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Within the framework of a quantum mechanical model, the polarization component of the energy of cohesion
of an ionized DNA molecule to the surface of a nanotube has been calculated. Neglecting the polarization of
the DNA, and in the absence of external screening, the binding energy is ~0.47 eV per elementary charge. The
effective nanotube screening parameter is ~2 and cannot be reduced to classical expressions for metallic and

dielectric screening.
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1. INTRODUCTION

Our study deals with the nature of binding between
a single-wall carbon nanotube and DNA that makes a
periodic spiral wrap around the surface of the cylinder
of the nanotube. The experimental data confirming for-
mation of such complexes may be found in a number of
papers [1-3]. At present, it is accepted that the binding
of the complex is noncovalent. It is established that
there exists a van der Waals component of the cohesion
energy of the complex. The conformational (entropic)
contribution to the free energy is also studied. Taking
into account the hydrophobic nature of the DNA mac-
romolecule is also essential for understanding the phys-
ics of the complex formation. However, there is another
important component of the cohesion energy that is
noncovalent but cannot be reduced to any of the above
components, and this is the energy of the polarization
interaction.

The polarization interaction appears in complexes
of DNA with highly polarizable substrates, because the
backbone of the DNA molecule possesses substantial
charge density in solution [4]. The ionization of phos-
phate groups between bases of single—stranded DNA
results in the DNA having a one dimensional charge
density ~e/7 A, neglecting compensation due to coun-
terions in solution. This charge decreases when includ-
ing the counterion contribution and polarization of the
solvent, which may be addressed phenomenologically
by changing the elementary charge to a smaller effec-
tive charge, e — e*.

Calculation of the polarization interaction is a more
complex problem than calculation of any of the afore-
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mentioned components of cohesion energy, which do
not require knowledge of the microscopic electronic
structure of the complex. The calculation of the polar-
ization interaction in principle must self-consistently
take into account evolution of the Hamiltonian of the
system during complex formation. In this paper, we
present the simplest approach to solving the problem;
namely, we use the geometry of the complex obtained
by the molecular dynamics method with force con-
stants parameterized without specifics of the polariza-
tion interaction and construct the Hamiltonian of the
system with the “frozen” coordinates of the atoms.
Moreover, we assume that the polarization of the elec-
tronic subsystem of the DNA molecule is much weaker
than the polarization of the electronic subsystem of the
nanotube and neglect the former compared to the latter.
This approximation is valid because all valence elec-
trons of the single-wall nanotube are divided into two
classes, the sigma electron subsystem and the pi elec-
tron subsystem, forming rigid covalent bonds of the
nanotube framework and forming a highly polarizable
electron shell around it, respectively. In graphitic struc-
tures, the pi electron subsystem has one of the highest
molecular polarizabilities, close to that of metal with
the density of states 4/mth Vg, where Vi = 10% cm/s is the
Fermi velocity in the nanotube.

The polarization interaction is associated with the
rearrangement of the nanotube electronic density in
response to the perturbing electrostatic potential of the
spiral “wrap” of the DNA around it. The classical
model of the electrostatic interaction of point charges
and their images in a metal or dielectric cylinder was
used to estimate the polarization interaction in [5]. The
main problem is to take into account the essential
anisotropy of the nanotube dielectric function and its
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nonlocality. The anisotropy appears at the macroscopic
level as the existence of essentially different longitudi-
nal and transverse dielectric constants in the response
tensor, especially for metallic nanotubes in which the
longitudinal dielectric constant diverges with increas-
ing the length of the nanotube segment. An even more
complex problem is to take into account the nonlocality
of the nanotube response function. To date, there is no
general solution to the problem of the nanotube dielec-
tric function. The dielectric function changes the nature
of screening, which is one dimensional (in the long
wavelength limit) and two dimensional (in the short
wavelength limit) [6-9].

In this work, we calculate the exact nanotube
response function within the framework of a semiem-
pirical model for each specific choice of the perturba-
tion potential. This work uses a quantum mechanical
approach to analyze the polarization response of a nan-
otube to a perturbation of spiral symmetry.

With high accuracy, the electronic subsystem of an
isolated nanotube may be computed by the tight bind-
ing method. This semiempirical approach, which is a
variant of the method of linear combination of atomic
orbitals, is a compromise for numerical computations,
because the perturbation potential as shown below is a
sufficiently smooth function of the coordinates on the
surface of the nanotube, and its numerical value is small
compared to the atomic scale. In this case, the perturba-
tion-induced variation of the atomic orbitals can be
neglected, and the envelopes of the wave functions
allow estimation of the density matrix and calculation
of all basic properties of the electronic subsystem.

2. MODEL DESCRIPTION

The specific choice of the tight binding Hamiltonian
and its parameterization follow previous work [10]:

= Y vaia;, (1)
ij

where v = 2.9 eV is the hopping integral (characteristic
energy scale of the model) and the sum is taken over all
nearest neighbors in the nanotube lattice. The tight
binding Hamiltonian in the nearest neighbor approxi-
mation is the simplest quantum mechanical model that
reproduces the electronic spectrum of the nanotube and
allows analytical solution for specific cases (the quali-
tative symmetry analysis of the helical perturbation of
the electronic subsystem of the armchair nanotube was
given in [11] in the framework of perturbation theory).
In this work, the perturbation operator is chosen as

S N N
V=YViaja =Y eo“(i)aa; ()
i i

where the sum with respect to i runs over all atoms of
the unit cell of the complex and the acting electrostatic
potential at the lattice site, ¢, must be calculated in a
self-consistent way. Choice of the unit cell of the com-
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Fig. 1. Charge density induced on the surface of the [7, 0]
zigzag nanotube in response to the potential of the phos-
phate groups of the DNA wrapped around the nanotube
(gradient from gray to white/black corresponds to increas-
ing positive/negative charge). Three unit cells are shown
unfolded onto a plane.

plex is a nontrivial problem; a commensurate one-
dimensional periodic structure of the complex does not
exist for every (helically symmetric) DNA potential
and given nanotube symmetry. The nanotube lattice
itself may possess spiral symmetry incommensurate
with the DNA. All of these issues require special con-
sideration and have not been included in this work in
which we consider only a commensurate structure of
the complex where the nanotube is not chiral and the
angle of the DNA wrap is chosen such that one wind (or
more winds) covers an integer number of nanotube lat-
tice constants. In particular, the results presented below
were obtained for the complex of DNA with the zigzag
nanotube [7, 0], with the lattice constant (along the axis
of the nanotube cylinder) a = 4.31 A and the unit cell
length of the complex 6a = 25.88 A (one wind of the
DNA covers a single unit cell with the length of six lat-
tice constants of the nanotube, see Fig. 1).

We also consider other complexes that exhibit simi-
lar response to the external perturbation. The perturba-
tion potential is computed so as it would be produced
by static point charges placed at the equilibrium posi-
tions of the phosphorus atoms between the bases of the
DNA macromolecule. We idealize the actual charge
distribution of the DNA using the effective potential ¢
induced by a chain of point charges e*. All charges are
placed equidistant along a circular helix (at the same
distance & = 4.35 A from the nanotube surface). Such a
charge distribution produces an electrostatic potential
of the correct symmetry, which is smooth on the nano-
tube surface, because the ion chain is at a considerable
distance from the surface. We use periodic boundary
conditions; that is, the nanotube and DNA are consid-
ered to be infinite. In this work, we completely neglect
both possible displacement of the phosphate groups
from the chosen positions and possible contribution to
the perturbation potential from other partially polariz-
able DNA atoms. Thus, the Hamiltonian of the DNA
subsystem is not involved in the model (refinement of
the result of this model is work in progress [12]).

3. CALCULATION OF THE SELF-CONSISTENT
POTENTIAL ENERGY OF THE PERTURBATION

The Hamiltonian given by Eqgs. (1) and (2) depends
parametrically on the self-consistent electrostatic
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potential on the nanotube surface, ¢**. The calculation
of this quantity is the most complicated part of the
problem, because it includes in principle complete con-
sideration of the polarization of the nanotube itself, as
well as the polarization of the DNA and the medium
surrounding the complex. In the framework of the
model, we include only the polarization of the nanotube
itself, i.e., the contribution of the potential produced by
the polarization charge of the nanotube. The contribu-
tion of the polarization of the DNA and medium is con-
sidered only phenomenologically through the use of the
effective charge of the phosphate groups, e*.

The nanotube responds to the external potential pro-
duced by the helical chain of point charges by redistrib-
uting the electronic charge density so as to maximize
screening of the external potential. As a result, the total
(acting) potential is substantially lower than the exter-
nal (bare) potential, which may be described through
the macroscopic dielectric constant of the nanotube. We
emphasize the difference in description of the depolar-
ization of the external potential of the helical wrap of
the DNA and the classical formalism of the dielectric
function of the medium; the “dielectric function” of the
complex depends on the nanotube type, on the symme-
try of the DNA wrap, and even on the properties of the
surrounding medium, because the polarization charge
of the nanotube is sensitive to all of these parameters.
However, for a complex of given symmetry in vacuum,
we can calculate accurately the polarization charge at
each of the atoms and compute the screening factor.

It is interesting that (within the model) we found
very weak dependence of the screening factor (local
dielectric function) on the atomic position within the
unit cell. It will be shown below that the distribution of
the polarization charge follows the external potential
and is very nonuniform along the perimeter and axis of
the nanotube. At the same time, the ratio of the external
potential to the total potential is nearly constant and is
2.2 £ 0.5, meaning that the external potential is attenu-
ated approximately by half.

The method of calculation of the polarization charge
is as follows: Given the exact self-consistent potential
¢, the charge density is determined as the trace of the
density matrix calculated from the Hamiltonian with
the perturbation proportional to @, minus the trace of
the density matrix determined from the Hamiltonian
with zero perturbation. At zero (low) temperature only
the occupied electronic states should be counted, i.e.,
the states below the Fermi level:

3p(x) = 8(ea'a) = ¢ (yi(X)]g- Wa(®)), 3)

A<

where p = e{a'a) is the quantum mechanical charge
density, A denotes all quantum numbers, and A denotes
the last occupied state with the highest energy. Know-
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ing the charge density, we can calculate the induced
(screening) potential via the Poisson equation

1nd( ) _ J‘Sp(g) (4)

Then, the total potential equals the sum of two compo-
nents:

V= e = e(g" +o™), (5)

where @ is the “bare” potential of the charges on the
DNA.

In practice, Egs. (3)-(5) are solved by the iteration
method. We use the charge density calculated at the
previous step to refine the total screened potential,
which is used to diagonalize the tight binding Hamilto-
nian. The details of the numerical method were given in
[12]. However, we note that, because the Coulomb ker-
nel of the one dimensional Poisson equation is signifi-
cantly singular, the method requires using an adaptive
mesh and an additional damping parameter for improv-
ing convergence (a typical calculation takes 10-20 iter-
ation steps). In addition, we use a long wavelength cut-
off and an extended supercell for more accurate treat-
ment of the long distance component of the Coulomb
potential. We have compared the results of the compu-
tations for different choices of these calculation param-
eters and confirmed that the final self-consistent result
is independent of the specific choice of the parameters,
starting from some critical value of a parameter. For
example, for numerical integration of the Coulomb ker-
nel, we used the long wavelength cutoff parameter
~40-50 A, and a triple sized supercell for calculating
@™, The initial damping parameter was chosen ~2—10
and was adaptively changed in the process of the itera-
tions.

The result of the calculation for a typical case of the
[7, 0] nanotube wrapped by fully ionized DNA with the
charge of a phosphate group e = e¢* is shown in Fig. 1.
In this given complex, the DNA has four bases per unit
cell. The positions of the phosphate groups are easily
distinguished in Fig. 1 as the maxima of the positive
charge density shown in white.

4. DISCUSSION OF THE RESULT
AND CONCLUSIONS

Knowing the electron density induced on the nano-
tube surface by the DNA charges, we calculated the
contribution to the cohesion energy from the polariza-
tion interaction. The reduced cohesion energy (per sin-
gle base of the DNA) equals

gzjeDNASP(g) 6)

|XDNA %l

where & is the length of the DNA per period of a single
unit cell and [/ is the distance between bases (i.e., their
ratio is the number of charges of the DNA per unit cell,
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which is equal to four in our case). We obtain the value
3¢ = 0.47 eV for the complex under consideration. The
effective screening factor of the nanotube, which is dis-
cussed above, is approximately equal to two in our
case. Correspondingly, the polarization component of
the cohesion energy is halved as compared to the non-
self-consistent value =0.96 eV at the first iteration
(Fig. 2).

The classical attraction energy of an elementary
charge to a metal surface

8€, ~e’128, (7

where & = 4.35 A corresponds to the distance between
a phosphate group and the nanotube surface, is four
times higher than the energy of the polarization interac-
tion. Thus, the estimate of the polarization interaction
via the interaction with the metal surface gives an
essentially overestimated value. On the other hand, the
transverse dielectric constant of the nanotube has a typ-
ical value of € = 5, and for the interaction of an elemen-
tary charge with the charge of the image in the insulator
e-1

T we obtain a quantity more than two times

higher than the actual one.

5. SUMMARY

We have calculated quantum mechanically the
energy of the interaction of a single-wall carbon nano-
tube with a DNA molecule that is due to the appearance
of polarization charges on the nanotube surface. Our
estimate for the polarization cohesion energy for the
given nanotube-DNA complex is ~0.47 eV per DNA
base, which is ~14 eV for complexes that use oligomers
30 bases long (as in experimental works [1, 3]). This
theoretical result confirms the high stability of nano-
tube—-DNA complexes.

The polarization charges induced by the ionized
phosphate groups have been computed numerically in
the framework of the tight binding method in the near-
est neighbor approximation. The calculation includes
obtaining a self-consistent electrostatic potential,
which is substantially screened by the charge on the
nanotube as compared to the potential of the DNA in
vacuum. We obtained a constant characterizing the
effective screening factor for the complex under con-
sideration. Up to small atom-to-atom fluctuations, the
acting potential on the nanotube surface is approxi-
mately half the bare (initial) potential.

We have shown that an estimate of the energy of the
polarization interaction using the image charge model
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Fig. 2. Convergence of the polarization component of the
cohesion energy for the nanotube-DNA complex described
in the work. Eleven steps of iteration are shown, including
the nonself-consistent value for the first step.

in a metal or dielectric surface of the nanotube is sub-
stantially overestimated as compared to the accurate
result. We assume that this discrepancy is related
mainly to the nonlocal character of the nanotube polar-
ization.
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