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The Coulomb Hamiltonian of a small-radius exciton on a cluster whose
atoms occupy the sites of a group lattice is studied. The spectrum of
Frenkel excitons can be obtained analytically for definite modes by the
methods of harmonic analysis of the lattice Hamiltonian. The carbon
cluster Gy with icosahedral symmetry is given as an example.
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This letter presents a method for calculating the spectrum of small-radius excitons
(Frenkel excitony in atomic clusters whose atoms occupy the sites of a two-dimensional
group lattice. The importance of this problem is due to, on the one hand, the latest
progress made in the synthesis of different nonmetallic clusters of carbon, silicon, ni-
trides, and other materials and, on the other hand, the fact that the investigation of the
physical properties of these quantum objects requires a theory going beyond the single-
electron approximation. Different theoretical estimates made primarily in the Hubbard
model, and also various experimental data obtained for the intensively investigated clus-
ter G, attest to the need to take into account the Coulomb interaction between the
electrons of a cluster. The adequate incorporation of this interaction is still an unsolved
problem.

Quantum-size effects are manifested in most nonmetallic clusters in that an energy
gap exists between the occupied and unoccupied discrete cluster levels and optically
allowed transitions occur with excitation of an electron—hole pair, possessing a dipole
moment, through the gap. An important manifestation of the Coulomb interaction of the
carriers is renormalization of the frequency of such a transition as a result of the binding
of carriers into an exciton. We note that the structure of the clusters is such that the
carrier motion on a closed curved surface is quasi-two-dimensfabepending on the
ratio of the kinetic energy of the carriers and the Coulomb interaction energy, different
theoretical models are used to describe an exciton. If an electron—hole pair is strongly
localized on a lattice sité.e., its kinetic energy is loyy a Frenkel exciton is formetiin
contrast the more common situation occurring in bulk semiconductor materials, where the
Coulomb interaction is strongly weakened by dielectric screening and a large-radius
exciton arise(Wannier—Mott exciton In clusters the kinetic energy of the carriers can
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be low because of the low two-dimensional electron density on the surface of the cluster,
while the Coulomb energy is fixed, since the distance between the carriers does not
exceed the size of the cluster. Thus, the condition for the existencesofal-radius
excitoncan be satisfied. In the present letter we present a method for diagonalizing the
Hamiltonian of a Frenkel exciton on a group lattice of various structure of clusters of
semiconductor materials. As already mentioned, experimental data exist for fullerene
Cso, SO that this icosahedral carbon cluster will be studied as an illustrative exéeple

also Refs. 5 and)6 The final group lattice is defined as a lattice each of whose sites can
be obtained from an initial site by a definite rotation from a point group given
beforehand.lt is natural to assign to the initial site the group identity elenenin the

case of (g these rotations carry a truncated icosahedron into itdelfails can be found

in Refs. 4—6. All sites of the group lattice are equivalent and posses®nds with
nearest neighbors. The numles determined by the number of group elements formed.

We shall proceed from the condition that the electrons are strongly localized on
sites, so that an atom in an excited state remains neutral. We assume the excitation energy
to be small compared with the atomic energy. This makes it possible to study transitions
only between the nearest levels. We are interested primarily in an optical transition
associated with a change in the parity of the electron wave function, specifisally,
—p. The Coulomb interaction of excited atoms is determined in the first nonvanishing
order by the dipole—dipole terntwe recall that excitation preserves the electrical neu-
trality of the aton):

V=32 g g PP 3Preaa N ) M
_Zg,g’ r3(g,g’)[ 9 Py’ ( g-e(g,g ( g,.e(g’g ],

wherePy andP,, are the dipole moments of the sitgsandg’; r(g,g’) is the distance
between the siteg(g,9’)=r(g,9')/|r(9.9")|; and, the prime on the sum means that the
summation extends over ovgr-g’. In the second-quantized representation the energy
can be written in terms of the creation and annihilation operators of dipole excitations on
the sites. One should remember that in our case of an excitation from aslevallevel

p the electron wave function has three components, while the wave function of the
electron—hole excitation, having three mutually perpendicular polarization directions, is a
polar vector. As a result of this, the components of the excitation creation and annihila-
tion operators have the formT(g)za?(g)dT(g), WhereaiT(g) andd’(g) are electron

and hole creation operators at the gjteThe Coulomb part of the Hamiltonian operator
has the form

Cle, 1 .
V=3 2" 5——p'(9)- (9.9") p(g"), (2)
g

o r¥g.9)
where the angular part of the dipole—dipole interaction operé((gr,,g’), depends only
on the directions to interacting atoms located at the gitmsdg’, and it does not depend

on the distance between the sites and can be represented by a traceless antisymmetric
tensor of rank 2:

7(9,9')ij = 6;j—3€(9,9")i€(9,9"); , (3
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FIG. 1. Diagram showing the construction of local coordinate systems fgg e@ter. The local axes(g) and
y(g) are shown for the base site=e and three nearest neighb@’s= 3; . Thez axes at each site are directed
in a radial direction.

whered;; is the Kronecker delta. The distance dependence of expre&iamseparated
into the cofactor ~3(g,g’).

We have already assumed the excitation to be strongly localized. Therefore it is
natural to take account of the interaction of nearest neighbors only. It is convenient to
characterize the neighboring sites of a chosen site by corresponding rotations from the
group of the lattice. We denote the neighbors of the gitess 8g, whereg is one ofz
group operators. It follows from the group properties that this set is identical for all sites
(in the case of g there are three rotatiod€s, Cgl, C,}).2 To investigate the sur?)
it is convenient to switch from the laboratory coordinate system tied to the basis site
defined above to local coordinate systein€Ss9 tied to an arbitrary site. This will make
it possible to simplify the expression by separating in the operattite part that is
invariant under the group rotations. For the specific example of the lattice of the icosa-
hedral G, cluster it is convenient to introduce the LCS as folldWsee Fig. 1: Orient
thez axis from the site radially away from the cluster; orient yhaxis in a plane passing
through thez axis and an edge connecting two hexagons; and, defing #xés by the
producty X z. For this choice the transition from the LCS at the gjtaf the cluster to the
LCS at the siteg’ is evidently given by the rotatio®(™(g’g~1), which transfers the
first site into the second site. We denote the rotation of the laboratory coordinate system
in the LCS at the sitg aslim(g‘l). Then the operator creating a dipole at the gite

given in the LCS tied to it, is given bpgizDi(jT)(gfl)pjT(g).

The Coulomb part of the Hamiltonian in the LCS acquires the fomm temporarily
drop the indices corresponding to the polarization of the excitation

1 1 ~ “ N 1 1 ..

V=52 5pg[DM (g N1 7(9.80) DTAAY Y Pag=5 2 5Py TPag- (4)
B B

For generality we retain the difference in the bond lengts,for the nearest neighbors.
One can see that the operat%,g depends only on the rotatiog fixing the pair of
neighbors, and it does not depend on the specific position of a pair of sites in the cluster.
Therefore expressiofd) can be put into the maximally compact form by a harmonic
expansion over a groufsee below.
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The components of the matrix; in explicit form are:
75 =[D V(B ~3(DT(g)ey 5 )@ (D T(BY)ey )]

L (DT(e)i3= DB i) (DT (B )5 —D(e)s)
=pM y. 3 ] :
D (B )u |D(T)(E)i3_D(T)(,3_1)i3|2 ) (5)

whereD(M(e) denotes the identity rotation. To find the eigenstates of the Hamiltonian
(4) it is necessary to solve a secular equation of orddr @hereN is the number of
atoms in the clustetfor Cgy, of the order of 3 60=180), which makes it difficult to
obtain an analytical solution.

We now use the symmetry properties of the Hamiltonian and switch irfi4Edrom
a sum over lattice sites to a sum over irreducible representatiBssof this group. For
this we expand the components of the dipole excitation creation opepfg';i\tover all IRs

contained in the regular representation of the group. In what follows, unless indicated
explicitly, summation over repeated indices is assumed:
Troy— At o) — p* (@) tlag) qyx(ap) T(ap)

pi(9)=ai(9)d'(g)=D* 1 (9)a;, r D*, 7 (9)d, >, 6)
whereDi(j“)(g) are the Wigner matrices for the IR and the group element, and the
creation operators on the right-hand side of the equation create an el@utienin the
symmetry state of the IR. Switching to the coupled basis for the electron—hole exci-
tation creation operator and transforming the product of Wigner matrices, we obtain

Tra)— 12, Y tlay) gt(e)yx(y) —_pn* ()
pi(g)_C”1m1'”2m2'klvkzaiinlmldnzmzD klkz(g)_D klkz(g)pi?klkz’ (7)

where p/{) is by definition the creation operator of an exciton in the ¥R while
gﬁfynzmzqklykz are the Clebsch—Gordan coefficients for intercoupling the corresponding

representationg). Substituting the excitonic creation and annihilation operat@ysnto

the Coulomb Hamiltoniafd), expanding the rotation operatf)ﬁy)(ﬁg) into a product of

the corresponding rotation operators f@rand g, and summing over the group lattice

using the orthogonality relations for unitary transformations, we obtain the final form of
the Coulomb Hamiltonian

1 1
HotV=Hot 5 2, 52 piiars DRk A)P| - ®
B Y

One can see that the dipole interaction matrix in this expression is a direct product of the
operator?-ﬁ, which depends only on the group elemghfixing the pair of interacting
dipoles, and the rotation matrix of this element, given in one of the IRs. Thus, instead of
a secular equation of dimensiomN3ve now need to solve a set of identical equations
with the dimensions B, wheren is the dimension of the corresponding IR, i.e., 3, 9, 12,
and 15 for Gg. This made it possible to find analytical solutions for some modes of the
systen™® An important feature of our method is the possibility of performing a symme-
try analysis of the desired two-particle excitations, since the form of the corresponding IR
determines uniquely the possibility of constructing a nonzero matrix element between
this excited state and the groufmbmpletely symmetricstate of a cluster for any exci-



610 JETP Lett., Vol. 68, No. 7, 10 Oct. 1998 V. V. Rotkin and S. F. Kharlapenko

tation potential. This makes it possible to solve the problem only for the modes of interest
to us, for example, for the five dipole-active modes, in the case of &, (Ref. 5.

We have presented a method for systematically calculating the spectrum of the
Coulomb Hamiltonian given on the lattice of a regular polyhedral cluster, the symmetry
group of whose lattice makes it possible to use the method of harmonic analysis of the
matrix of the Coulomb interaction and switch from the initial coordinate representation to
the space of irreducible representations of the given group lattice. Diagonalization of the
Hamiltonian, obtained in the Frenkel exciton approximation, in the space of electron—
hole excitations makes it possible to classify the states by symmetry and also gives the
spectrum and wave functions of the two-particle modes of a system where the Coulomb
energy is much greater than the kinetic energy of the carriers.
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