
Journal of Computational Electronics 1: 323–326, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Many-Body Terms in van der Waals Cohesion Energy of Nanotubes
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Abstract. We have developed a model for the calculation of van der Waals force for layered systems with axial
symmetry. Our result can be applied to compute the cohesion of a carbon nanotube to a substrate, the cohesion
between nanotubes, and between shells of multiwall nanotubes. We have obtained unusal power laws for the distance
dependence of the many-body van der Waals potential.
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1. Introduction

Van der Waals interactions have been studied over a
considerable period of time. Starting with the phe-
nomenoligical work of van der Waals (van der Waals
1873), our understanding has developed from classi-
cal models (Reinganum 1912) to quantum mechanics
(London 1930) and to full statistical quantum elec-
trodynamics (Dzyaloshinskii, Lifshitz and Pitaevskii
1961). The earlier semi-empirical approach is still
considered accurate and adequate for the description
of many phenomena and involves transparent physics
even for very complex systems.

In this letter we present a calculation of many-body
corrections to the van der Waals (dispersion) forces for
nanosystems with cylindrical symmetry. This geom-
etry has received considerable attention owing to the
close relation to the theory of biological ion channels
and carbon nanotubes. The accurate calculation of the
dispersion force is also important for the engineering
of nanodevices: nano-electromechanical systems and
elements of nanoelectronics (Dequesnes, Rotkin and
Aluru 2001). The van der Waals (vdW) force changes
drastically the system behavior at the nanoscale.

We follow here the dielectric function approach to
model the vdW cohesion. (Repulsion is due to the Pauli

∗On leave from Ioffe Institute, 26 Politekhnicheskaya St., 194021
St. Petersburg, Russia.

principle (Girifalco, Hodak and Lee 2000) and will
not be addressed here.) This method was shown to
be useful for various solids (Dzyaloshinskii, Lifshitz
and Pitaevskii 1961). In general, it requires the calcu-
lation of the dispersion of elementary excitations of
the system. The term of the total van der Waals energy
(vdWE) is not taken into account by standard one-body
models. The contribution of one-dimensional collec-
tive modes is of primary importance for us. It gives
a first-order correction within many-body approxima-
tions and beyond the 6–12 Lennard–Johns (LJ) poten-
tial (Lennard-Jones 1930). A complete description of
the vdWE is possible if the system dielectric function is
fully known. Unfortunately, it is not available for bio-
logical systems. Hence, we consider here nanotubes
since their electronic structures can be calculated
explicitly.

2. Calculation of Collective Modes

The theory starts with the calculation of the dielectric
function of a single SWNT in RPA neglecting all modes
except the collective plasmon modes which have most
of the oscillator strength. These modes contribute the
major input to the total vdWE.

Instead of writing the complete polarization func-
tion (refer to paper (Benedict, Louie and Cohen 1995))
and obtaining its high-frequency limit, we derive the
answer from the equations of motion of the charge on
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a cylinder surface:




∂ j

∂t
= −ne2

m
∇ϕ

∂σ

∂t
+ ∇ j = 0

, (1)

where n = 16/3
√

3b2 is the surface graphite electron
density, m, e are the electron mass and charge, ϕ is an
acting potential on the surface of the SWNT, which
includes the induced potential of all charges on the
surface, σ is the fluctuation of the charge density related
to the plasmon mode, j is its current, ∇ is 2D gradient
operator along the surface.

To close the set of equations we write the surface
boundary condition for the fluctuation density σkµ us-
ing the Gauss-Ostrogradskii theorem:

4πσkµ = ϕ
1

RKµ(kR)Iµ(kR)
, (2)

where Kµ(kR), Iµ(kR) are Bessel functions of imagi-
nary argument and of order µ taken at the SWNT ra-
dius R. k is the co-axial momentum of the mode, µ

is the circumferential quantum number of the mode.
The plasmon mode frequencies are given by the 1D
series for each of allowed µ = 0, . . . , Nat − 1, where
Nat is the number of atoms along the circumference in
the real space unit cell of a SWNT. For example, for
[10,10] armchair metallic nanotube it equals 20. The
SWNT plasmon dispersion is:

ωkµ = ωp

√
R2

(
k2 + µ2

R2

)
Kµ(kR)Iµ(kR). (3)

Here we use the notation ωp =
√

4πne2/mR for the 2D
plasma frequency at a characteristic length scale given
by the SWNT radius, R. This frequency sets the energy
scale for collective modes of the tube and, hence, for
the vdWE.

3. van der Waals Cohesion Energy

The vdWE is given by the difference in the total energy
of the modes of the electromagnetic vacuum due to the
interacting systems approaching each other. The sim-
plest way to calculate it is to find the collective mode
frequencies as a function of the distance between the
systems. The frequencies depend on the distance be-
cause of the Coulomb interaction between the shells.

The Coulomb interaction mixes the modes which are
independent for infinite separation. We do not address
here the problem of the interaction between systems
with lattices which are not commensurate. We found
that the correction to the result presented in this paper is
small and diminishing as the inter-subsystem interac-
tion becomes smaller than the bare plasmon energy. It
will be discussed elsewhere (Rotkin and Hess unpub-
lished). The Hamiltonian in the space of elementary
excitations (plasmons) has the diagonal form:

Ho =
∑
k,µ

hωkµ

(
nkµ + 1

2

)
, (4)

where nkµ is the number operator for plasmons and ωkµ

is the plasmon frequency which is given by Eq. (3) in
the absence of any interaction. In the zero temperature
limit (which is appropriate for distances smaller than
1000 nm), only the zero-point oscillation term survives.
The van der Waals force is the derivative of Eq. (4) with
respect to the distance which is implicitly included in
the plasmon frequency.

3.1. Intertube van der Waals Attraction

In this section we calculate the attraction energy be-
tween two parallel nanotubes (Fig. 1C). We derive
the plasmon frequencies from the quantum mechanical
Lagrangian within the second quantization formalism.
The Lagrangian for a single shell is:

L1 = 1

2

∑
k,µ

(
ω2

ω2
kµ

− 1

)
σ
†
kµϕkµ + h.c., (5)

where we use the Heisenberg operators of the classical
potential, ϕ, and the classical charge density fluctu-
ation, σ . This form of the continuum Lagrangian is
consistent with the equations of motion as given in
Eqs. (1) with Hamiltonian (6). The generalization of
the Lagrangian for the case of two tubes (two shells) is
straightforward:

L = 1

2

∑
k,µ

(
ω2

ω2
kµ(1)

− 1

)
σ
†
kµ(1)ϕkµ(1)

+ 1

2

∑
K ,M

(
ω2

ω2
KM(2)

− 1

)
σ
†
KM(2)ϕKM(2)

− 1

2

∑
k,µ;K ,M

V (1 − 2)
(
σ
†
kµ(1)ϕKM(2)

+ σ
†
KM(2)ϕkµ(1)

) + h.c. (6)
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Figure 1. The 1D systems considered in the paper. (A) Double-shell
nanotube. (B) Nanotube on a substrate. (C) Two nanotubes.

where the first two terms are the free Lagrangians of
the plasmon subsystems and the last term represents the
interaction between subsystems (1) and (2) which we
treat perturbatively. The matrix elements which rep-
resent the Coulomb interaction between the tubes in
the continuum limit are the combinations of the Bessel
functions, comparing with the exponents in the planar
problem (Chaplik 1971) and the Legendre polynomials
in the spherical problem (Rotkin and Suris 1996, 1998).
In order to proceed further analytically we restrict the
expression for the Coulomb matrix to the components
with k = K and µ = M . This approximation has the
same accuracy as used before because the dimension-
less ratio of the interaction to the plasmon frequency
is small in our problem. We have to keep only the first
order of this parameter in the secular equation for the
plasmon mixing:

√(
− ω2

ω2
kµ(1)

+ 1

)(
− ω2

ω2
kµ(2)

+ Kµ(kR2)Iµ(kR2)

Kµ(kR1)Iµ(kR1)

)

= ∓ Iµ(kR2)K2µ(k D)

Kµ(kR1)
(7)

here D is the distance between the tube centers and
R1 and R2 are the radiuses. The shifts of bare plas-
mon energy levels decrease with k and µ along with
the Coulomb matrix element itself (given by RHS of
Eq. (7)): in the limit of k D 	 1 it is approximately
equal to 1/

√
2πk D exp(−k(D − 2R)).

The specific van der Waals energy per atom of the
system is the sum of the plasmon zero point oscillation
energies divided by the total number of modes. The
integral over the first Brilluine zone of the SWNT is
substituted for the sum. We have considered the interac-
tion between two tubes of the same radius ∼7 Å which
is often used in simulations. The vdWE derived from
the zero-point oscillation of those mixed modes decays
with D as D−4.5 (presented in Fig. 2). In contrast to
one-body models this vdWE has a fractional exponent

Figure 2. The calculated van der Waals potential: (upper) for nano-
tube on a substrate; (lower) for two identical nanotubes of R = 7 Å.

which reflects the specific square root dispersion of the
bare plasmon frequency as given by Eq. (3).

3.2. Cohesion to Metal Substrate

The solution obtained for the tube-tube interaction can
be readily used to yield the cohesion of the SWNT to the
metallic substrate (Fig. 1B) because the electric field
distribution near the flat conductor is given by the image
charge of the opposite sign. Hence, one can choose the
odd solution (with the minus sign) of the secular Eq. (7)
while the even solution has to be discarded. The same
integration over the Brilluine zone gives now a slower
decay of the vdWE. It is because only one subsystem
(SWNT) possesses the 1D plasmon modes in this case.
The exponent is approximately −3.5 compared to −4.5
for two SWNTs (Fig. 2).

3.3. Inter-Wall Cohesion in DWNT

The energy of the inter-wall attraction in a multi-
wall nanotube seemed to be an unmeasurable param-
eter before the discovery of the peapod structures,
C60@SWNT, and their transformation in double wall
nanotubes. The process of creation of the second wall
inside the initial nanotube is favorable owing to the
energy of the inter-wall cohesion.

The Coulomb interaction between shells is given by
continuum electrostatics. Because of the axial sym-
metry of the problem only modes with the same
quantum numbers (µ = M , k = K ) are mixed and the
interacting plasmon Lagrangian (5) is exactly diag-
onal in Fourier space. The secular equation is as
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Figure 3. The dependence of the van der Waals potential for a
double wall nanotube on the distance between shells, δ (dots); and
the linear fit (solid line) with the exponent −2.5.

follows:√(
− ω2

ω2
kµ(1)

+ 1

)(
− ω2

ω2
kµ(2)

+ Kµ(kR2)Iµ(kR2)

Kµ(kR1)Iµ(kR1)

)

= ∓ Kµ(kR2)

Kµ(kR1)
(8)

The plasmon frequencies depend on the radii of both
shells. We plot here the vdW cohesion energy as a func-
tion of the intershell distance (Fig. 3). Both parame-
ters can vary and be measured experimentally (Bandow
et al. 2001).

In summary, we have developed a continuum theory
which gives a fast and accurate qualitative estimation of
the many-body contribution to the dispersion attractive
force for 1D tubular systems made from layered mate-
rials. We have used the formalism of dielectric function
and have assumed that the main term in the many-body
van der Waals cohesion is from the collective modes
(plasmons). The frequencies of the plasmons which are
mixed by the Coulomb interaction are explicitly calcu-
lated. As a result of the mixing, the total system energy
is lowered by the van der Waals contribution. Our ap-
proach is applicable to a wide class of shell systems
with axial symmetry. For example, the van der Waals
attraction between carbon double wall nanotube shells,
parallel tubes as well as cohesion to the metal substrate
are readily modeled.

The interesting result is the distance dependence
of the new (many-body correction) term which has a
fractional exponent, 5/2 for the tube-metal cohesion
and 7/2 for tube-tube interaction, unlike an one-body
energy given by LJ 6–12 potential. It was known that the

direct summation of atom-atom interactions for carbon
nanotubes gives the exponents of 4 and 3 for intertube
and tube-substrate cohesion, respectively.

Our approach is almost independent on the commen-
surability issue which is in contrast to the one-body LJ
potential. It can be easily applied for the cohesion of
the tube to a substrate which is not graphite. There-
fore, this contribution is especially important for the
description of recently studied friction properties of
nanotubes (Yu, Yakobson and Ruoff 2000, Cumings
and Zettl 2000, Falvo et al. 2000).
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