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Abstract. A giant level shift, resulting from the interaction of an electron in a spherical
quantum dot with zero-point oscillations of confined modes of the electric field, is divulged.
This electron potential energy renormalization depends on the dot radius which has to show
up in experiment. The size scaling of the depolarization effect is computed semiclassically. A
change of the optical properties of the matrix surrounding the dot also provides a method
with which to study the shift experimentally.

1. Introduction

A complete quantum dot (QD) theory, taking into account all
the sophisticated physics of this object, is still a challenge for
a theorist. The main reason is that the scale of the calculation
is much larger than an atomic one (this complicates ab initio
techniques). At the same time, the number of particles is too
small to use solid state approximations to their full extent. For
example, a one-electron picture of a quantum confinement
potential, arising from the conduction band discontinuity on
the QD boundary, does not always yield accurate electron
levels.

In this paper we put forward a model to inspect the
electrodynamical correction to the one-electron potential
energy in a spherical QD. It was shown [1] that a similar
correction turns out to be significant for a ‘natural quantum
dot’ C60. A depolarization level shift due to the interaction
with an electromagnetic field is not negligible, as it might be
thought, when taking into account localized electromagnetic
modes. We present the scaling analysis of some different
mechanisms for the level shift (LS) and propose a possible
experimental manifestation of the depolarization effect.

In order to appraise the LS a simple spherical QD model
in the frame of an effective mass approximation was applied.
How is our result sensitive to the model used? The size
scaling of the depolarization shift is preserved, being mainly
dependent on a corresponding density of states of the field,
while the prefactor might be smaller within other approaches,
though it is not easy to evaluate explicitly. Of course, the
actual shape of the QD will also change the prefactor, though
in experiments with a QD array the shape factor is averaged.

For the sake of theoretical clarity the simplest
Hamiltonian was taken for the one-electron spectrum
calculation. The group of full rotations, SO(3), was chosen
to label bare electron states. It is possible to perform an
analytic quantum mechanical calculation of the RPA response
within the spherical model [2]. The massive peak of a

collective excitation is known to show up in the spectrum,
resulting from fast coherent oscillation of the total electron
density of valence states. Thus, within our model the
electron–electron interaction is dealt with self-consistently.
Of course, the number of valence electrons involved in the
collective motion must not be small. This is believed to be
fulfilled for a typical QD possessing some hundreds of atoms
or even more.

A surface charge density oscillation can be thought of as
a confined electric field mode or a multipole surface plasmon.
We will reflect on the shift of the electron level in the field of
zero-point oscillations of the modes connected with the QD,
of which the depolarization effect is a billion times stronger
than that of free-field zero-point oscillations, so the name
‘giant LS’ is used.

The classical description of the electromagnetic surface
modes, via the dielectric functions of the matrix and QD
materials, gives the true plasmon state frequencies [3] and
will be used below. Once more, the final result does not
depend too greatly on the computational approach. Instead
of giving a rigorous solution, our model sketches out the
(many-body) depolarization semiclassically, avoiding much
routine computational intricacy.

The paper proceeds as follows: a brief model description
is given after the introduction. Then, the model will
be applied to a 3D plasmon, which will demonstrate our
calculation technique. However, the LSs from free modes
are too small to have experimental importance. Section 4
deals with the confined modes, which result in a much larger
depolarization shift. The numerical estimations and the
scaling properties of the LS will be given with respect to
a possible experiment. A brief summary will follow.

2. Semiclassical theory for energy level shift

We have considered semiclassically the LS for an arbitrary
shell object in [4]. The method follows the one proposed
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by Migdal [5] to calculate the Lamb shift for a hydrogen-
like atom. The frequency of the zero-point oscillations of
the external field is much higher than the inverse period
of the electron orbit ωp � 1/τ . Therefore, the adiabatic
approximation has to be used and one divides the fast (field)
and slow (electron) variables. An electron is subjected to
short fast deflections from its original orbit in the high-
frequency field of the electromagnetic wave of the zero-
point oscillation. Then the potential energy shift is given
by second-order perturbation theory as

δE = 〈H(r +δ)−H(r)〉 = 〈∇H · �δ+ 1
2∇2H �δ · �δ+ · · ·〉, (1)

where H(r) is the unperturbed Hamiltonian and H(r +
δ) is the Hamiltonian accounting for the random electron
deflection δ. The angle brackets represent the quantum
mechanical average over the fast variables of the field (or,
equally, over the random electron deflections). The perturbed
Hamiltonian is expanded in series on δ (that implies δ to be
much smaller than the classical electron orbit radius) and a
first nonzero contribution is taken.

The simplest QD Hamiltonian is considered to have only
the rotational correction which is given by

δH = L̂2

2mR2

(
−2

δ

R
+ 3

δ2

R2
+ · · ·

)
, (2)

where R relates to the spherical QD radius; m is the electron
mass, which is supposed to be constant within the dot; L̂
is the angular momentum operator. On averaging, the first-
order term disappears. So far the LS decreases with the QD
size and the dependence includes anR−4 factor, besides some
power hidden in the mean square deflection δ2.

We will show that the dependence of δ2 on R is
different for different electric modes (confined and free field).
The giant deflection is representative for the giant LS and,
therefore, the function δ2(R) will be studied specifically. In
addition to the potential energy correction described in this
paper, a kinetic energy term shifts levels. This LS could
be even larger† but, for the specific QD problem, it raises
the spectrum as a whole, in contrast to (2), which increases
the level distance and, therefore, changes optical transition
frequencies.

3. Bulk plasmon contribution to LS

First we consider bulk 3D-plasmon modes that could shift
the electron level. Nearly self-evidently the bulk plasmon
shift is negligible, even though it explains our method in the
cleanest manner. The mean square deflection, caused by the
3D mode (which is not confined at all), decreases with the
QD size too rapidly. The small factor, contained in the 3D
LS, arises essentially from the expression for δ2, which scales

† The ratio 〈kinetic energy correction〉/〈potential energy correction〉 =
〈k.e.〉/〈p.e.〉 ∼ m ω2 / ∇2 V can be large at large plasmon frequency.
Within a semiclassical theory both terms were applied for the Lamb shift
problem in an atom [6]. As discussed in the text, in our QD depolarization
problem, the k.e. yields an uniform shift while the p.e. contribution displaces
different electron levels to different extents. It follows from the expression
for these two terms that the p.e. contains the bare Hamiltonian while the k.e.
does not.

as 1/N , whereN is the number of atoms in the QD. This will
be explained below.

Within the semiclassical approach, the deflection of the
electron can be computed with the use of Newton’s law:
m∂2

t δ = eE , where e is the electron charge, E is the field
strength due to the zero-point oscillation of some mode and
m is the electron effective mass. The square of the deflection
is the sum over plasmon states:

δ2 = e2

(2m)2

∫
dDk
E2
k

ω4
k

. (3)

The dimension of the field, D, is equal to three. The mean
square of the electric field strength, in turn, can be rewritten
as the zero-point oscillation frequency E2

k = 2πh̄ωk through
the quantized field normalization.

Note that the 3D plasmon frequencyωp =
√

4πe2n3D/m

does not depend on the quantum number k, hence, the mean
square deflection contains the total number of states affecting
the QD electron level according to equation (3), where the
upper integration limit is kmax ∼ 1/R. In the 3D case it gives
rise to the factor R−3 ∼ N−1 proposed at the beginning of
the section.

This result will change for other confined electric modes
because of their different densities of states. This produces
the different N -scaling factor for the LSs from these modes.

The prefactor of the deflection, for any mode
considered here, depends equally on the square root of
the density of electrons, which is conveniently converted
to rs , a characteristic length, via the following definition:
2πr3

s n3D/3 = 1. Then, for 3D plasmon the deflection reads
as

δ2 = a2
B

√
6

64π

(
rs

aB

)3/2 ( rs
R

)3
∝ N−1, (4)

where the atomic length unit, aB = h̄2/me2  0.53 Å, or
the Bohr radius, gives the scale of the deflection (note that
this definition does not include any permittivity, unlike an
exciton Bohr radius in semiconductors). Equation (4) proves
our supposition that the Hamiltonian variation scale is larger
than δ < aB .

The depolarization (the ratio of the level shift, δE, to the
bare energy, E(0)) due to the 3D modes is given by:

�3D = δE

E(0)
= 1

72
√

6π

√
aB

rs

( rs
R

)5
∝ N−5/3. (5)

The crude estimation of the prefactor (with rs ∼ 2 Å that
is close to typical electron densities [7]) shows that even for
the small QD with N = 100 the shift is 10−6 of the bare
energy and will not be resolved because of a number of other
additional factors affecting the level position. Naturally,
the depolarization increases with the (polarizable) valence
electron density. The LS disappears in a pure classical limit
h̄→ 0.

To give a complete picture we note that the standard LS
due to the zero-point oscillations of the free electromagnetic
vacuum modes can be written as

�vac = 6α3

π

(
aB

rs

)2 [
ln

rs

αaB
+ ln

R

rs

] ( rs
R

)2
∝ N−2/3, (6)
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Figure 1. The level shift of QD electron, calculated for four
different depolarization mechanisms. The giant shift, which
results from the zero-point oscillations of the electric field of the
QD surface mode, is shown as a full line. The 2D plasmon, the
matrix bulk plasmon mode and the free-field shifts are shown as
broken lines. The slopes and the prefactors of these depolarization
shifts are derived analytically and explained in the text. Inset: the
scheme of the QD structure modelled. Spherical QDs with
dielectric function ε1 are embedded in a medium with dielectric
function ε2.

where α  1/137 is the fine-structure constant, and the
logarithmic dependence of the last term in square brackets on
N does not add any extra to the result and has to be ignored.
Though the LS exponent, ∂ log�vac/∂ logN , is smaller than
in equation (5) the prefactor is tiny (∼10−7) because of α3.

4. Depolarization: confined modes

Let us consider the specific behaviour of the LS materialized
by the zero-point oscillations of the confined plasmon modes.
The depolarization in a carbon shell cluster was shown [3]
to be independent of the cluster size. The mean square
deflection also scales as a zero power of size δ2 ∝ N0. While
it is interesting in itself, the carbon cluster matter will not
be considered in this paper. However, there are confined
modes in our QD problem that enhance the electrodynamical
correction to the electron potential energy.

With the decrease of the dimension of the field D =
3, 2, 0 the plasmon density of states increases. Hence, the
interaction of the electron with the plasmon field increases,
as will be evident from the size scaling of δ2.

Two possible candidates for confined plasmon modes
in the QD system, that have different densities of states,
are the 2D plasmon and 0D spherical mode. The former
mode can arise because of some interface presumably grown
within the structure (see the inset in figure 1). It might be a
conducting wetting layer, if it is thick enough to confine the
electromagnetic field. The 2D plasmon naturally originates
at the interface between a semiconductor structure and a
metal [8]. At the boundary of two dielectrics a surface
plasmon is known to propagate [9]. Its contribution will be
discussed elsewhere as being smaller than 2D-plasmon LS by
a factor of at least 10−2 owing to the fast space field decay.

The 0D mode is the inherent property of the spherical
inclusion of foreign material in any matrix. The calculation
of the mode frequency is slightly cumbersome (see [3] for
details). This surface QD mode has the quantum numbers

L,M , the angular momentum and its projection on an axis,
instead of the 2D wavevector, k, for the standard 2D plasmon.

4.1. 2D plasmon

The frequency of the 2D plasmon is well known [10] to
depend on its 2D wavevector as: ωk =

√
2πe2n2Dk/m. We

will rewrite the 2D electron density, as before, in terms of
the characteristic length πr2

s n2D/2 = 1, and perform the
integration over the plasmon states. Then the mean square
deflection can be expressed as

δ2 = a2
B

1

32

(
rs

aB

)3/2 ( rs
R

)3/2
∝ N−1/2. (7)

The scaling in N has a lower exponent, that reflects the
different density of the confined field (plasmon) states.
Substituting δ2 into the Hamiltonian given by equation (2),
one obtains the depolarization as follows:

�2D = 3

32

√
aB

rs

( rs
R

)7/2
∝ N−7/6. (8)

The shift depends on the inverse size almost linearly.
However, the prefactor dominates at some moderate size
of QD and lessens the LS to 10−3 for N = 100. The
depolarization is still too small to expect experimental
consequences. To be precise, the result also depends on w,
the distance between the 2D electrons and the QD. It is simply
included in the consideration by multiplying equation (8) by a
factor

√
πErf(

√
w/R)/(2

√
w/R) (where the error function

is that according to [11]), and the depolarization declines
fourfold at w/R ∼ 10.

4.2. QD confined plasmon: mode of cavity

The δ2 considered above is less for larger QD size; which
is not the case for the giant deflection due to the completely
localized modes [1]. The localized modes are the surface
plasmons of the spherical inclusion (with a dielectric function
ε1) in the matrix (with a different dielectric function ε2). The
frequency of the mode, ωL, that we consider, is nearly the
frequency of the bulk plasmon in the matrix, ωp2, with a
weak dependence on the mode angular momentum [3]. The
electric field of the zero-point oscillation is given by the
formula E2

L = π(L + 1/2)h̄ωL/R
3. The summation over

all states below some critical value Lc gives the mean square
deflection:

δ2 = a2
B

π

9
√

6

(
rs

aB

)3/2 ( rs
R

)3
(
Lc +

1

2

)3

, (9)

where it is natural to limit the summation above the excitation,
of which the wavelength is about d, the bulk lattice constant†.
We found that δ2 does not depend on the QD size:

δ2 = a2
B

π4

9
√

6

(
rs

aB

)3/2 ( rs
d

)3
∝ N0. (10)

† For an infinitely large sphere, the contraction limit is fulfilled: R,N,L→
∞, but R/L = const, then the (infinitely large) angular momentum can be
related to the (finite) 2D wavevector viaL  kR. Substituting the maximum
wavenumber kmax ∼ π/d into this expression we obtain the maximum
angular momentum as Lc + 1/2 ∼ πR/d, where d is the lattice constant.
Then the critical angular momentum divided by the radius becomes some
constant (Lc + 1

2 )/R ∼ π/d.
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Hence, the level shift depends on the size as R−2 (which
comes from equation (2)):

� = π4

3
√

6

√
aB

rs

( rs
d

)3 ( rs
R

)2
∝ N−2/3. (11)

Our estimation shows that the 0D level correction, becoming
of the order of 50%, will play the important role for a QD of
100 atoms and smaller. We collected all studied contributions
to the depolarization LS and plot them on a log–log scale
versus the QD size in figure 1.

The depolarization due to the localized surface QD
modes is large enough to propose an experiment supporting
our model. It is easy to see that δ2 ∼ ω−3

L , whence the LS
depends on the mode frequency as well. Therefore, changing
the optical properties of the matrix surrounding the QD, one
shifts the levels. If the bare energy level, E(0), lies deep in
the potential well, its position is nearly independent of the
well depth, which changes along with the matrix parameters.
The deep bare level energy depends only† on the well width
∼R [12]. Hence, in principle, keeping the same QD size and
covering it with different materials, one will solely derive
the depolarization LS, since it is distinguishable from the
standard space quantization LS. At present, a technological
realization of a QD system is restricted by another important
factor, a strain due to the lattice mismatch, which contributes
to the electron energy to a large extent but is beyond the scope
of this paper as it has a different origin.

5. Summary

The effect of the zero-point oscillations of the free and
confined electromagnetic field on the level of the confined
electron in the spherical QD is reviewed. The depolarization
due to an interaction with the zero-point oscillations of
the field (produced by all other valence electrons) shifts
up the bare one-electron state and increases the interlevel
distance that seems to be a counterpart to the vertex
correction (electron–hole interaction, for example) which
lowers the transition frequency. This indicates that the
studied depolarization effect should be taken into account
for a many-body computation of a QD spectrum.

To the best of our knowledge, the scaling dependence
of the depolarization level shift for the QD is calculated
for the first time. The size dependence of the LS
is different for the four cases considered in this paper.
This scaling reflects that the different densities of states
work in different mechanisms of the depolarization due
to the different 3D, 2D and 0D modes of the electric
field involved. Our model allows a theorist to skip a
tedious quantum electrodynamical calculation but obtain
the analytical self-consistent estimation for the (many-
body) level shift in a nanoscale system with strong
quantization. The result is not just of theoretical importance.

† The energy level comparison for spherical QDs of infinite and finite depth
shows that the lowest radial series, which is dealt with here, depends only
slightly on the potential depth, that is, the classical orbit radius is nearly the
same (∼R) for any reasonably deep QD which contains more than a single
level.

Although the depolarization decreases with the QD
size in general, the localized surface electromagnetic mode
(which is specific to the QD as a void in the matrix material)
results in the giant level shift which could possibly be
resolved experimentally for the QD made from some hundred
atoms. Another method to detect the effect could be the
measurement of a deep-level position in similar QDs buried
by substances with distinct optical characteristics (density of
valence electrons) but similar lattice parameters to avoid extra
strain. Then the localized plasmon frequency changes along
with the prefactor of the depolarization shift, which could be
observed by optical spectroscopy of the QD system.

A recent paper [13] presents for the first time the direct
experimental data for the bandgap dependence on the size
of small carbon clusters measured by scanning tunnelling
spectroscopy. The clusters were deposited on a substrate and
gave an example of a QD system with a minimum stress
(free boundary); therefore, only two contributions (space
quantization and depolarization) are to be considered. The
observed cusp on the curve Eg(R) can be easily explained
within our model as the disappearance of the depolarization
correction. It has to happen at a cluster size of about 10 Å,
which is consistent with experiment. Further work on this is
now in progress.
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