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Abstract. The paper reviews quantum and classical effects which arise in physics of
nanotube devices. Knowledge of nanotube electronic structure has been used for a calcu-
lation of quantum capacitance and quantum terms in van der Waals energy. Combining
analytical theory and quantum mechanical micromodels I worked out a description for
nanoelectromechanical devices, for example, electromechanical switch. The theory takes
into account van der Waals forces which show up at the nanoscale and result in appearing
of a principal limitation for scaling down NEMS structures. A model, which has been
derived for a nanotube device electrostatics, includes an atomistic polarizability of the
nanotube in a selfconsistent way. This calculation yields a charge density distribution for
given external fields and specific device parameters. On the basis of these main elements
of continual compact modeling: quantum mechanical description of the nanotube elec-
tronic structure, theory of the van der Waals forces, quantum capacitance and continuum
mechanics,– a general theory of nanodevices is proposed.

Key words: nanotube, theory, nanodevice, NEMS, MEMS, van der Waals, quantum
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1. Introduction

Applied physics of carbon nanotubes is an emerging new area of nanoscience
and nanotechnology. Applied physics modeling and device theory at the
nanoscale require special techniques that are in between what have been
used in solid state physics and methods applicable to molecular systems
(Aluru et.al., 2002). I will identify in this paper several approaches that are
known to work for devices on the base of carbon nanotubes.

Various carbon, nitride and chalcogenide nanotubes (NTs) have been
demonstrated recently (Tenne, 2001; Dai, 2002). A success of synthetic
technology immediately resulted in a number of applications. A few to
name are: ultrasharp and wear resistant tips for Scanning Probe Microscopy
(SPM), Atomic Force Microscopy (AFM) and Scanning Tunneling Mi-
croscopy (STM); electron guns for FPD technology and other electron
emitters; chemical sensors and gas storage; modified NT–AFM tips which
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are chemically or bio–sensitive; nanotube electromechanical systems, nan-
otweezers and nanoswitches and, last but not least, nanotube nanoelectron-
ics. I do not pretend to cover here all aspects of device physics of nanotubes
or even any substantial part of it. Instead, I will focus on fundamentals of
theory of nanodevices and will discuss how the classical description should
match the quantum one. Several theoretical methods will be illuminated.
Only analytical results will be presented for the sake of clarity. For specific
technical characteristics of concrete devices I will refer a reader to original
papers.

Graphite-like Systems and Materials, such as nanotubes, fullerenes,
onions, Graphite Polyhedral Crystals, nanographites, and many organic
macromolecules, are well known to have valence band system generated
by pi and sigma valence electrons (Dresselhaus, 1996). The latter ones are
localized and, normally, contribute only to mechanical properties of the
graphitic material. In contrast, pi electrons are mobile, highly polarizable
and define transport, electrical and electromechanical properties.

Many of graphites exhibit similar behavior at the nanoscale: the ten-
dency for nanoscrolling. In the paper (Rotkin, 2002a) we predicted the-
oretically and demonstrated experimentally formation of scrolls of carbon
sp2–lattices with a characteristic dimension about several nanometers. This
scroll size is typical for single–wall nanotubes (SWNTs) and fullerenes,
as well as for nanoarches at the edge of natural three–dimensional (3D)
graphite. This size was obtained within a Continuum Energetics theory
which includes continuum elasticity, microscopic model of van der Waals
interactions and surface energy theory (Rotkin, 2001).
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Figure 1. Bandstructure of an armchair SWNT [10,10] (Right) and a zigzag SWNT
[17,0] (Left) within first Brillouin zone. Energy is in units of γ ' 2.5 eV, hopping integral.

While the sigma electrons form similar bond lattice in all graphite
like (sp2) substances, which reflects in a close similarity in their mor-
phology as discussed above, a versatility of their electronic properties is
due to sensitive electronic structure generated by pi electrons. The elec-
tronic structure of a monolayer of graphite (graphene) has a few (six)
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Fermi-points where an empty conduction band merges with an occupied
valence band. The graphene is a semi–metal (in planar morphology). The
pure fullerenes are mainly insulators (perfect spherical morphology). Car-
bon onions, nanohorns and other imperfect clusters are mainly conduct-
ing. The nanotubes may be either metals, or semi–metals (narrow gap
semiconductors), or insulators (wide gap semiconductors).

How does an electronic spectrum of a folded SWNT relate to the spec-
trum of a bare planar graphene? A simple but correct picture of the SWNT
bandstructure follows from a band folding argument: we imply extra quan-
tization for one of components of 2D wavevector of the electron in the layer
of graphene. This additional space quantization for the pi electrons appears
due to confinement in circumferential direction of the SWNT. As a result,
2D surface of the electron energy as a function of 2D wavevector is broken
into a number of 1D curves: the nanotube electron subbands. The band
folding can be thought of as a mere cross sectioning of the bandstructure
of graphene along the nanotube symmetry direction (Fig.1). Depending
on the symmetry of the tube, three different situations can be realized:
(A) the armchair SWNT has a cross section passing through the Fermi-
point. In this case the SWNT is metallic and the conduction band merges
with the valence band. (B) The zigzag/chiral nanotube cross section is
distant from the Fermi-point. This tube has a nonzero gap and it is a
semiconductor tube. (C) One-third of zigzag and chiral nanotubes have a
very small gap, which follows from arguments other1 than simple band-
folding. In our simplified picture these SWNTs have a zero band gap and
are semi–metals.

The bandstructure of the SWNT is highly sensitive to external fields.
Lattice distortions may cause changes in the bandstructure as well. A
proper lattice distortion moves the Fermi- point of graphite and results
in closing/opening of an energy gap, changing the electron density, and
charging the tube. Same is true for an external transverse electric field
or magnetic field. An impurity sitting on the nanotube or even placed
closely at a substrate surface may have similar action. These phenomena
open many possibilities for engineering of NT electronic bandstructure and
for application of nanotubes as nano-biosensors, mesoscopic devices and
nano-electromechanical systems.

1 Which is mixing of sigma and pi electrons at a finite curvature. This phenomenon is
more pronounced for small radius NT, R < 4Å.
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2. Modeling of Nanoscale Electromechanical Systems

Nano-electromechanical systems (NEMS) become an essential part of mod-
ern science and technology (Craighead, 2000). A number of applications is
already known: nanomanipulation, nanosensors, medical devices, nanoflu-
idic devices, to name a few. Even more applications are anticipated as a
result of the technological progress in this field.

I address in this section one of issues arising when one tries to under-
stand phenomena happened at the nanoscale with theoretical tools bor-
rowed from macroscopic physics. The latter has to reach its limits and new
micromodels are required for a quantitative description of a nano–device.
The object of study is a nano–electromechanical switch. Important changes
in its operation at the nanoscale are due to van der Waals forces. These
forces will change parameters, describing the equation of state of a NEMS.
All derivation will be performed analytically, which allows one to apply this
theory to a broad class of devices.

2.1. ANALYTICAL MODEL

I start here with a calculation of pull–in2 parameters of a general NEM
system which is an elastic media (elastic manifold) subjected to external
forces. The forces are changing during the NEMS operation and define a
dynamic shape of the NEMS. The specific forces, considered below, are (i)
the van der Waals force, (ii) the electrostatic force, and (iii) the elastic
force, which is able to restore the initial equilibrium shape of the NEMS.

In an earlier paper (Dequesnes, 2002a) an analytical derivation as well
as a numerical computation of the pull–in voltage, Vo, have been presented
with account for the vdW correction. The other pull–in parameter, the
pull-in gap, xo, was treated as an independent quantity and taken from a
solution of a classical MEMS problem. Below I will extend the result of the
paper (Dequesnes, 2002a) and give an accurate derivation for both pull–in
parameters.

The equilibrium dynamic shape of the NEMS satisfies the force balance
condition (A): the first derivative of the total NEMS energy is equal to zero.
In general, one has to calculate the energy gradient at every point of the
manifold and equate it to zero locally. This yields the equilibrium shape of
the system at given external forces applied to the NEMS. Main approxima-
tion, which allows one to obtain an analytical solution of the problem, is to

2 The pull–in is a phenomenon of loosing of NEMS stability at a certain (pull–in)
voltage. Then infinitely small increase of the voltage results in a sudden collapse of a
movable part of NEMS onto a ground plane.
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consider only one mechanical degree of freedom3. This approximation gives
an answer for the pull–in, which is correct up to a geometry dependent
numerical factor. The numerical factor is not altered by changing force
fields (e.g., by changing van der Waals to Casimir force) and has to be
calculated only once for a given geometry or used as a fitting parameter.

Within this one parameter model, I write the first equation of state as:
∂E
∂x = 0 where x is the single degree of freedom of a NEMS, for example,
the gap between the elastic movable part of the NEMS and the surface of
the ground plane, and E is the total energy given by E(x, ϕ) = T (x, h; k)−
V (x, ϕ; C)−W (x; ε, α). Here, the energy depends on x and ϕ, the gap and
the voltage, which are the parameters governing the instability point. Three
energy components are the elastic strain energy, T , the electrostatic energy,
V , and the van der Waals energy (vdWE), W . All three terms depend on the
system geometry, shape, etc., as well as on material parameters (elasticity,
capacitance, etc.). The first type of dependence is expressed in terms of the
dynamic gap, 0 ≤ x ≤ h; in terms of the maximum separation between the
mobile and stationary parts of the NEMS (initial gap), h; and the voltage,
ϕ. The material properties are collected in four constants: an elastic stiffness
with respect to the gap, k, a general capacitance with respect to the voltage,
C, and general vdW coefficients, α and ε. The elastic energy component
reads as T = k(h − x)2/2. The electrostatic energy term is V = Cϕ2/2,
where the capacitance has to be calculated with a specific micromodel, for
example, the model proposed in Ref.(Bulashevich, 2002).

The vdWE energy component is often approximated by a single attrac-
tion term (Dequesnes, 2002a; Barash, 1988), which depends on a distance
between interacting surfaces. Integrating out all system geometry (Barash,
1988; Girifalco, 2000), one obtains a simple dependence of the vdWE on
the gap: W ' εx−α, where an exponent α defines the specific power law for
the specific dispersion force. For example, for the pure van der Waals inter-
action between small objects (atoms) α = 6, for the retarded Casimir force
between atoms α = 7, it can be fractional for the many–body terms in low
dimensional systems (Rotkin, 2002b; Barash, 1988). With these definitions
for the material constants I write the total energy of the NEMS as:

E(x, ϕ) =
k(h− x)2

2
− C(x)ϕ2

2
−W (x; ε, α) (1)

where the dependence of the capacitance on the gap, C = C(x), has to be
defined separately.

To find an instability point of the NEMS I write the second pull–in
condition (B): the second derivative of the expression (1) must equal zero.

3 Which may be thought as a fundamental mechanical mode of a specific NEMS.
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2.2. GENERAL EQUATIONS FOR THE PULL–IN

In what follows logarithmic derivatives of the energy components will be
used. When the dependence of the energy components on the gap is given by
a power law, the logarithmic derivatives are simply constants depending on
the material properties and the geometry of the NEMS: β1 = −x∂ log C/∂x,
α1 = −x∂ log W/∂x, β2 = x2 (∂ log C/∂x)2 + x2∂2 log C/∂x2 and α2 =
x2 (∂ log W/∂x)2 + x2∂2 log W/∂x2.

In terms of α and β (which are just numbers by this assumption) the
general physical 4 solution satisfying the pull–in conditions (A) and (B) is
as follows:





xo = h
β2

β1 + β2

1
2

(
1 +

√
1 + 4

W (xo)
kh2

β1 + β2

β2

α2β1 − α1β2

β2

)

Vo =

√
2kh√

C(xo)

√
β2

β1 + β2
×

√
1
2 − W (xo)

kh2
(β1+β2)(α1+α2)

β2
+ 1

2

√
1 + 4W (xo)

kh2
β1+β2

β2

α2β1−α1β2

β2
.

(2)

So far, this expression is still implicit because R.H.S. of the first equation
depends on the amount of vdWE at the pull–in gap, W (xo). However,
the vdWE component is normally small at large distances and I propose
to substitute the bare value for the pull–in gap xo(0) = h β2

β1+β2
into the

R.H.S. of the equations (2). This is allowed for large h because expanding
the expression in series in W , one gets the difference of this approximation
and an exact result only in the second order of W/kh2 ¿ 1. In the opposite
limit an explicit solution of the first of Eqs.(2) must be substituted in the
second one.

2.3. ROLE OF VAN DER WAALS ENERGY

I present here a specific case of the general equation of state (2) when the
electrostatic force can be described via a planar capacitor model: C = co/x
and the vdW contribution can be written as W = ε/hα. For completeness,
I give here all logarithmic derivative coefficients: β1 = 1, β2 = 2, α1 = α

4 Bogus roots of this system of non–linear equations have to be discarded basing on
the physical meaning of the solution.
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Figure 2. The pull-in gap as a function of the initial device gap. Red (solid) curve
represents the selfconsistent result. Green (dash–dotted) curve shows the first–order van
der Waals correction. Lower dashed line gives classical MEMS result.

and α2 = α(α + 1). Substituting these values into Eq.(2), I obtain:




xo =
2
3
h


1

2
+

1
2

√
1 + 3α(α− 1)

W (xo)
kh2




Vo =
2
√

kh

3
√

C(xo)

√√√√1
2
− 3

2
α(α + 2)

W (xo)
kh2

+
1
2

√
1 + 3α(α− 1)

W (xo)
kh2

.

(3)

These equations may be further simplified for the small vdW forces:
keeping only leading terms in W , I obtain:





xo ' h
2
3

(
1 +

3
4
α(α− 1)

W (xo)
kh2

+ o(W/kh2)
)

Vo '
√

k√
co

(
2
3
h

)3/2 (
1− 9

4
α

W (xo)
kh2

+ o(W/kh2)
)

.

(4)

The role of the vdW correction is to decrease the pull–in voltage via in-
creasing the pull–in gap: the electrostatic term of the Eq.(1) becomes larger
because the vdW force brings the movable electrode closer to the ground
plane.

Numerical selfconsistent solutions of the equations (3) are presented in
Fig.2 and Fig.3. The classical result (MEMS limit) is shown as a dashed line,
a dash–dotted line represents a result of first–order perturbation theory,
while solid line represents the selfconsistent solution for the pull–in gap,
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Figure 3. The pull-in voltage as a function of the initial gap. Blue (solid) curve represents
the selfconsistent result as explained in the text. Red (dash–dotted) curve shows the
dependence in the first–order in van der Waals perturbation. Dashed line shows the
classical MEMS result.

xo, and the pull–in voltage, Vo. The material parameters taken for the
numerical estimate are k = ε/nm6, co = (2/3)

√
kV/nm. Typical value for

the ε is similar for almost any solid substance and is about several eV Å6.
In contrast to the classical result, the pull–in voltage as a function of

the initial separation, decreases to zero at h = hc (Fig.3). This is a critical
size of a smallest possible nano–electromechanical switch as discussed in
Refs. (Dequesnes, 2002a; Rotkin, 2002c).

CONCLUSIONS AND DISCUSSION

In summary, I presented in this section an analytical theory for simulation of
an electromechanical system. Using continuum model with a single mechan-
ical degree of freedom, I demonstrated the role of van der Waals forces for
nanoscale devices. A general equation of state and a closed form of solution
for pull–in parameters are derived for a planar capacitor NEMS. For the
NEMS operating at small gaps, the vdW correction is written explicitly. It
is discussed how the vdW interaction may restrict applicability of a classical
MEMS theory at the distances close to a vdW critical length. This length,
derived analytically, gives a principal physical limit for NEMS fabrication.
The theory presented in this section allows one to calculate the critical
gap as a function of material properties of the nanoswitch (to be found
elsewhere).

3. Van der Waals Energy for 1D Systems

In this section I will address theory of the van der Waals interaction in
nanotube systems. The van der Waals terms were shown to be extremely
important for the NEMS operation in the last section.
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The van der Waals interactions have been studied over a considerable
period of time. Starting with the phenomenological work of van der Waals
(van der Waals, 1873), our understanding has developed from classical
models (Reinganum, 1912) to quantum mechanics (London, 1930) and to
full statistical quantum electrodynamics (Dzyaloshinskii, 1961). The earlier
semi–empirical approach is still considered accurate and adequate for de-
scription of many phenomena and it involves transparent physics even for
very complex systems.

I model the vdW cohesion5 following the dielectric function approach.
This method was shown to be useful for various solids (Dzyaloshinskii,
1961) and gives a simplest correction within many–body approximation and
beyond the 6–12 Lennard–Johns (LJ) potential (Lennard–Jones, 1930).

3.1. CALCULATION OF COLLECTIVE MODES

The theory starts with the calculation of the dielectric function of a single
SWNT in RPA neglecting all modes except collective plasmon modes that
have most of the oscillator strength. These modes contribute the major in-
put to the total vdWE. For standard semiconductors the dielectric function
in a high frequency limit reads as:

ε(ω) ' 1− ω2
p

ω2
, (5)

where ωp stays for a characteristic plasmon frequency of a material.
Instead of writing the NT dielectric function (refer to papers (Louie,

1995; Li, 2002)) and obtaining its high–frequency limit, I derive the answer
from equations of motion of a charge on a cylinder surface:





∂j

∂t
= −ne2

m
∇ϕ

∂σ

∂t
+∇j = 0

, (6)

where n = 16/3
√

3b2 is the surface electron density in the graphene, m, e
are the electron mass and charge, ϕ is an acting potential on the surface
of the SWNT, which includes an induced potential of all charges on the
surface, σ is the fluctuation of the charge density related to the plasmon
mode, j is its current, ∇ is 2D gradient operator along the surface.

5 Repulsion is due to the Pauli principle and will not be addressed here.
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Figure 4. The 1D systems considered in the section. A. Double–shell nanotube. B.
Nanotube on a substrate. C. Two nanotubes.

To close the set of equations I write the surface boundary condition for
the fluctuation density σkµ using Gauss–Ostrogradskii theorem:

4πσkµ = ϕkµ
1

RKµ(kR)Iµ(kR)
, (7)

where Kµ(kR), Iµ(kR) are Bessel functions of imaginary argument and
of order µ taken at the SWNT radius R. k is the co–axial momentum
of the mode, µ is the circumferential quantum number of the mode. The
plasmon mode frequencies are given by the 1D series for each of allowed
µ = 0, ..Nat− 1, where Nat is the number of atoms along the circumference
in one real space unit cell of a SWNT. For example, for [10,10] armchair
nanotube it equals 20. The SWNT plasmon dispersion law is:

ωkµ = ωp

√
R2

(
k2 +

µ2

R2

)
Kµ(kR)Iµ(kR). (8)

Here I use the notation ωp =
√

4πne2/mR for the 2D plasma frequency,
where a characteristic length scale is given by the SWNT radius, R. This
frequency sets the energy scale for the collective modes of the tube and,
hence, for the vdWE.

3.2. VAN DER WAALS COHESION ENERGY

The vdWE is given by the difference in the total energy of the modes of the
electromagnetic vacuum due to the interacting systems approaching each
other. The simplest way to calculate it is to find the collective mode fre-
quencies as a function of the distance between the systems. The frequencies
depend on the distance because of the Coulomb interaction mixes the modes
that are independent for infinite separation. In the zero temperature limit
(which is appropriate for distances smaller than 1000 nm), only the zero–
point oscillation term survives. The van der Waals force is the derivative
of the zero–point oscillation energy with respect to the distance which is
implicitly included in the plasmon frequency as it will be shown below.
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3.2.1. Intertube van der Waals attraction
In this section I calculate the attraction energy between two parallel nan-
otubes (Fig.4C). I derive the plasmon frequencies from the quantum me-
chanical Lagrangian within second quantization formalism. The Lagrangian
for a single shell is:

L1 =
1
2

∑

k,µ

(
ω2

ω2
kµ

− 1

)
σ†kµϕkµ + h.c., (9)

where I use Heisenberg operators of the classical potential, ϕ, and the
classical charge density fluctuation, σ. This form of the continuum La-
grangian is consistent with the equations of motion as given in Eqs. (6).
The generalization of the Lagrangian for the case of two tubes (two shells)
is straightforward:

L =
1
2

∑

k,µ

(
ω2

ω2
kµ(1)

− 1

)
σ†kµ(1)ϕkµ(1) +

1
2

∑

K,M

(
ω2

ω2
KM (2)

− 1

)
σ†KM (2)ϕKM (2)−

1
2

∑

k,µ;K,M

V (1− 2)
(
σ†kµ(1)ϕKM (2) + σ†KM (2)ϕkµ(1)

)
+ h.c.

(10)

where first two terms are the free Lagrangians of the plasmon subsys-
tems and last term represents the interaction between subsystems (1) and
(2), which I treat perturbatively. The matrix elements, that represent the
Coulomb interaction between the tubes in the continuum limit, are the com-
binations of the Bessel functions (compare with the exponents in the planar
problem (Chaplik, 1971) and the Legendre polynomials in the spherical
problem (Rotkin, 1996)). In order to proceed further analytically I restrict
the expression for the Coulomb matrix to the components with k = K
and µ = M . This approximation has the same accuracy as before because
the dimensionless ratio of the interaction to the plasmon energy is small in
our problem. One has to keep only the first order of this parameter in the
secular equation for the plasmon mixing:
√√√√

(
− ω2

ω2
kµ(1)

+ 1

) (
− ω2

ω2
kµ(2)

+
Kµ(kR2)Iµ(kR2)
Kµ(kR1)Iµ(kR1)

)
= ∓Iµ(kR2)K2µ(kD)

Kµ(kR1)
(11)

here D is the distance between the tube centers and R1 and R2 are the NT
radiuses. The shifts of bare plasmon energy levels decrease with k and µ as
well as the Coulomb matrix element itself (given by the RHS of Eq.(11)): in
the limit of kD À 1 it approximately equals 1/

√
2π kD exp (−k(D−2R)).

The specific van der Waals energy per atom is the sum of the plasmon
zero point oscillation energies divided by the total number of modes. The
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integral over the first Brillouin zone of the SWNT has to be substituted for
the sum. I have considered the interaction between two tubes of the same
radius ∼ 7Å. The vdWE derived from the zero–point oscillation of those
mixed modes decays with D as D−4.5 (presented in Fig.5). In contrast to
one–body models this vdWE has a fractional exponent which reflects the
specific square root dispersion law of the bare plasmon frequency as given
by Eq.(8).

3.2.2. Cohesion to metal substrate
The solution obtained for the tube–tube interaction can be readily used to
yield the cohesion of the SWNT to the metallic substrate (Fig.4B) because
the electric field distribution near a flat conductor is given by an image
charge of the opposite sign. Hence, one can choose the odd solution (with
the minus sign) of the secular equation (11) while the even solution has
to be discarded. The same integration over the Brillouin zone gives now
a slower decay of the vdWE. It is because only one subsystem (SWNT)
possesses the 1D plasmon modes in this case. The exponent is −3.5 as
compared to −4.5 for two SWNTs (Fig.5).

0 . 2 0 . 3 0 . 5 0 . 7 1 1 . 5

1 1 0 - 6

0 . 0 0 0 0 1

0 . 0 0 0 1

0 . 0 0 1

0 . 0 1

l o g  W ,  e V

l o g  D ,  n m

Figure 5. The calculated vdWE: (Upper) for nanotube on a substrate; (Lower) for two
identical nanotubes of R = 7Å.

3.2.3. Inter–wall cohesion in DWNT
The energy of the inter–wall attraction in a multiwall nanotube seemed to
be an immeasurable parameter before the discovery of the peapod struc-
tures, C60@SWNT, and their transformation in double wall nanotubes
(Fig.4A). The process of creation of the second wall inside the initial nan-
otube is favorable owing to the inter–wall cohesion energy gain.
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The Coulomb interaction between shells is given by continuum electro-
statics in the same way as before. Because of the axial symmetry of the
problem only modes with the same quantum numbers (µ = M , k = K) are
mixed and the interacting plasmon Lagrangian (10) is exactly diagonal in
Fourier space. The secular equation is as follows:

√√√√
(
− ω2

ω2
kµ(1)

+ 1

) (
− ω2

ω2
kµ(2)

+
Kµ(kR2)Iµ(kR2)
Kµ(kR1)Iµ(kR1)

)
= ∓Kµ(kR2)

Kµ(kR1)
(12)

The plasmon frequencies depend on the radii of both shells. I plot here
the vdW cohesion energy as a function of the intershell distance (Fig.6).
This parameter can vary and can be measured experimentally(Iijima, 2001).
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Figure 6. The dependence of the vdWE for a double wall nanotube on the distance
between shells, δ (dots); and the linear fit (solid line) with the exponent 2.9.

CONCLUSIONS AND DISCUSSION

In this section a continuum theory has been presented which gives a fast and
accurate qualitative estimation of a many–body contribution to dispersion
attractive forces for 1D tubular systems made from layered materials. I
have used a formalism of a dielectric function and have assumed that main
term in the many–body van der Waals cohesion is due to collective modes
(plasmons). The plasmon frequencies are explicitly calculated. As a result
of the plasmon mixing by the Coulomb interaction, the total system energy
is lowered by the van der Waals contribution. A distance dependence of
the new (many–body correction) term has a fractional exponent, 5/2 for
tube–metal cohesion and 7/2 for tube–tube interaction, unlike an one–body
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energy given by LJ 6–12 potential. It was known that a direct summation of
the 6–12 atom–atom interactions for the carbon nanotubes gives exponents
of 3 and 4 for tube–substrate and intertube cohesion, respectively.

Our approach is almost independent on the structure of interacting
lattices, which is in contrast to the one–body LJ potential. It can be easily
applied for the cohesion of the tube to not graphitic substrate. This vdWE
contribution is especially important for the description of recently studied
friction properties of multiwall nanotubes and nanotubes on the graphite
(Yu, 2000; Cumings, 2000; Falvo, 2000).

4. Atomistic Electrostatics for Nanotube Devices

Now I switch to how the quantum properties of the nanotubes may reflect
in the macroscopic behavior of the nanotube based device. I have already
shown in the first section that the capacitance of the nanotube to the
backgate is one of important parameters in the modeling of the nanoelec-
tromechanical switch. Recent success in a fabrication of nanotube based
nanoelectromechanical devices (Akita, 2001; McEuen, 2002) confirms that
this theoretical research is very topical. Here I discuss how the classical
meaning of the electrostatic capacitance changes for a nanoscale system.
The transport properties of a SWNT device are also determined at some
extent by charge distribution along the nanotube channel (Rotkin, 2002d).
This charge density can be easily calculated on the base of the theory for
the quantum capacitance of the nanotube (Bulashevich, 2002).

4.1. FUNDAMENTALS OF SWNT ELECTROSTATICS

4.1.1. Classical vs. Quantum Modeling
The selfconsistent calculation of the equilibrium charge density for the
SWNT with a moderate mechanical deformation has been required to sup-
port a recent modeling of nanotube electromechanical systems (Dequesnes,
2002a; Dequesnes, 2002b; Rotkin, 2002c). Knowledge of the induced charge
allows us calculating an electrostatic energy of the system, which can be
rewritten in terms of a distributed capacitance. I demonstrated that this
atomistic capacitance has two contributions: purely geometrical term and
another one, specific for the nanotube. It is very natural to call the second
term ”a quantum capacitance” as a similar definition was proposed for a
two–dimensional electron gas system in Ref. (Luryi, 1988).

It was found that a statistical description (similar to what was used
in Ref.(Odintsov, 2000)) is valid and gives a fairly good estimate for the
charge density as compared to the quantum mechanics (see also Sec.4.2.1).
The applicability of the macroscopic electrostatics modeling to an equilib-
rium charge distribution has been already discussed in Refs. (Bulashevich,
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Figure 7. Geometry of two single–wall nanotube devices studied in the section: (A)
cantilever NEMS, and (B) string NEMS.

2002; Rotkin, 2002e). Same arguments may hold for a system shifted from
equilibrium slightly, e.g., for description of a current carrying device (which
can be found elsewhere (Rotkin, 2002d)). The reason for this ”classical”
behavior of so small quantum object is two–fold. Firstly, the selfconsistent
electrostatic energy level shift is the same for every subband of the SWNT in
a first approximation (Petrov, 2002). From the other side, the SWNT has a
very high depolarization factor as it was noted by Louie (Louie, 1995). The
higher the polarization of a molecular system, the closer is the selfconsistent
polarizability to its classical limit which is R2/2 for the SWNT (Li, 2002),
and R3 for a spherical fullerene (Rotkin, 1994). The polarization of very
mobile pi electrons in nanotubes is very high, hence, one is allowed to
apply a ”classical” theory, taking into account the quantum mechanical
modification of the electronic structure perturbatively.

I studied a SWNT device in a ”string” geometry: it comprises the
straight nanotube which is fixed (suspended without a slack) between two
metal side electrodes over a backgate electrode (Fig.7B). The side electrodes
are kept at the same potential with respect to the backgate. This design is
standard for electromechanical systems, and the first experimental realiza-
tion of a single SWNT NEMS appeared recently (McEuen, 2002). I used
this and cantilever geometry (Fig.7A) for theoretical study of the nanotube
electromechanical switch in Ref.(Dequesnes, 2002a).

4.1.2. Principles of Compact Model for Nanotube Devices
The continual compact modeling of the nanotube device bases on three
elements: (i) local statistical description of the charge density, (ii) perturba-
tion theory for changes in the charge density due to nanotube deformations
and(or) external fields, and (iii) external screening which results in a short
range Coulomb potential and allows obtaining analytical expressions. Hy-
pothesis (i) has been proved by comparing the result of the quantum
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16 SLAVA V. ROTKIN

mechanics with the selfconsistent solution of the Poisson–Boltzmann equa-
tions (see Sec.4.2.1). Second supposition is valid until the deformation
or(and) axial component of the external field is not too large, which is true
for SWNT applications in nanoelectronics but may not fulfill for nano–
actuators. The change of the NT density of states with applied external
transverse field is studied in Ref. (Li, 2002). It was demonstrated that for
the nanotube, which is a one dimensional nanoscale system, it is not possible
to separate pure material properties and effects due to geometry/design
of the device. The electronic properties of nanotube–in–device differ from
what one obtains for a free tube in vacuum.

D O S ,
a r b . u n .

E F

E ,  a r b . u n .
0

Figure 8. Density of states of a metallic SWNT near the Fermi level: shaded area
represents an extra charge induced in the SWNT by shifting the Fermi level away from
a charge neutrality level.

4.1.3. Calculation of Atomistic Capacitance
In order to calculate the charge distribution of the straight SWNT as a
function of the total acting potential I represent the latter as a sum of the
external and induced potentials:

ϕact = ϕxt + ϕind. (13)

The statistical model supposes that the induced charge is an integral over
the nanotube density of states from a local charge neutrality level to a local
chemical potential which becomes a Fermi level at zero temperature (see
Fig.8). The local chemical potential is supposed to follow the local acting
potential. Great simplification is achieved in case of metallic nanotube op-
erating at low voltage when the Fermi level shifts within the first subband.
Then, the electron dispersion is linear and the density of states is constant
and equals νM = 8/(3bγ). Here b ' 1.4 Å is the interatomic distance and
γ ' 2.5 eV is the hopping integral. Within this approximation of the linear
energy dispersion in the lowest subband, the induced charge density reads
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as:
ρ(z) = −e2νMϕact(z). (14)

I note that Eq.(14) holds in one–dimensional (1D) case; while in 2D the
charge density is proportional to the electric field (first derivative of the
potential) by Gauss–Ostrogradskii theorem, and in 3D the charge density
is proportional to the Laplasian of the potential by Poisson equation.

In order to obtain a selfconsistent solution for the charge density I
calculate the induced potential with use of a Coulomb operator Green’s
function, G(r, r′):

ϕind(r) = 4π

∫
G(r, r′)ρ(r′)dr′. (15)

The Green’s function of a 1D system is known to have a logarithmic
singularity until some external screening is considered. In case of a nanotube
device, this screening is due to the closest gates/contacts. An equation,
giving the nanotube charge density implicitly, follows from Eqs.(14,15) and
reads as:

− ρ(r)
e2νM

− 4π

∫
G(r, r′)ρ(r′)dr′ = ϕxt(r). (16)

The equation can be inverted analytically in simple case. In general, it
allows only numerical solutions or may be expressed as a series.

An interesting result of our study is that the nanotube may be divided
in three parts: two contact regions and a “central” region. The side parts
are the regions near the contacts (NT ends) of a length about several h
(R) long, where h is the distance to the gate. Aspect ratio of devices of the
state–of–the–art of nanotube technology is very high, which means that
the length of the nanotube, L, is much larger than the h. Then, the central
region of the nanotube covers most of the device length.

The electrostatics of the central region is elementary and allows an
analytical solution for Eq.(16). Because of the screening of the Coulomb
interaction by the backgate and the valence electrons of the nanotube, the
corresponding Green’s function is short–ranged. Therefore, (at the distance
about 2−3h from the contact) the selfconsistent charge density is given by
a simple expression:

ρ ' ρ∞ = − ϕxt

C−1
g + C−1

Q

' −ϕxt Cg

(
1− Cg

CQ

)
, (17)

here I used notations C−1
g = 2 log

(
2h
R

)
and C−1

Q = 1/(e2νM ) for the in-
verse capacitance (potential coefficient) of a straight metal cylinder and
the quantum correction, respectively. ρ∞ stands for an equilibrium charge
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18 SLAVA V. ROTKIN

density of the SWNT, calculated at the distance from the side electrode
much larger than the distance to the backgate, h.

4.2. MODEL EXTENSIONS

4.2.1. Quantum Mechanical calculation
I derived the Green’s functions for several realistic device geometries and
calculated the selfconsistent charge densities. These charge densities were
compared with the results of the quantum mechanical computation. I solved
joint Shroedinger and Poisson equations for the valence pi electrons of a
metallic armchair [10,10] SWNT in one subband approximation (in full
neglecting the intersubband or sigma–pi mixing which has been estimated
and is of minor importance for our problem). Aside such purely quantum
effects as quantum beatings at the ends of the finite length nanotube, the
statistical, semi–classical and quantum mechanical charge distributions are
almost identical (a cross check has been done with use of periodic boundary
conditions to exclude the finite length effects). Fig.9A shows the typical
charge density distributions calculated with use of a tight–binding theory
and the Boltzmann equation for the cantilever SWNT of 50 nm long. I must
conclude that a simple statistical description works fairly well for the case
of straight ideal single wall nanotube. A similar result has been obtained
for the string SWNT with two side contacts (Fig.9B).

0 1 0 2 0 3 0 4 0
z , n m

0
0 . 2
0 . 4
0 . 6
0 . 8

 ,e
/nm

r

0 1 0 2 0 3 0 4 0 5 0
z , n m

0
0 . 5
1
1 . 5
2
2 . 5

 ,e
/nm

r

Figure 9. Specific charge density for two devices: (Right) string and (Left) cantilever
NEMS. The solid oscillating (red) curve is a result of the quantum mechanical calculation.
The solid (blue) line is a solution of joint Poisson and Boltzmann equations. The dashed
(green) line is by the analytical approximation.

4.2.2. Capacitance of Distorted SWNT
The equation for the equilibrium charge density is valid for a distorted
nanotube as well as for an ideal straight nanotube. In case of slightly bent
SWNT, one has to use in Eq.(17) the capacitance of the bent metallic
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cylinder, C−1
g (h(z)), instead of the logarithmic capacitance which is valid

only for a straight one. Thus, the atomistic capacitance of the distorted
SWNT depends on its shape:

C(z) ' 1
C−1

g (h(z)) + C−1
Q

' Cg(z)

(
1− Cg(z)

CQ

)
. (18)

This analytical form of solution for the device electrostatics is very useful
for calculating electrostatic forces in various NEMS devices.

CONCLUSIONS AND DISCUSSION

In this section NT electrostatics is studied and equilibrium charge density
calculation is performed, which are foundations for a continuum device
theory for nanotube electromechanical systems and nanotube electronics.
Concept of atomistic capacitance has been introduced. This model gives
a fast and accurate method for a simulation of the charge density for
the nanotube of an arbitrary shape displaced by a voltage applied to the
nanotube end(s). The one–dimensional charge density is given by the total
atomistic capacitance of the nanotube, which is not defined solely by ma-
terial properties of the nanotube itself. It depends also on the environment
because of the charge in a low–dimensional electronic system of the nan-
otube is screened by near placed electrodes. An analytical expression for
the atomistic capacitance of a nanotube subjected to moderate distortions
is found as well as for an ideal nanotube. The role of quantum effects is
evinced and an expression for a NT quantum capacitance is derived.

5. Summary

In this chapter I presented several examples of a state–of–the–art modeling
of nanotube device systems and focused on analytical models rather than
numerical approaches to give a clear qualitative physical picture of quan-
tum and classical phenomena at the nanoscale. I present the continuum
modeling approach which allows one to combine an atomistic computation
with a real device engineering, and gives a powerful tool for theoretical
study of nanodevices.
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