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The Coulomb Hamiltonian of a small-radius exciton on a cluster whose
atoms occupy the sites of a group lattice is studied. The spectrum of
Frenkel excitons can be obtained analytically for definite modes by the
methods of harmonic analysis of the lattice Hamiltonian. The carbon
cluster C60 with icosahedral symmetry is given as an example.
© 1998 American Institute of Physics.@S0021-3640~98!01119-0#

PACS numbers: 71.35.Aa, 61.46.1w, 61.48.1c

This letter presents a method for calculating the spectrum of small-radius exc
~Frenkel excitons1! in atomic clusters whose atoms occupy the sites of a two-dimensi
group lattice. The importance of this problem is due to, on the one hand, the
progress made in the synthesis of different nonmetallic clusters of carbon, silico
trides, and other materials and, on the other hand, the fact that the investigation
physical properties of these quantum objects requires a theory going beyond the s
electron approximation. Different theoretical estimates made primarily in the Hub
model, and also various experimental data obtained for the intensively investigated
ter C60, attest to the need to take into account the Coulomb interaction betwee
electrons of a cluster. The adequate incorporation of this interaction is still an uns
problem.

Quantum-size effects are manifested in most nonmetallic clusters in that an e
gap exists between the occupied and unoccupied discrete cluster levels and op
allowed transitions occur with excitation of an electron–hole pair, possessing a d
moment, through the gap. An important manifestation of the Coulomb interaction o
carriers is renormalization of the frequency of such a transition as a result of the bi
of carriers into an exciton. We note that the structure of the clusters is such tha
carrier motion on a closed curved surface is quasi-two-dimensional.2 Depending on the
ratio of the kinetic energy of the carriers and the Coulomb interaction energy, diffe
theoretical models are used to describe an exciton. If an electron–hole pair is str
localized on a lattice site~i.e., its kinetic energy is low!, a Frenkel exciton is formed,3 in
contrast the more common situation occurring in bulk semiconductor materials, whe
Coulomb interaction is strongly weakened by dielectric screening and a large-r
exciton arises4 ~Wannier–Mott exciton!. In clusters the kinetic energy of the carriers c
6060021-3640/98/68(7)/5/$15.00 © 1998 American Institute of Physics
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be low because of the low two-dimensional electron density on the surface of the cl
while the Coulomb energy is fixed, since the distance between the carriers doe
exceed the size of the cluster. Thus, the condition for the existence of asmall-radius
excitoncan be satisfied. In the present letter we present a method for diagonalizin
Hamiltonian of a Frenkel exciton on a group lattice of various structure of cluster
semiconductor materials. As already mentioned, experimental data exist for full
C60, so that this icosahedral carbon cluster will be studied as an illustrative example~see,
also Refs. 5 and 6!. The final group lattice is defined as a lattice each of whose sites
be obtained from an initial site by a definite rotation from a point group gi
beforehand.7 It is natural to assign to the initial site the group identity elemente. In the
case of C60 these rotations carry a truncated icosahedron into itself~details can be found
in Refs. 4–6!. All sites of the group lattice are equivalent and possessz bonds with
nearest neighbors. The numberz is determined by the number of group elements form

We shall proceed from the condition that the electrons are strongly localize
sites, so that an atom in an excited state remains neutral. We assume the excitation
to be small compared with the atomic energy. This makes it possible to study trans
only between the nearest levels. We are interested primarily in an optical tran
associated with a change in the parity of the electron wave function, specificas
→p. The Coulomb interaction of excited atoms is determined in the first nonvanis
order3 by the dipole–dipole term~we recall that excitation preserves the electrical n
trality of the atom!:

V5
1

2 ( 8
g,g8

1

r 3~g,g8!
@Pg•Pg823~Pg•e~g,g8!!~Pg8•e~g,g8!!#, ~1!

wherePg andPg8 are the dipole moments of the sitesg andg8; r (g,g8) is the distance
between the sites;e(g,g8)5r (g,g8)/ur (g,g8)u; and, the prime on the sum means that t
summation extends over overgÞg8. In the second-quantized representation the ene
can be written in terms of the creation and annihilation operators of dipole excitation
the sites. One should remember that in our case of an excitation from a levels to a level
p the electron wave function has three components, while the wave function o
electron–hole excitation, having three mutually perpendicular polarization directions
polar vector. As a result of this, the components of the excitation creation and ann
tion operators have the formpi

†(g)5ai
†(g)d†(g), whereai

†(g) and d†(g) are electron
and hole creation operators at the siteg. The Coulomb part of the Hamiltonian operat
has the form

V̂5
1

2 ( 8
g,g8

1

r 3~g,g8!
p†~g!• t̂~g,g8!• p~g8!, ~2!

where the angular part of the dipole–dipole interaction operator,t̂(g,g8), depends only
on the directions to interacting atoms located at the sitesg andg8, and it does not depend
on the distance between the sites and can be represented by a traceless antisy
tensor of rank 2:

t~g,g8! i j 5d i j 23e~g,g8! ie~g,g8! j , ~3!
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whered i j is the Kronecker delta. The distance dependence of expression~2! is separated
into the cofactorr 23(g,g8).

We have already assumed the excitation to be strongly localized. Therefore
natural to take account of the interaction of nearest neighbors only. It is convenie
characterize the neighboring sites of a chosen site by corresponding rotations fro
group of the lattice. We denote the neighbors of the siteg asbg, whereb is one ofz
group operators. It follows from the group properties that this set is identical for all
~in the case of C60 there are three rotations$C5 , C5

21 , C2%).
8 To investigate the sum~2!

it is convenient to switch from the laboratory coordinate system tied to the basise
defined above to local coordinate systems~LCSs! tied to an arbitrary site. This will make
it possible to simplify the expression by separating in the operatort the part that is
invariant under the group rotations. For the specific example of the lattice of the i
hedral C60 cluster it is convenient to introduce the LCS as follows9 ~see Fig. 1!: Orient
thez axis from the site radially away from the cluster; orient they axis in a plane passing
through thez axis and an edge connecting two hexagons; and, define thex axis by the
producty3z. For this choice the transition from the LCS at the siteg of the cluster to the
LCS at the siteg8 is evidently given by the rotationD̂ (T)(g8g21), which transfers the
first site into the second site. We denote the rotation of the laboratory coordinate s
in the LCS at the siteg asD̂ (T)(g21). Then the operator creating a dipole at the siteg,
given in the LCS tied to it, is given bypgi

† 5Di j
(T)(g21)pj

†(g).

The Coulomb part of the Hamiltonian in the LCS acquires the form~we temporarily
drop the indices corresponding to the polarization of the excitation!

V5
1

2 (
g,b

1

r b
3

pg
† @D̂ ~T!~g21!#† t̂~g,bg! D̂ ~T!~ @bg#21! pbg5

1

2 (
g,b

1

r b
3

pg
† t̂b pbg . ~4!

For generality we retain the difference in the bond lengths,r b , for the nearest neighbors
One can see that the operatort̂b depends only on the rotationb fixing the pair of
neighbors, and it does not depend on the specific position of a pair of sites in the c
Therefore expression~4! can be put into the maximally compact form by a harmo
expansion over a group~see below!.

FIG. 1. Diagram showing the construction of local coordinate systems for a C60 cluster. The local axesx(g) and
y(g) are shown for the base siteg5e and three nearest neighborsg85b i . Thez axes at each site are directe
in a radial direction.
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The components of the matrixtb in explicit form are:

tb i j 5@D ~T!~b21!23~D ~T!~g!eg,bg
! ^ ~D ~T!~bg!eg,bg

!# i j

5D ~T!~b21! i j 23
~D ~T!~e! i32D ~T!~b21! i3!~D ~T!~b21!3 j2D ~T!~e!3 j !

uD ~T!~e! i32D ~T!~b21! i3u2
, ~5!

whereD (T)(e) denotes the identity rotation. To find the eigenstates of the Hamilto
~4! it is necessary to solve a secular equation of order 3N, whereN is the number of
atoms in the cluster~for C60, of the order of 33605180), which makes it difficult to
obtain an analytical solution.

We now use the symmetry properties of the Hamiltonian and switch in Eq.~4! from
a sum over lattice sites to a sum over irreducible representations~IRs! of this group. For
this we expand the components of the dipole excitation creation operatorpgi

† over all IRs

contained in the regular representation of the group. In what follows, unless indi
explicitly, summation over repeated indices is assumed:

pi
†~g!5ai

†~g!d†~g!5D*
n1m1

~a1!
~g!ai ;n1m1

†~a1! D*
n2m2

~a2!
~g!dn2m2

†~a2! , ~6!

whereDi j
(a)(g) are the Wigner matrices for the IRa and the group elementg, and the

creation operators on the right-hand side of the equation create an electron~hole! in the
symmetry state of the IRa. Switching to the coupled basis for the electron–hole ex
tation creation operator and transforming the product of Wigner matrices, we obta

pi
†~g!5Cn1m1 ,n2m2 ,k1 ,k2

a1 ,a2 ,g ai ;n1m1

†~a1! dn2m2

†~a2!D* k1k2

~g! ~g!5D* k1k2

~g! ~g!pi ;k1k2

†~g! , ~7!

where pi ;k1k2

†(g) is by definition the creation operator of an exciton in the IRg, while

Cn1m1 ,n2m2 ,k1 ,k2

a,b,g are the Clebsch–Gordan coefficients for intercoupling the correspon

representations.10 Substituting the excitonic creation and annihilation operators~7! into
the Coulomb Hamiltonian~4!, expanding the rotation operatorD̂ (g)(bg) into a product of
the corresponding rotation operators forb and g, and summing over the group lattic
using the orthogonality relations for unitary transformations, we obtain the final form
the Coulomb Hamiltonian

H01V5H01
1

2 (
b

1

r b
3(g

pi ;k,n
†~g! tb i j Dmk

~g!~b!pj ;m,n
~g! . ~8!

One can see that the dipole interaction matrix in this expression is a direct product
operatort̂b , which depends only on the group elementb fixing the pair of interacting
dipoles, and the rotation matrix of this element, given in one of the IRs. Thus, inste
a secular equation of dimension 3N we now need to solve a set of identical equatio
with the dimensions 3n, wheren is the dimension of the corresponding IR, i.e., 3, 9, 1
and 15 for C60. This made it possible to find analytical solutions for some modes of
system.5,6 An important feature of our method is the possibility of performing a symm
try analysis of the desired two-particle excitations, since the form of the correspondi
determines uniquely the possibility of constructing a nonzero matrix element bet
this excited state and the ground~completely symmetric! state of a cluster for any exci
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tation potential. This makes it possible to solve the problem only for the modes of int
to us, for example, for the five dipole-active modesT1u in the case of C60 ~Ref. 5!.

We have presented a method for systematically calculating the spectrum o
Coulomb Hamiltonian given on the lattice of a regular polyhedral cluster, the symm
group of whose lattice makes it possible to use the method of harmonic analysis
matrix of the Coulomb interaction and switch from the initial coordinate representatio
the space of irreducible representations of the given group lattice. Diagonalization
Hamiltonian, obtained in the Frenkel exciton approximation, in the space of elect
hole excitations makes it possible to classify the states by symmetry and also giv
spectrum and wave functions of the two-particle modes of a system where the Cou
energy is much greater than the kinetic energy of the carriers.
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