy Evac in the oxide band gap from 0 to 3 eV above the silicon conduction band 
edge. The leakage currents at an arbitrary vacancy density were calculated using an interpolation for-
mula.16,17 Interestingly, we find that for all possible combinations of vacancy energy and density, the gate 
currents are still dominated by cold electrons originating in the contact regions. We have calculated the 
direct gate current densities from the source contact for the 50 nm transistor with a 1.3 nm oxide and 
the 90 nm transistor with a 2.9 nm oxide for defect densities in the range of 1010–1013 cm–2 and a 
homogeneous as well as various Gaussian distributions of Evac in energy space. The magnitude of the 
defect-induced current increase is very sensitive to the density and the energy distribution of the defects. 
For defect densities greater than 1012 cm–2, the enhancement can be as high as 2–3 orders of magnitude. 
Also, the resonant effects are somewhat less pronounced for the thinner oxide.

We regard this work as the first steps toward the full understanding of oxide tunneling from a 
microscopic point of view. The theoretical approach presented here13,16,17 could certainly be applied to 
other systems; and there are other methods to calculate electron transport at the atomic scale, which are 
of general interest for those interested in modeling nanoelectronic devices.18–20

11.3 Modeling of Quantum Dots and Artificial Atoms

The quantum dot is, in a way, the prototype of any future device that is designed to occupy a minimum 
of space. It is important in this context that quantum dots can be arranged and interconnected in three 
dimensions, at least in principle. In the last 10 years, the physics of quantum dots has experienced 
considerable development because of the manifestation of the discreteness of the electron charge in single-
electron charging devices, as well as the analogy between three-dimensionally quantum confined systems 
and atoms.21 Early studies were motivated by the observation of single-electron charging in granular 
metallic islands containing a “small” number of conduction electrons (N~100–1000) surrounded by an 
insulator characterized by a small capacitance C.22,23 In metallic dots however, quantum confinement is 
relatively weak; and the large effective mass of conduction electrons makes the energy spectrum a quasi-
continuum with negligible separation between electron states even at low temperature, ∆E << kBT. Hence, 
the addition of an electron to the island requires the charging energy e2/2C from a supply voltage source 
to overcome the electrostatic repulsion or Coulomb blockade from the electrons present in the dot, with 
negligible influence of the energy quantization in the system.24

Advances in patterning and nanofabrication techniques have made possible the realization of semi-
conductor quantum dots with precise geometries and characteristic sizes comparable to the de Broglie 
wavelength of charge carriers.25 These quantum dots are realized in various configurations by combining 
heterostructures and electrostatic confinement resulting from biased metal electrodes patterned on the 
semiconductor surfaces. In three-dimensional confined III-V compound semiconductors, the small effec-
tive mass of conduction electrons results in an energy spectrum of discrete bound states with energy 
© 2003 by CRC Press LLC
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separation comparable to, or even larger than, the charging energy e2/2C. The ability to vary the electro-
static potential over large voltage ranges allows for fine-tuning of the quantum dot charge of just a few 
electrons (N~1–10).26 Early experiments on single-electron charging were made with layered AlGaAs/
GaAs structures by patterning several Schottky metal gates on top of a two-dimensional electron gas to 
achieve lateral confinement. A back gate controls the number of electrons in the two-dimensional gas 
and the dot (Figure 11.5a).25 In these planar structures, the current flows parallel to the layers, and the 
tunneling barriers between the dot and the two-dimensional gas are electrostatically modulated by the 
top gates. In vertical quantum dots, the electrons are sandwiched vertically between two tunneling hetero-
barriers, while the lateral confinement results from a vertical Schottky achieved by deep mesa etching of 
the multilayer structure (Figure 11.5b).27,28 In this case current flows perpendicularly to the two-dimen-
sional gas between the two hetero-barriers, which are usually high and thin because they are made of 
different semiconductor materials, e.g., InGaAs and AlGaAs. In general, planar dots have a poor control 
of the exact number of electrons, while vertical dots lack the barrier tenability of lateral structures.

In semiconductor quantum dots, discrete energy levels with Coulomb interaction among electrons 
for achieving the lowest many-body state of the system is reminiscent of atomic structures. In cylindrical 
quantum dots, shell structures in the energy spectrum and Hund’s rule for spin alignment with partial 
shell filling of electrons have recently been observed.28 One of the peculiarities of these nanostructures 
is the ability to control not only the shape of the dot but also the number of electrons through gate 
electrodes.29 Hence, artificial atoms can be designed to depart strongly from the three-dimensional 
spherical symmetry of the central Coulomb potential and its nucleus charge. In this context, the physics 
of a few electrons in quantum dots offers new opportunities to investigate fundamental concepts such 
as the interaction between charge carriers in arbitrary three-dimensional confining potentials and their 
elementary excitations. Moreover, because Hund’s rule is the manifestation of spin effects with shell 

FIGURE 11.5   (a) Schematic representation of a planar quantum dot structure with layered materials; the dark areas 
represent the confining metallic gates at the surface. (b) Vertical quantum dot structure with different constituting 
materials; the vertical dark areas on the side represent the controlling metallic gate.
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filling in quantum dots, the electron spin can, in principle, also be controlled by the electric field of a 
transistor gate.30 The idea of controlling spin polarization, independent of the number of electrons in 
quantum dots, has practical consequences because it provides the physical ingredients for processing 
quantum information and making quantum computation possible.31 In addition, spin degrees of freedom 
can be utilized for storing information in new forms of memory devices. Aside from the investigation 
of basic quantum phenomena, artificial atoms are also promising for applications in high-functionality 
nanoscale electronic and photonic devices such as ultra-small memories or high-performance lasers.22,32,33

11.3.1 The Many-Body Hamiltonian of Artificial Atoms

The electronic spectrum of N-electron quantum dots are computed by considering the many-body 
Hamiltonian:

(11.1)

where H0i is the single-particle Hamiltonian of the ith electron and:

(11.2)

is the interaction Hamiltonian describing the Coulomb interaction between carriers. Here ε is the 
dielectric constant of the material. In the second term of Equation (11.1), the sum is carried out for i/j,
avoiding the interaction of carriers with themselves. Quite generally, the Hamiltonian Equation (11.1) 
is used for solving the Schroedinger equation for the many-particle energies and wavefunctions,

E = EN(1, 2, 3, …, N)

which, given the two-body interaction Equation (11.2), can only be solved exactly for N = 2. In this 
section we will describe a natural approach toward the solution of this problem for a general number N 
of electrons by considering successive approximations.

11.3.1.1 Single-Particle Hamiltonian and Shell Structures

We start by considering a system of independent and three-dimensional confined electrons in the con-
duction band. By neglecting the interaction Hij, the Hamiltonian Equation (11.1) is reduced to a sum of 
single particle Hamiltonians, each of the same form:

Here we assume the electrons can be described with an effective mass m*; pxi, pyi, and pzi are the 
components of the ith electron momentum, and V(ri) is the external potential that contains several 
contributions according to the confinement achieved in the quantum dot. We will assume that the 
quantum dot is realized by confinement of the electrons in a heterostructure quantum well along the y-
direction and electrostatic confinement in the x–z plane (Figure 11.6a). The latter confinement results 
usually from dopant atoms in neighboring semiconductor layers and from the fringing field of the metal 
electrodes on the semiconductor surface. This configuration is most commonly achieved in planar 
quantum dots and vertical quantum dots and results in a first approximation in a two-dimensional 
parabolic potential in the x–z plane (Figure 11.6b). Confinement at the heterostructure along the y-
direction is generally strong (~10 nm) with energy separation of the order of 50–100 meV, while the x–z 
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planar confinement is much weaker with energy separation of the order of 1 meV over larger distance 
(>~100 nm). In that case, the external potential is separable in a first approximation,

,

which results in the energy spectrum Eν,   nx,   nz = Eν +  with corresponding wavefunctions 
, where  is the spectrum resulting from the y-potential (x–z potential). 

Hence, each value of the ν-quantum number gives a series of x–z energy levels. At low temperature, given 
the large separation between the Eν energy states, only the first levels of the lowest series ν = 0 are occupied 
by electrons. If one further assumes that the  potential is cylindrically symmetric, the ν = 0 
energy spectrum is written as:34

where ω is frequency of the cylindrical parabolic potential. Here each m-level is 2m-times degenerate, 
with the factor 2 accounting for the spin degeneracy. The number m (= 1,2,3…) is the radial quantum 
number, and the number l (= 0,±1,±2,...) is the angular momentum quantum number. Hence the two-
dimensional cylindrical parabolic potential results in two-dimensional s,p,d,f,...-like orbitals supporting 
2, 4, 6, 8… electrons, which give rise to shell structures filled with 2, 6, 12, 20, … particles, thereby 
creating a sequence of numbers that can be regarded as the two-dimensional analogues of magic numbers
in atomic physics.28,35

In the absence of cylindrical or square symmetry, the parabolic potential is characterized by two 
different frequencies, ωx and ωz, which lift the azimuthal degeneracy on the l-number of the two-
dimensional artificial atoms. Therefore, electronic states are spin-degenerate only and determine a 
sequence of shell filling numbers 2, 4, 6, 8, … of period or increment 2. Only when the ratio ωx/ωz is 
commensurable does the sequence of filling numbers deviate from the period 2 and provide a new 
sequence of numbers for particular combinations of the nx and nz quantum numbers in the case of 
accidental degeneracy.36

Another important class of three-dimensional confined systems includes quantum dots obtained by 
self-assembled or self-organized Stranski–Krastanov (SK) epitaxial growth of lattice-mismatched semi-
conductors, which results in the formation of strained-induced nanoscale islands of materials. InAs and 
InGaAs islands on GaAs have been obtained with this technique in well-controlled size and density.33,37,38 

For these materials, shapes vary between semispherical and pyramidal form, and the size is so small that 
these quantum dots only contain one three-dimensional fully quantized level for conduction electrons.

11.3.1.2 Hartree–Fock Approximation and Hund’s Rules

The natural extension of the atomic model for independent three-dimensional confined electrons is the 
consideration of the Coulomb interaction between particles in the Hartree–Fock (HF) approximation. 
The HF scheme has the advantage of conserving the single-particle picture for the many-body state of 
the system by representing the total wave function as a product of single-particle wavefunctions in a 

FIGURE 11.6   Schematic representation of (a) a two-dimensional parabolic potential with cylindrical symmetry in 
the x–z plane showing equally spaced energy levels, and (b) the square potential with the first two quantized levels 
in the y direction with E2y–E1y>>hω.
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Slater determinant that obeys Fermi statistics. The main consequence of the HF approximation for the 
Coulomb interaction among particles is a correction of two terms to the single-particle energies derived 
from the Ho Hamiltonian39

where the first sum is the Hartree energy carried on all occupied j-states different from the i-state, 
irrespective of their spins, and accounts for the classical repulsion between electrons. The second term 
is the attractive exchange interaction that occurs among carriers with parallel spins. In this scheme, the 
wavefunctions  satisfy the HF integro-differential equation where the Coulomb interaction term 
depends upon all the other single-particle wavefunctions of the occupied states. The HF equation is 
therefore nonlinear and must be solved self-consistently for all wavefunctions of occupied states.

One of the important consequences of the HF approximation for interelectron interaction Equation 
(11.2) is the prediction of spin effects in the shell filling of artificial atoms similar to Hund’s rules in 
atomic physics.28 These effects are illustrated in the charging energy of a few electron quantum dots with 
a cylindrical parabolic potential as achieved in planar or vertical quantum structures.26 In Figure 11.7a, 
we show schematically the Coulomb staircase resulting from charging a quantum dot with a few electrons 
as a function of the charging energy or voltage between the metal electrode or gate and the semiconductor 
substrate. The relative step sizes of the staircase represent the amount of energy needed to put an 
additional electron in the dot. The arrows on each step represent the spin of each individual electron on 
the successive orbitals during the charging process. The filling of the first shell (s-orbital with 2 electrons) 
consists of one electron with spin-up followed by an electron with spin-down. The step size of the spin-
up electron measures the charging energy needed to overcome the Coulomb repulsion against the spin-
down electron, which is only the Hartree energy between the two particles. The larger step size of the 
second (spin-down) electron is due to the fact that the charging of the third electron requires the charging 
energy augmented by the energy to access the next quantized level, which is the first p-orbital. The latter 

FIGURE 11.7   (a) Coulomb staircase as a function of the charging energy with the spin states of each electron. N 
is the number of electrons, and the horizontal two-head arrows indicate the occupation of the s- and p-orbitals in 
the dot. (b) Electron current through the dot vs. the charging energy. (c) Two-dimensional p-orbitals illustrating the 
two possible occupations of two electrons with parallel (top diagram) and anti-parallel spins (bottom diagram).
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process starts the second shell filling with the third electron on either one of the degenerate l = ±1 orbitals 
of either spin (here we choose the l = –1 and the spin-up). At this stage, the configuration with the fourth 
electron on the l = 1 orbital with a parallel spin becomes more favorable because it minimizes the Hartree 
energy between orbitals of different quantum numbers and results in an attractive exchange energy 
between the two electrons (Figure 11.7c). This is the reason the third step is smaller than the first and 
the second steps, requiring less energy and demonstrating Hund’s rule in the electron filling of the two-
dimensional artificial atom. The fourth step is long because the addition of the fifth electron on either 
of the p-orbitals with l = ±1 must correspond to a spin-down electron that undergoes a repulsion from 
the two other p-electrons without benefiting from the exchange because its spin is anti-parallel. Figure 
11.7b shows the current peaks resulting from the single-electron charging of the quantum dot, which is 
obtained by differentiating the Coulomb staircase. Current characteristics with similar structure have 
recently been observed in gated double-barrier GaAs/AlGaAs/InGaAs/AlGaAs/GaAs vertical quantum 
dot tunnel devices, which revealed the shell structure for a cylindrical parabolic potential as well as spin 
effects obeying Hund’s rule in the charging of the dot.28

Hence the HF approximation provides a reasonable picture of the contribution of electron–electron 
interaction and spin effects in the spectrum of quantum dots. However, it is well known from atomic 
physics and theoretical condensed matter physics that this approximation suffers from two important 
drawbacks: neglect of electron correlation and overestimation of the exchange energy.40 Moreover, it leads 
to tedious solution of the self-consistent problem when involving a large number of electrons.

11.3.1.3 Full-Scale Simulation of Quantum Dot Devices

Advances in computer simulation combine the sophistication of realistic device modeling with the 
accuracy of computational physics of materials based on the density functional theory (DFT).41–45 These 
powerful methods provide theoretical tools for analyzing fine details of many-body interactions in 
nanostructures in a three-dimensional environment made of heterostructures and doping, with realistic 
boundary conditions. Microscopic changes in the quantum states are described in terms of the variation 
of macroscopic parameters such as voltages, structure size, and physical shape of the dots without a priori 
assumption on the confinement profile. Consequently, engineering the exchange interaction among 
electrons for achieving controllable spin effects in quantum devices becomes possible.

The implementation of a spin-dependent scheme for the electronic structure of artificial molecules 
involves the solution of the Kohn–Sham equation for each of the spins, i.e., up (↑) and down (↓). 
Under the local spin density approximation within the DFT, the Hamiltonian H↑↑↑↑((((↓↓↓↓)))) for the spin ↑ (↓) 
electrons reads40,46

where m*(r) is the position-dependent effective mass of the electron in the different materials, Ec(r) = 
eφ(r) + ∆Eos is the effective conduction band edge, φ(r) is the electrostatic potential which contains the 
Coulomb interaction between electrons, and ∆Eos is the conduction band offset between GaAs and 
AlGaAs. The respective Hamiltonians are identical in all respects, except for the exchange-correlation 
potential, which is given by

where εxc is the exchange-correlation energy as a function of the total electron density n(r) = n↑(r) +n↓(r)
and the fractional spin polarization ξ = (n↑– n↓)/n, as parameterized by Ceperley and Alder.47 While it is 
known that the DFT underestimates the exchange interaction between electrons, which leads to incorrect 
energy gaps in semiconductors, it provides a realistic description of spin–spin interactions in quantum 
nanostructures, as shown in the prediction of the addition energy of vertical quantum dots (see Figure 11.8).
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The three-dimensional Poisson equation for the electrostatic potential φ(r) reads

Here ε(r) is the permittivity of the material, and the charge density ρ is comprised of the electron and 
hole concentrations as well as the ionized donor and acceptor concentrations present in the respective 
regions of the device. The dot region itself is undoped or very slightly p-doped. At equilibrium, the 
electron concentrations for each spin in the dots are computed from the wavefunctions obtained from 
the respective Kohn–Sham equations, i.e., ρ(r) = en(r) with n↑(↓) = Σι |ψι

↑(↓)(r)|2. In the region outside the 
dots, a Thomas–Fermi distribution is used so that the electron density outside the dot is a simple local 
function of the position of the conduction band edge with respect to the Fermi level, εF . The various 
gate voltages —Vback, Vt , and those on the metallic pads and stubs — determine the boundary conditions 
on the potential φ(r) in the Poisson equation. For the lateral surfaces in the x–y plane on Figure 11.5, 
vanishing electric fields are assumed.

Self-consistent solution of the Kohn–Sham and Poisson equations proceeds by solving the former for 
both spins, calculating the respective electron densities and exchange correlation potentials, solving the 
Poisson equation to determine the potential φ(r), and repeating the sequence until the convergence 
criterion is satisfied.44 Typically, this criterion is such that variations in the energy levels and electrostatic 
potential between successive solutions are below 10–6 eV and 10–6 V, respectively.

The determination of Neq, the number of electrons in the dots at equilibrium for each value of the 
gate and tuning voltages, is achieved by using Slater’s transition rule:48

where ET(N) is the total energy of the dot for N electrons and εLOA(1/2) is the eigenvalue of the lowest-
available orbital when it is occupied by 0.5 electron. From the latter equation, it is seen that if the right-
hand side is positive, Neq = N; otherwise, Neq = N+1. Thus the N→N+1 transition points are obtained 
by populating the system with N+0.5 electrons and varying Vback until εLOA(1/2)–εF becomes negative. It 
should be noted that the approximation made in the latter equation is valid only if εLOA varies linearly 
with N. This approach has been very successful in the analysis of the electronic spectra and charging 
characteristics of vertically confined quantum dots.49 Figure 11.8 shows the addition energy spectrum of 
a single vertical quantum dot as a function of the number N of electrons in the dot. The addition energy 
measures the energy required to add a new electron in the dot given the presence of other electrons 
already in the dot and the restriction imposed by the Pauli principle on the electron energy spectrum. 

FIGURE 11.8  Addition energy of a vertical single quantum dot. (Data from Tarucha, S., Austing, D.G., Honda, T., 
van der Hage, R.J., and Kouwenhoven, L.P., Phys. Rev. Lett. 77, 3613, 1996; Nagaraja, S., Leburton, J.P., and Martin, 
R.M., Phys. Rev. B 60, 8759, 1999.)
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The peaks at N = 2, 6, and 12 are the signature of the existence of a two-dimensional shell structure in 
the dot, while the secondary peaks at N = 4 and 9 reflect the existence of Hund’s rule at half-filled shells. 
The agreement between theory and experimental data is excellent for the position of the peaks as well 
as for their magnitude.

The technique is useful in designing double quantum dots with variable interdot barrier for controlling 
electron–electron interactions.50 The devices have a planar geometry made of GaAs/AlGaAs hetero-
structure that contains a two-dimensional electron gas (2DEG). The dots are defined by a system of gate 
pads and stubs that are negatively biased to deplete the 2DEG, leaving two pools of electrons that form 
two quantum dots connected in series (Figure 11.9).46 In these artificial diatomic molecules, electron states 
can couple to form covalent states that are delocalized over the two dots, with electrons tunneling between 
them without being localized to either.51 These bonding states have lower energy than the constituent dot 
states by an amount that is equivalent to the binding energy of the molecule. In our case, the dimensions 
are such that the electron–electron interaction energy is comparable to the single-particle energy level 
spacing. The number of electrons in the dot, N, is restricted to low values in a situation comparable to 
a light diatomic molecule such as H-H or B-B. The coupling between dots can be adjusted by varying 
the voltage on the tuning gates Vt to change the height of the barrier between the two dots. The number 
of electrons N in the double dot is varied as the 2DEG density, with the back gate voltage Vback for a fixed 
bias on the top gates. Hence, controllable exchange interaction that gives rise to spin polarization can be 
engineered with this configuration by varying N and the system spin, independently.*

FIGURE 11.9  Schematic representation of the planar coupled quantum dot device. (a) Layer structure with top and 
back gates; (b) top view of the metal gate arrangement with sizes and orientations; (c) schematic representation of the 
six lowest orbitals in the weak (left-hand side) and strong (right-hand side) coupling regimes. In both cases, the s-states 
are strongly localized in their respective dot. Left: px- and pz-like orbitals are degenerate within each dot and decoupled 
from the corresponding state in the other dot. Right: Increasing coupling lifts the p-orbitals degeneracy with a reordering 
of the states. The dark and light orbitals indicate positive and negative parts of the wave functions, respectively.

*This is not the case in shell filling of single quantum dots because the total spin of the electronic system is directly 
related to the number N of electrons in the dot.
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11.3.2 Quantum Modeling of Artificial Molecules and Exchange Engineering

In order to simulate these effects, we consider a structure that consists of a 22.5 nm layer of undoped 
Al0.3 Ga0.7 as followed by a 125 nm layer of undoped GaAs, and finally an 18 nm GaAs cap layer (Figure 
11.9a). The latter is uniformly doped to 5.1018cm-3 so that the conduction band is immediately above 
the Fermi level at the boundary between the GaAs cap layer and the undoped GaAs. The inverted 
heterostructure is grown on the GaAs substrate. The lateral dimensions of the gates and spacing are 
shown in Figure 11.9b. Figure 11.9c shows the schematic of the lowest four states with their wavefunctions 
in the double dot for two different tuning voltages.46 For both values of Vt , the ground state in the 
individual dots is s-like and forms a degenerate pair. Here, we borrow the terminology of atomic physics 
to label the quantum dot states. The first excited states, which are px- and pz-like, are degenerate for 
weak interdot coupling, whereas for strong coupling, the pz-like states mix to form symmetric (bonding) 
and antisymmetric (anti-bonding) states that are lower in energy than the px-like states as seen in Figure 
11.9c. This reordering of the states has an important bearing on the spin polarization of the double-dot 
system, as shall be fully explained below.

In the present double-dot structure, we focus on the spin states of the electron system and allow N
to vary from zero to eight for two values of Vt: Vt = –0.67V, defined as the weak coupling regime, and 
Vt = –0.60V, defined as the strong coupling regime. Electron spin states that are relevant in this analysis 
are designated by s1

↑(↓), s2
↑(↓) (lower energy s-states in dots 1 and 2) and px1

↑(↓), px2
↑(↓), pz1

↑(↓), and 
pz2

↑(↓)- (higher energy p-states where the x- and z-indices indicate the orientation of the wavefunc-
tions). For N = 0, in the weak coupling limit, the computer model shows that s-states in dots 1 and 
2 have negligible overlap because of the relatively high and wide barrier. Indeed, the bonding–anti-
bonding energy separation resulting from the coupling between these states is orders of magnitude 
smaller than the Coulomb charging energy so that s-electrons are practically localized in each dot. A 
similar situation arises for the px- and pz-states, which, although experiencing slight overlap because 
of higher energy, they see a lower and thinner barrier and are quasi-degenerate within each dot. In 
fact, in the weak coupling limit, pz1- and pz2-states that are oriented along the coupling direction 
between dots experience a bigger overlap than the corresponding px-states and consequently lie slightly 
lower in energy than the latter. Hence, as far as the lower s- and p-states are considered, the double-
dot system behaves as two quasi-independent dots (Figure 11.9c, left). In addition, because of the large 
distance separating the two lower s-states for Vt = –0.67V, Coulomb interaction between electrons in 
dots 1 and 2 is negligibly small, and both dots can be charged simultaneously through double charging46

to completely fill the s1 and s2 states. Therefore, for N = 4, there is no net spin polarization in the 
double dot, because both contain equal numbers of spin ↑ and spin ↓ electrons.

When the double dot is charged with a fifth electron, the latter occupies either the pz1– or pz2–state 
(e.g., ↑ spin i.e., pz1

↑or pz2
↑) that has the lowest available energy. The sixth electron takes advantage 

of the nonzero p-state overlap and occupies the other pz
↑-state with a parallel ↑ spin. The seventh 

and eighth electrons find it energetically favorable to occupy successively px1
↑ and px2

↑
, but not any 

of the spin ↓ states, because of the attractive nature of the exchange-correlation energy among the 
spin ↑ electrons that results from the nonzero p-state overlap, lowering the energy of the double 
dot. This particular high-spin configuration among p-orbitals in the “artificial” diatomic molecule 
deserves special attention because it appears to violate one of the Zener principles on the onset of 
magnetism in transition elements; this principle forbids spin alignment for electrons on similar 
orbitals in adjacent atoms.52 Therefore, it could be argued that the high-spin configuration obtained 
in the calculation is the consequence of a DFT artifact. Recently, however, Wensauer et al. confirmed 
the DFT results based on a Heitler–London approach.53 Similar conclusions have also been obtained 
by an “exact” diagonalization technique on vertically coupled quantum dots for N = 6 electrons.54,55

Let us point out that Zener’s principle is purely empirical, as it is based on the observation of the 
magnetic properties of natural elements that lacks the tunability of artificial systems. Therefore, the 
total spin of the double dot can possibly steadily increase by 1/2h for each electron added after the 
fourth electron to 2h for N = 8, and there is no contradiction with Zener’s principle applied to 
© 2003 by CRC Press LLC
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natural elements. After all, high-spin configurations have been shown to compete for the ground 
state of light diatomic molecules such as B2.56

The variation of the total spin S in the double dot with N is shown in Table 11.1. It is also seen that 
as N increases above eight electrons, the spin ↓ states start to be occupied, thereby decreasing S by 
1/2h for each additional electron, forming anti-parallel pairs to complete the shell until N = 12 when 
S is reduced to zero. The sequence of level filling with the occupation of degenerate states by electrons 
of parallel spin is observed in atoms and is governed by Hund’s rules; it is therefore impressive that 
similar rules successfully govern level filling in the double dot in the weak coupling regime. Let us 
point out that even though S = 2h is the most favored state of the double dot, energetically it is not 
significantly lower than other competing states for N = 8. For instance, the excited states with S < 2h
for N = 8 are only about 0.1 meV higher in energy. Consequently, for this particular double-dot 
structure, any attempt to observe experimentally the parallel alignment of the spins of unpaired 
electrons is restricted to low temperatures for which kBT<< 0.1 meV, or any kinds of electrostatic 
fluctuations smaller than this value. However, it must be noted that the structure is not optimized and 
that the evidence of spin polarization among p-states in the double-dot system may be achieved in 
smaller dots with stronger exchange interaction. The key issue here is the fact that the quantum 
mechanical coupling between the two dots in this bias regime is not strong enough to lift the spatial 
quasi-degeneracy among px- and pz-states which, for our particular configuration, were separated by 
no more than a few microelectron volts. Stronger coupling between the quantum dots eliminates this 
effect. Accordingly, if Vt increases to –0.60 V, also referred to as the strong coupling regime, the p-state 
spatial degeneracy is completely lifted, while deeper s-states also couple, although to a slighter extent 
to lead to the spectrum of Figure 11.9c, right. Therefore, the spin sequence as a function of N is 
alternatively S = 1/2h for odd N when the last occupying electron is unpaired and S = 0 for even N
when it pairs up with an electron of the opposite spin (Table 11.1).

The variation of inter-dot coupling by varying Vt provides a control of direct exchange interaction 
between p-like electrons in the two dots that may be more robust than for s-electrons. Hence, a lowering 
of the inter-dot barrier results in a reordering of the single-particle levels, thereby transforming the 
double-dot (for N = 8) from a spin-polarized S = 2h to an unpolarized state S = 0. An important result 
from Table 11.1 is that the Loss–Di Vincenzo scheme for quantum computing with double dots could 
also be achieved for N = 6 electrons, where the control of qubit entanglement for a quantum control-
not (XOR) gate operation would be realized with the S = 1/2h spin states of two p-electrons instead of 
two single electrons (N = 2) in the original scenario.57

The electrostatic nature of the confinement potential, specifically the coupling barrier, is central to 
the occurrence of the effects mentioned above. Indeed, the barrier is not uniform but is wider (and 
higher) for the lower quantum dot s-states than for the higher p-states (Figure 11.9c). This situation is 
similar to the electronic properties of natural diatomic molecules, where the strongly localized s-states 
correspond to atomic core states and the delocalized p-states to covalent bonding states. It is therefore 
possible to engineer exchange interaction in the artificial molecule by suitably tailoring the coupling 
barrier between quantum dots. This is achievable by proper device design, i.e., by adjusting gate size and 
shape, the doping profiles, and the distance between the GaAs/AlGaAs heterojunction and the control 
gates, and possibly by choosing other III-V semiconductor systems to optimize the energy separation 
between singlet and multiplet states.

TABLE 11.1 Spin of the Double Dot for Various Occupation Numbers in the Two Coupling Regimes 

1 2 3 4 5 6 7 8 9 10 11 12

Spin 
(h)

–0.67 V 1/2 ? 1/2 0 1/2 1 3/2 2 3/2 1 1/2 0
–0.67 V 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0

The question mark at N = 2 in the weak coupling regime indicates that the spins are uncorrelated.

N
Vt
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11.4 Carbon Nanotubes and Nanotechnology

Device aspects of carbon nanotubes represent an interesting new area of nanoscience and nanotechnology. 
Simulation in this area requires special methods that lie in between the methods used for the periodic 
solid and the methods applied to quantum dots. Various (carbon, nitride, and chalcogenide) nanotubes 
are promising for applications because of their unusual mechanical and electronic properties, stability, 
and functionality.

The lattice structure of single-wall carbon nanotubes follows the lattice structure of graphene (mono-
layer of graphite): a hexagonal pattern is repeated with translational symmetry along the tube axis and 
with axial (chiral) symmetry along the tube circumference. Nanotubes are labeled using two numbers 
[n,m]. These are components of the vector that generates the tube circumference after scrolling, in terms 
of basic vectors of the graphene lattice (see Figure 11.10A). It is easy to find that only two types of single-
wall nanotubes (SWNTs) have a pure axial symmetry: so-called armchair (A) and zigzag (Z) nanotubes. 
The graphene rectangle shown in Figure 11.10A, gives an armchair (A) nanotube when wrapped from 
top to bottom (Figure 11.10B) and a zigzag (Z) nanotube when wrapped from left to right. Any other 
type of nanotube is chiral, which means that it belongs to a screw-axis symmetry group.

Graphite-like systems and materials, such as fullerenes, nanotubes, nanographites, and organic mac-
romolecules, are well known to have valence/conduction band systems generated by pi and sigma valence 
electrons.58 The latter ones are localized and, normally, contribute only to the mechanical properties of 
the graphitic material. In contrast, pi-electrons are mobile and highly polarizable and define transport, 
electrical, and electromechanical properties. The pi-electronic structure of a monolayer of graphite 
(graphene) is shown in Figure 11.11. It has a six Fermi points that separate an empty conduction band 
from an occupied (symmetrical) valence band. A simple but correct picture of the electronic structure 
of a SWNT follows from a band-folding argument: an additional space quantization for the pi-electrons 
appears due to confinement in the circumferential direction. It can be thought of as a mere cross 
sectioning of the electronic structure of graphene along the nanotube symmetry direction. Depending 
on the lattice symmetry of the tube, three different situations can be realized: 

1. The armchair SWNT has a cross-section passing through the Fermi point (Figure 11.12, left). In 
this case the SWNT is metallic and the conduction band merges with the valence band (Figure 
11.13, left). 

  

FIGURE 11.10   (A) Honeycomb lattice structure of graphene has a rhombic unit cell with two carbon atoms. 
Translated along basal vectors, c1 and c2, it forms two interconnected sublattices. The carbon–carbon bond length, 
b, is ~0.14 nm. The edge direction, in basal vectors, is denoted by two integers (shown fragment has left/right edge 
of type [2,2]). (B) Lattice structure of [10,10] armchair SWNT. Wrapping honeycomb lattice along some chosen axis 
will form a nanotube.
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FIGURE 11.11   TBA electronic structure of valence bands of a monolayer of graphite. Threefold symmetry of the 
lattice results in six Fermi points where the conduction band meets the valence band.

    

FIGURE 11.12   Lowest conduction sub-band and highest valence sub-band of a metallic tube (left) compared with 
semiconductor nanotube (right). A nanotube quantization condition makes cut from the cone-shaped bands of 
graphite. In the case of metallic nanotube, this cross-section passes through the Fermi point and no gap develops 
between sub-bands. The electron dispersion is linear in longitudinal wave vector. In the case of semiconductor 
nanotube, the cross-section is shifted away from Fermi point. The carrier dispersion is a hyperbola.

FIGURE 11.13   Electronic structure of a metallic armchair [10,10] nanotube (left) and a semiconductor zigzag [17,0] 
nanotube (right). The pi-electron energy is plotted in units of hopping integral, t~2.7 eV vs. dimensionless product 
of the longitudinal wave vector, k, and the bond length, a~0.14 nm (half of the Brilloine zone is shown).
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2. The zigzag/chiral nanotube cross-section is distant from the Fermi point (Figure 11.12, right). 
This tube has a nonzero gap as shown in Figure 11.13, right, and it is a semiconductor tube. 

3. One third of zigzag and chiral nanotubes have a very small gap, which follows from arguments 
other than simple band-folding. In our simplified picture these SWNTs will have a zero band gap 
and be metals.

The band gap of a semiconductor nanotube depends solely on the tube radius, R — a simple rule 
follows from the band-folding scheme: Eg = t b/R, here t~2.7 eV is the hopping integral for pi-electrons. 
This gap dependence was experimentally measured by Scanning Tunneling Spectroscopy59 and resonance 
Raman spectroscopy.60

Nanotubes with conductivity ranging from metallic to semiconductor were indeed synthesized. The 
temperature dependence of the conductivity of the nanotube indicates reliably the metallic or semicon-
ductor character. The field effect is also very useful to distinguish between two types. To measure this 
effect, the nanotube is placed between two electrodes on top of a back-gate contact that is covered with 
an insulating layer. After synthesis and purification, a SWNT is normally p-type, i.e., the majority of 
carries are holes. A typical density of ~107 cm-1 holes defines the conductivity in the ON state of a SWNT 
when operated as a field-effect transistor at zero gate voltage. External positive voltage, applied to the 
back gate, can deplete the holes and switch the SWNT–FET into the OFF state. Experiments have shown 
a drop of 5 orders of magnitude of the source-drain current when the gate voltage was changed by 3 
volts for very thin insulator layers (thickness < 2 nm).61 In the case of metallic nanotube bridging two 
electrodes, only a weak dependence, if any, of the conductivity on the gate voltage is seen.

The electronic structure of SWNT is highly sensitive to external fields, and lattice distortions cause 
changes in the electronic structure. A lattice distortion moves the Fermi point of graphite and results in 
the closing/opening of an energy gap, a change in the electron density, and charging of the tube. This 
opens many possibilities for application of nanotubes to use as nano-biosensors, mesoscopic devices, 
and nanoelectromechanical systems.

In this section we focus on a particular application of carbon nanotubes — nanoelectromechanical 
(NEM) switches (Figure 11.14) and nanotweezers (Figure 11.15). The three basic energy domains that 

FIGURE 11.14  ON and OFF states of a nanotube electromechanical switch. Arrows show applied forces: electrostatic, 
van der Waals, and elastic forces.

FIGURE 11.15   Nanotube nanotweezers device.

1. OFF state

2. ON state
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describe the physical behavior of NEM switches — mechanics, electrostatics, and van der Waals — are 
described below.

11.4.1 Operation of Nanoelectromechanical Switches

Shown in Figure 11.16 is the nanoelectromechanical operation of a carbon nanotube-based cantilever 
switch. The key components are a moveable structure, which can be a single wall or a multiwall carbon 
nanotube, and a fixed ground plane, which is modeled by a graphite bulk. When a potential difference 
is created between the moveable structure and the ground plane, electrostatic charges are induced on 
both the movable structure and the ground plane. The electrostatic charges give rise to electrostatic 
forces, which deflect the movable tube. In addition to electrostatic forces, depending on the gap between 
the moveable tube and the ground plane, the van der Waals forces also act on the tube and deflect it. 
The directions of the electrostatic and van der Waals forces are shown in Figure 11.16. Counteracting 
the electrostatic and van der Waals forces are elastic forces, which try to restore the tube to its original 
straight position. For an applied voltage, an equilibrium position of the tube is defined by the balance 
of the elastic, electrostatic, and van der Waals forces. As the tube deflects, all forces are subject to change, 
and a self-consistent analysis is necessary to compute the equilibrium position of the tube.

When the potential difference between the tube and the ground plane exceeds a certain critical value, 
the deflection of the tube becomes unstable and the tube collapses onto the ground plane. The potential, 
which causes the tube to c ollapse, is defined as the pull-in voltage or the collapse voltage. When the pull-
in voltage is applied, the tube comes in contact with the ground plane, and the device is said to be in 
the ON state (Figure 11.14.2). When the potential is released and the tube and the ground plane are 
separated, the device is said to be in the OFF state (Figure 11.14.1).

When compared with microelectromechanical switches, the operation of nanoelectromechanical 
switches is different because of the importance of the van der Waals forces, which can be neglected at 
the micrometer scale. The sticking of NEM devices becomes an increasing problem at the nanoscale and 
can limit the range of operability of NEMS. If the gap between the cantilever tube and the ground plane 
is very small, even without an applied voltage, the tube can collapse onto the ground plane because of 
the van der Waals forces. In addition, the separation of the tube from the ground plane after the contact 
becomes an issue as the van der Waals forces will tend to keep the tube and the ground plane together.

11.4.2 Nanotube Mechanics

Mechanical and structural properties of nanoscale systems have been studied both theoretically and 
experimentally over the last decade.62 The strong correlation between the structur e and electronic prop-
erties of a nanosystem requires a proper understanding of the nanomechanical and nanoelectromechan-
ical behavior of nanotubes. Such studies can lead to new design tools for microscopy and characterization 
studies as well as development of highly sensitive detectors. The mechanical behavior of a small structure 
differs from that of a bulk structure. New phenomena such as super-low friction,63 super-high stiffness,64

and high cohesio n at small distances65 are encountered.

  

FIGURE 11.16  Force balance for a nanotube over a ground plane: (left) Position of the tube when V = 0; (right) 
deformed position of the tube when V/0.
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The mechanical behavior of nanotubes can be modeled either by simple continuum approaches or by 
more complex atomistic approaches based on molecular dynamics simulations. The elastic properties of 
pure single-wall and multiwall nanotubes were studied by, for example, Sanchez–Portal et al.66 and 
Yakobson and Avouris.67 Atomistic approaches have the advantage of capturing the mechanical behavior 
accurately; however, they require large computational resources. Continuum theories, when properly 
parameterized and calibrated, can be more efficient to understand the mechanical behavior of nanotubes. 
A simple continuum approach to model the mechanical behavior of nanoelectromechanical switches is 
based on the beam theory. The beam equation is given by:

where r is the gap between the conductor and the ground plane, x is the position along the tube, q is the 
force per unit length acting normal to the beam, E is the Young’s modulus, and I is the moment of inertia 
and, for nanotubes, can be estimated as:

where Rint is the interior radius and Rext is the exterior radius of the nanotube.
The beam theory can, however, suffer from several limitations. For very large loads, the stress con-

centration at the edges of the nanotubes may cause the tube to buckle and form kinks. In such cases, the 
deflection deviates from the beam theory locally. The buckling happens at a certain strain depending on 
the device geometry, the nanotube symmetry, and the load. If buckling is to be simulated, one can try 
advanced continuum theories such as a shell theory or a full elasticity theory.68

Many-body corrections to van der Waals interactions from semiclassical Casimir forces were 
calculated and applied in the continuum modeling of nanotube mechanics.69 The basic analysis of 
a role of van der Waals terms in electromechanical systems has demonstrated its significance at the 
sub-nanometer scale.70 A recent theory71 of van der Waals interaction for shells of pure carbon is 
based on universal principles formulated in 1930s.72 The new approach is based on the quantum 
electrodynamical description of the van der Waals/Casimir forces. A simple and effective model has 
been developed to estimate the many-body contribution due to collective modes (plasmons).69 This 
contribution is believed to be a major portion of the total van der Waals energy because of the high 
oscillator strength of the plasmons. The theory reveals many-body terms that are specific for various 
low-dimensional graphite nanostructures and are not taken into account by standard one-body 
calculations within the dispersionless model by Lennard–Johns.72 We have demonstrated the use of 
the model for several systems (shown in Figure 11.17): a double-wall nanotube (A), a nanotube on 
the surface (B), and a pair of single-wall tubes (C). A significant difference has been shown for the 
dependence of the van der Waals energy on distance, which is a consequence of our quantum 
correction.69

FIGURE 11.17   Geometry of nanotube systems for which a quantum correction to van der Waals forces has been 
calculated: (A) Double-wall nanotube; (B) single-wall nanotube on a surface; and (C) two single-wall nanotubes.
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11.4.3 Electrostatics

The three-dimensional character of the electromagnetic eigenmodes and one-dimensional charge 
density distribution of a SWNT system result in a weak screening of the Coulomb interaction and the 
external field. We present a quantum mechanical calculation of the polarizability of the metallic [10,10] 
tube. The nanotube polarizability is not defined solely by the intrinsic properties of the tube.73 It 
depends also on the geometry of the nanotube and closest gates/contacts. Hence, the charge distribution 
has to be treated self-consistently. Local perturbations of the electronic density will influence the entire 
system unlike in common semiconductor structures. For example, a point charge placed near the tube 
surface will generate an induced-charge density along the tube length, which decays very slowly with 
the distance from the external charge.

Figure 11.18 (after73) is a sketch of the depolarization of the tube potential (induced-charge density) by 
the side electrode and the back-gate (the right part of Figure 11.18 shows the geometry of the device 
simulated). The continuous line is the statistical approximation (Boltzmann–Poisson equations) which 
coincides well with the quantum mechanical result (dotted line) except for the quantum beating oscillations 
at the tube end. The depolarization manifests itself as a significant nonuniformity of the charge along the 
tube length. This effect is described by the self-consistent compact modeling, which is outlined below.

The potential φact that is induced by a charge density, ρind, in one-dimensional systems is proportional 
to the charge density. Thus, for a degenerate electronic structure of a metallic nanotube in the low-
temperature limit, the Poisson equation is effectively reduced to73,74

ρind(z) = –e2νMφact(z).

Here νM stands for the nanotube density of states, which is constant in a studied voltage range. We 
have demonstrated that e2νM acts as an atomistic capacitance of an SWNT:

(a similar quantity for a two-dimensional electron gas system has been introduced by Luryi75) and the 
geometric capacitance:

 

FIGURE 11.18   (A) Self-consistent charge density of a [10,10] armchair nanotube at 5 V voltage applied between 
side and back-gate contacts. (B) Sketch of the simulated device geometry. The distance between the tube center and 
the back gate is 5 nm, and the tube radius and length are 0.6 nm and 60 nm.
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is a function of distance to the back-gate and SWNT radius. In case of the straight SWNT (as in Figure 
11.18) the geometric capacitance is a logarithmic function of the distance between the tube and the gate. 
In equilibrium, we have the following relation between the equilibrium charge density and external 
potential (gate voltage), which comprises both the atomistic and geometric capacitances:

This equation is still valid for a nanotube of arbitrary shape although no simple expression for the 
geometric capacitance can be written.

11.4.4 Analytical Consideration for the Pull-In

We finish this section with an analytical model that can be used for a quick estimation of pull-in voltages 
of the nanotube system within continuum modeling. Assuming that the elastic energy of the NEMS 
device is given by

T = k(h – x)2/2

and the external (electrostatic) force is the gradient of the energy component given by

V = Cϕ2/2

we can calculate elastic and electrostatic forces. Then we include the van der Waals energy term:

W � εx–α

and write analytically the pull-in voltage and pull-in gap as functions of the device stiffness, k, the device 
capacitance, C, and van der Waals energy, W:

Here four constants A1, B1, A2, and B2 are describing the specific dependence of C and W on x, the 
dynamic gap or the internal coordinate of the NEMS device. In case of a planar switch and the Len-
nard–Jones potential, these constants are 3/2, √2/3, 36, and 36, respectively.

As a result of the van der Waals attraction to the gate, the NEMS device cannot operate at very small 
gaps, h. The critical gap, hc, (at which xo = 0) is about 2 nm for the switch with k ~W/1 nm2, and C ~2 
k1/2/(3 V/nm). Next, Figures 11.19 and 11.20 show that, by neglecting the van der Waals correction to 
the pull-in gap, xo, one underestimates the critical pull-in voltage by 15%.

The self-consistent solution for the pull-in gap is plotted in Figure 11.20. Again, neglecting the van 
der Waals terms results in an un-physical divergence of the pull-in gap when approaching the critical 
distance hc.

11.4.5 Outlook

Development of fast and precise approaches for three-dimensional device modeling of nanotube systems 
becomes clearly important after recent successes of the IBM and Delft groups in creating prototypes for 
nanotube electronics.61,76 The physics of carbon nanotube devices is rather distinct from the physics of 
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standard semiconductor devices, and it is unlikely that semiconductor device modeling tools can be 
simply transferred to nanotube device modeling.

Development of device modeling tools for nanotubes can be very complicated because of the break-
down of continuum theories. Molecular mechanics (MM) and molecular dynamics (MD) can be used 
reliably when continuum theories break down. However, both MM and MD can be very computer time-
consuming. A good compromise is to develop a multiscale approach where continuum theories are 
combined with atomistic approaches. Multiscale methods can be accurate and more efficient compared 
with atomistic approaches. The highest level in the multiscale hierarchy is represented by the quantum 
mechanical result for the single-tube polarizability, which is the atomistic analog of the bulk dielectric 
function. It contains the complete information for the electronic structure and charge distribution and 
gives the means for calculating the screened Coulomb and the van der Waals/Casimir forces.69 The main 
difficulty here is the requirement to solve the problem for device structures. The electronic structure and 
the polarizability change during device operation, and this requires a self-consistent treatment. At the 
intermediate level, classical molecular dynamics provides a detailed knowledge for geometry and material 
parameters of the system. This is a prerequisite for calculating the mechanical response of the system. It 
also supplies proper boundary conditions for electrostatic calculations through the actual device geom-
etry. At the lowest level of the simulation hierarchy, the only level that can be used to simulate and 

FIGURE 11.19   The pull-in gap as a function of the initial device gap. Solid curve represents the self-consistent 
analytical result. Dash-dotted curve shows the dependence in neglecting the van der Waals correction.

FIGURE 11.20   The pull-in voltage as a function of the gap. Solid curve represents the analytical result explained 
in the text. Dash-dotted curve shows the dependence in neglecting the van der Waals correction for the pull-in gap.
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understand larger systems of devices, continuum theories must and can be applied. The parameters of 
the continuum models will, of course, need to be derived from the higher level simulations.

Modeling and simulation of large-scale nanoscale circuits where carbon nanotubes are interconnected 
with other nanoelectronic, nanomechanical, chemical, and biological molecules are beyond the capability 
of currently existing supercomputers. Development of compact models for nanotubes and other nan-
odevices can enable the design of large-scale nanocircuits for breakthrough engineering applications.

11.5 Simulation of Ionic Channels

Nature has created many forms of nanostructures. Ion channels are of particular importance and have 
become accessible to the simulation methods that are widely used in computational electronics and for the 
nanostructures that have been described above. We therefore add this section to emphasize the importance 
of merging the understanding of biological (i.e., carbon-based) and silicon-based nanostructures.

Found in all life forms, ion channels are in a class of proteins that forms nanoscopic aqueous tunnels 
in the otherwise almost impermeable membranes of biological cells. An example of an ion channel, ompF
porin, which resides in the outer membrane of the E. coli bacterium, is illustrated in Figure 11.21. Every 
ion channel consists of a chain of amino acids carrying a strong and rapidly varying permanent electric 
charge. By regulating the passive transport of ions across the cell membrane, ion channels maintain the 
correct internal ion composition that is crucial to cell survival and function. Ion channels directly control 
electrical signaling in the nervous system, muscle contraction, and the delivery of many clinical drugs.77 

Most channels have the ability to selectively transmit or block a particular ion species, and many exhibit 
switching properties similar to electronic devices. From a device point of view, ion channels can be viewed 
as transistors with unusual properties: exquisite sensitivity to specific environment factors, ability to self-
assemble, and desirable properties for large-scale integration such as the infinite ON/OFF current ratio. 
By replacing or deleting one or more of the amino acids, many channels can be mutated, altering the 
charge distribution along the channel.78 Engineering channels with specific conductances and selectivities 
are thus conceivable, as well as incorporating ion channels in the design of novel bio-devices.

FIGURE 11.21   Molecular structure of ompF, a porin channel found in the outer membrane of the E. coli bacterium. 
This projection along the length of the channel shows the threefold symmetry of the trimer. Several ionized amino 
acids in the constriction region of each pore are highlighted.
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Experimentally, the electrical and physiological properties of ion channels can be measured by inserting 
the channel into a lipid bilayer (membrane) and solvating the channel/membrane in an electrolyte 
solution. An electrochemical gradient is established across the membrane by immersing electrodes and 
using different concentrations of salt in the baths on either side of the membrane.

11.5.1 Hierarchical Approach to Modeling Ion Channels

Detailed simulation of ion transport in protein channels is very challenging because of the disparate 
spatial and temporal scales involved. A suitable model hierarchy is desirable to address different simulation 
needs. Continuum models, based on the drift-diffusion equations for charge flow, are the fastest approach; 
but they require large grids and extensive memory to resolve the three-dimensional channel geometry. 
Ion traversal of the channel is a very rare event on the usual time scale of devices, and the flow is actually 
a granular process. Continuum models, therefore, are useful mainly to probe the steady-state of the 
system. We suppose the system to be ergodic. At a given point in the simulation domain, the steady-state 
ion concentration represents the probability of ion occupation at that position, averaged over very long 
times or, equivalently, averaged over many identical channels at any given instant. Despite some limita-
tions, continuum models can be parameterized to match current-voltage characteristics by specifying a 
suitable space and/or energy-dependent diffusion coefficient, which accounts for the ions’ interactions 
with the local environment.

A step above in the hierarchy we find particle models, where the trajectories of individual ions are 
computed. The simpler model is based on a Brownian Dynamics description of ion flow, in which ion 
trajectories evolve according to the Langevin Equation. Ions move in the local electric field, calculated 
from all the charges in the system as well as any externally applied fields. The energy dissipated via ion-
water scattering is modeled by including a simple frictional term in the equation of motion, while the 
randomizing effect of the scattering is accounted for by including a zero-mean Gaussian noise term.79 

Ionic core repulsion can also be included by adding a suitable repulsive term (e.g., Lennard–Jones) to 
the total force acting on the ion. When the latter is neglected, the simulation is equivalent to a discrete 
version of the drift-diffusion model.80 If the ion motion is assumed to be strongly overdamped, relatively 
long time steps can be used (e.g., picoseconds), making this a very practical approach.

At the next level in the hierarchy are particle models, where the ion flow is resolved with a self-consistent 
transient, following Monte Carlo or MD approaches, as they are known in semiconductor device simu-
lation. MD simulations resolve the motion and forces among all particles, both free (ions and water 
molecules) and bound (e.g., protein atoms) in the system. Bound particles are modeled as charged balls 
connected by springs (chemical bonds). The entire system is brought to a simulated experimental 
temperature and then equilibrated by allowing the system to evolve according to Newtonian mechanics.81 

While this methodology is the most complete, due to the extreme computational costs involved, it can 
only be applied today to very small systems on very short time scales of simulation. Monte Carlo methods, 
originally developed for semiconductor device simulation, provide a more practical compromise. Water 
and protein are treated as a background dielectric medium, as is done with Brownian Dynamics, and 
only the individual ion trajectories are resolved. The key difference between Brownian Dynamics and 
Monte Carlo techniques lies in the way the ion dynamics are handled. In Monte Carlo models the ion 
trajectories evolve according to Newtonian mechanics; but individual ion-water collision interactions are 
replaced with an appropriate scattering model, which is resolved on the natural time scales of the 
problem.82 In the limit of high friction, both approaches should give the same result.

11.5.2 Drift-Diffusion Models

Drift-diffusion models are useful for studying ion transport in open-channel systems over time scales 
that cannot be resolved practically by detailed particle models. Water, protein, and membrane are treated 
as uniform background media with specific dielectric constants; and the macroscopic ion current in the 
water is resolved by assigning an appropriate space or energy-dependent mobility and diffusion coefficient 
© 2003 by CRC Press LLC
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to each ionic species. The solution of Poisson’s equation over the entire domain provides a simple way 
to include external boundary conditions and image force effects at dielectric discontinuities. Complete 
three-dimensional models of flow in ionic channels can be implemented with the established tools of 
semiconductor device simulation.

In order to define the various regions of the computational domain, the molecular structure of the 
protein must be mapped onto a grid. Protein structures are known with atomic resolution for a number 
of important channels, but considerable processing is still necessary to determine the charge and the 
dielectric permittivity distribution corresponding to the individual molecular components. With this 
information, one can assemble a grid defining the boundaries between water and protein, as illustrated 
in Figure 11.22. The current density j± arising from the flow of ions down the electrochemical gradient 
in the aqueous region of the domain is given by the drift-diffusion equation:

where ρ± are the ionic charge densities and µ± and D± are, respectively, the mobilities and diffusion 
coefficients of each ionic species. For the purposes of this discussion, we restrict ourselves to systems 
with only two ionic species of opposite charge, but the same treatment can be extended to allow for 
multiple ionic species by including a drift-diffusion equation for each additional species. Conservation 
of charge is enforced by a continuity equation for each species, given by

The term S± is set to zero for simple transport simulation, but it can be set to any functional form to 
describe higher order effects, such as the details of ion binding and other chemical phenomena that 
populate or deplete the ion densities. The electrostatic potential ϕ is described by Poisson’s Equation:

where ρfixed represents the density of fixed charge residing within and on the surface of the protein. When 
solved simultaneously, this system of coupled equations provides a self-consistent description of ion flow 
in the channel. The equations are discretized on the grid and solved iteratively for steady-state conditions, 

FIGURE 11.22  Mesh representation of the ompF trimer in situ in a membrane, immersed in a solution of potassium 
chloride — longitudinal and cross-sectional slices through the three-dimensional computational domain generated 
on a uniform rectilinear grid (1.5Å spacing). Electrodes immersed in the baths maintain a fixed bias across the 
channel/membrane system.
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subject to specific boundary conditions for applied potential and for ionic solution concentrations in 
the baths at the ends of the channel. In a typical semiconductor device, the mobile charge in the contacts 
is originated by fixed ionized dopants. In an ion-channel system, the salt concentration in the electrolyte 
far from the protein determines the density of mobile ionic charges, which, from an electrical point of 
view, behave similarly to the intrinsic electron/hole concentrations in an undoped semiconductor at a 
given temperature.

11.5.2.1 Application of the Drift-Diffusion Model to Real Ion Channels

Complete three-dimensional drift-diffusion models have been implemented using the computational plat-
form PROPHET83 and used to study transport in ion channels like gramicidin and porin, for which detailed 
structure and conductivity measurements are available. Porin in particular presents a very challenging 
problem because, as shown in Figure 11.21, the channel is a trimer consisting of three identical parallel 
channels, connected through a common anti-chamber region. Memory requirements for continuum sim-
ulations of porin are currently at the limit of available workstation resources; however, simulations are now 
performed routinely on distributed shared memory machines. Figure 11.23 compares the current–voltage 
curves computed with a three-dimensional drift-diffusion simulation with those measured experimentally.84

These results were generated in approximately 8 hours on an SGI origin2000.

11.5.3 Monte Carlo Simulations

The Monte Carlo simulation technique, as it is known in the tradition of semiconductor device simula-
tion, can be coupled with a particle-mesh model to provide a self-consistent, time-resolved picture of 
ion dynamics in a channel system.82,85 The starting point is the grid, which defines the regions accessible 
to ions as well as the dielectric topography of the system. In reality the boundaries between aqueous, 
protein, and membrane regions are not static but move over atomic length scales due to the thermal 
fluctuations of the atoms of the protein. Such fluctuations, which are resolved in MD simulations, are 
ignored in Monte Carlo simulations (although in principle they could be included).

11.5.3.1 Resolving Single-Ion Dynamics

Ions are distributed throughout the aqueous region according to a given initial concentration profile. 
The charge of each mobile ion, and of each static charge within the protein, is interpolated to the grid 
using a prescribed weighting scheme to construct a charge density at the discrete grid points. The 

FIGURE 11.23   Comparison of measured and computed current–voltage curves for ompF in 100 mM potassium 
chloride, assuming a spatially dependent diffusion coefficient and a spatially uniform diffusion coefficient.
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electrostatic field due to the charge density distribution, as well as any externally applied field, is found 
by solving Poisson’s equation on the grid. The field at the grid points is interpolated back to the ion 
positions and used to move the ions forward in time by integrating Newton’s Second Law over small 
time steps. At the end of the time step, the new ion positions are used to recalculate a new charge density 
distribution and hence a new field to advance the ions over the next timestep. This cycle is iterated either 
until a steady-state is reached or until quantities of interest (e.g., diffusion coefficient) have been calcu-
lated. The effects of ion volume can also be incorporated by including an ionic core repulsive term in 
the force, acting on each ion as is done in Brownian Dynamics.

11.5.3.2 Modeling Ion-Water Interactions

Ion motion is treated as a sequence of free flights interrupted by collisions with water molecules, which 
are modeled by assuming a particular ion-water scattering rate ν(Eion(t)), generally a function of ion 
energy. The scattering rate represents the average number of collisions per unit time that an ion would 
experience if it maintained a constant energy. The probability for an ion to travel for a time t without 
scattering is given by

The probability density function (probability per unit time) for a flight to have duration t is given by

p(t) = ν(Eion(t))P(t)

Ion flight times can be randomly selected from the probability density function by integrating the latter 
over the (unknown) flight time Tf and equating the integral to a uniformly distributed random number 
r on the unit interval. Thus,

The integral on the right-hand side is trivial only for constant scattering rates, but in general it cannot 
be performed analytically. A number of methods have been introduced to solve the integral; an extended 
discussion is given at the Internet location given in Reference 82.

11.6 Conclusions

The combination of a three-dimensional drift-diffusion and three-dimensional Monte Carlo approach 
provides the essential hierarchy for looking at biological systems from the point of view of device-like 
applications. There are, however, significant differences between solid-state devices and biological sys-
tems, which require different choices in the definition of a Monte Carlo simulation strategy. In a typical 
device, the ensemble must include many thousands of particles; but a reasonable steady-state is reached 
after several picoseconds of simulation (on the order of ten to twenty thousand time steps). In a practical 
simulation domain for a biological channel, only a very small number of ions is present in the system; 
but because the ion traversal of the channel is a rare event, measurable current levels can only be 
established by extending the simulation to the millisecond range. Because the number of time steps 
required to resolve ion dynamics is typically on the order of tens of femtoseconds, this would require a 
number of iteration steps on the order of 1012, which is still extremely expensive. For a fully self-consistent 
simulation, the solution of Poisson’s Equation in three-dimensions presents the real bottleneck, while 
the computational cost of resolving the few particle trajectories is minimal. Alternative schemes for 
evaluating the electrostatic potential self-consistently include precalculating the potential for various ion 
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pair configurations, storing the results in look-up tables, and employing the superposition principle to 
reconstruct the potential at the desired point by interpolating between table entries.86 A prototype Monte 
Carlo simulation of sodium chloride transport in the gramicidin channel has been successfully imple-
mented,87 adapting the grid developed for the continuum simulations, as shown in Figure 11.24. For this 
simulation Poisson’s Equation is solved approximately every 10 time steps using an accurate conjugate 
gradient method.
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