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ABSTRACT

The electronic properties of carbon nanotubes (NTs) in a uniform transverse field are investigated within a single orbital tight-binding (TB)
model. For doped nanotubes, the dielectric function is found to depend not only on symmetry of the tube, but also on radius and Fermi level
position. Band gap opening/closing is predicted for zigzag tubes, while it is found that armchair tubes always remain metallic, which is
explained by the symmetry in their configuration. The bandstructures for both types are considerably modified when the field strength is large
enough to mix neighboring subbands.

1. Introduction. The response of nanotubes to external
electric fields is of interest both for transport devices1 and
for nanoelectromechanical systems.2,3 When the transverse
field strength is large enough to couple neighboring sub-
bands, it is not appropriate to use the conventional 1D
approximation, which assumes a uniform charge and poten-
tial distribution along the NT circumference. In this article,
we address the issue of how the NT material properties are
modified when the electronic potential along the circumfer-
ence is no longer uniform. We use a singleπ orbital tight-
binding model in a self-consistent way to account for the
screening effect caused by the nonuniform charge distribution
along the NT circumference.

To our knowledge, this is the first study that considers a
wide range of applied transverse electric field conditions.
Within the limit of relatively weak electric fields, we obtain
different behaviors for semiconducting and metallic nano-
tubes, either intrinsic or doped. The weak field condition
can be expressed asE , ta/(eR2) (∼0.1 V/Å for R ) 8 Å),
wheret ) 2.5 eV anda ) 2.49 Å are the hopping integral
and lattice constant of two-dimensional graphite respectively,
as defined for example in ref 4. One may safely use a rigid
band approximation in this weak field limit, without severely
perturbing the original bandstructure. We also investigate
the regime of relatively strong fields,ta/(eR2) < E , t/(ea),
where bandstructure modifications need to be considered and
subband mixing cannot be neglected, while a TB approach
can still be used. Also for this regime, qualitatively different
behaviors of semiconducting and metallic NTs are found.

The paper is organized as follows. In section 2 we calculate
the transverse polarizability for nanotubes of various sym-
metry, considering a linear approximation and no phonon
contributions. The dependence of the polarizability on tube
radius, symmetry, and Fermi level position is discussed. The
role of the Fermi level is not related to intraband free carrier
transitions, but rather to interband transitions between
neighboring conduction/valence bands. We then examine the
effect of a uniform transverse field on the bandstructure of
nanotubes in section 3. Because of the symmetry of the
nanotube, the subbands of the tube are mixed according to
certain selection rules and the bandstructure and band gap
are correspondingly modified. Several interesting phenomena
are predicted to happen in the transverse field: band gap
opening/closing, energy subband flattening and over-bending,
lifting of subband degeneracy, and generation of multiple
valleys. These effects can be used to modulate the band gap,
effective mass, and carrier densities of NTs and to enhance
the density of states (DOS) at the Fermi level. For example,
it has been suggested that opening of energy gaps of
metalic nanotubes under a local transverse electric field can
be used for designing quantum switches.5 Our calculation
shows that there exists a critical magnitude of the field
strength beyond which the gap starts to decrease and
oscillates further on.

For simplicity, only zigzag (both metallic and semicon-
ducting) and armchair tubes are considered in the full-band
TB calculations. The extension of the numerical results to
chiral tubes is confirmed by the analytical results within the
kB‚pb method.
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2. Transverse Polarizability of a NT in a Weak Electric
Field. An external electrical field creates an induced dipole
momentp on the nanotube, which can be estimated through
the calculation of the polarizability ofπ electrons.6 The
unscreened linear polarizabilityR0(ω) relates the dipole
momentp to the total electrical fieldEtot with p ) R0Etot,
which accounts for the contribution from the single particle
excitation. The dielectric function, defined asε ) Etot/Eex,
and the actual (or screened) polarizabilityR can be easily
retrieved fromR0 as

As discussed above, when the field strength is less than
ta/(eR2), one can use wave functions and energies of the
electron states obtained without external perturbation. Results
of the TB calculation in the static limit are shown in Figure
1, where metallic and semiconducting tubes are compared.
The unscreened polarizabilityR0 is quadratically proportional
to R2 and is dependent of the conducting properties (sym-
metry of the tube). As the radius of NTs increases,R0 can
be fitted by a universal expression:

The corresponding dielectric functionε is

which agrees very well with previous results.6,7 For com-
parison, we have calculated the transverse polarizability using
the kB‚pb scheme.8 This approximation is equivalent to the
linerization of the electron energy dispersion in the vicinity

of the Fermi points( kF. The cutoff ofkmax ) 1/R is used
for the calculation and only the lowest subbands are included.

With these approximations, the analytical expression for
the polarizability is

Here,VF ) x3at/2 ≈ 5.4 eV Å is the Fermi velocity, with
p taken to be unity. We also have for the integration constant,
â ≈ 0.463. The value ofR0, calculated with thekB‚pb scheme
in eq 4, is smaller than the numerical result obtained by the
full-band calculation, eq 2, but it provides a more intuitive
understanding of the physical factors that affect the polar-
izability.

The independence of the dielectric function on the
geometry (NT radius) holds only as long as one can verify
the condition that the NT bands are half-filled. However,
we notice that some nanotubes are naturally doped during
the growth process, in which case the Fermi levelEF

would shift away from the charge neutrality level, and
similarly under conditions of charge injection or application
of an external bias to the nanotube. In these cases, the
polarizability depends on the occupation or depletion of new
states.

Let us assumeEF > 0 (note that the sign ofEF does not
affect the results) and define the unscreened polarizability
for a metallic tube as

where ∆R0
met,i(EF, R) accounts for the contribution due to

the occupation ofith conduction subband. At low Fermi
energy, thekB‚pb approximation gives

Here,H is the unit step function (H[x] ) 1 whenx > 0 and
0 otherwise), andEb2 ) VF/R is the energy of the bottom of
the second subband.

If one considers the low energy properties of nanotubes,
thekB‚pb method provides a reasonable approximation. When
the Fermi level is within the first subband, the unscreened

Figure 1. Plot of R0 vs R2 for armchair and zigzag tubes. The
fitting lines areR0 ) 1.96R2 andR0 ) 2.15R2 respectively.
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polarizability and the dielectric function for a metallic tube
of radiusR can be written as

where the prefactor 4e2/πVF is the dimensionless density of
states of the first subband.

As shown above, the shift of Fermi level away from the
charge neutrality level changes considerably the polarizability
and, consequently, the nanotube dielectric function. The
dielectric screening increases with the radius of the tube,
according to eq 8, in contrast to the screening of a neutral
tube, which is independent of the radius. This is because of
the strong dependence onR found in the transition energy
of the main terms in the expressions forε, ∆E ∼ VF/R. One
must conclude that the dielectric properties of a nanotube
depend not only on radius and type of bandstructure (metal
or semiconductor), but also on the charge carrier density in
the tube.9 This charge density varies with applied field if
the tube is connected to electron reservoirs and charge flow
through the tube is allowed. Thus, the calculation of the
polarizability of the nanotube in a device environment is a
complicated problem that has to be solved self-consistently.

3. NT Bandstructure Modification in a Strong Field
Limit. When the applied field is strong enough to mix
neighboring subbands, that iseE Rg ta/R, the bandstructure
of a nanotube is considerably modified. We have calculated
the energy bands of a [10,10] armchair tube in electrical
fields of different strength. Since we are interested in the
low energy region of nanotubes, only subbands in the energy
range|E| e t are shown in Figure 2. We emphasize that the
two lowest subbands always cross, even at a very large field,
although the bandstructure has been noticeably modified.10

At E ) 0.1V/Å (see Figure 2b), the Fermi points shift toward
theΓ point (k ) 0) and the two lowest subbands are flattened
near the Fermi points. At the same time, all states that were
degenerate with respect to the magnetic number,( m, split.
The splitting becomes more obvious closer to the lowest
subbands. The large degeneracy at the first Brillouin zone
(FBZ) boundaryk ) π/a is also lifted, and bending is
observed for all subbands at this point.

As the field strength increases, the two lowest subbands
show oscillatory bends with multiple nodes generated, while
the first node moves even closer tok ) 0 (Figure 2c). For
other subbands, the splitting of( m subbands become more
significant.

This bandstructure modification is clearly seen in the
density of states of the nanotube, as shown in Figure 2(d-
f). As the field is applied, the low energy plateau displays a
bump which increases with field. The enhanced DOS near
E ) 0 is due to the flattening and bending of the two lowest
subbands. On the other hand, the lifting of( m degeneracy
of all doublets and the bending at the FBZ boundary split
the single VHS peaks into multiple ones. Although the DOS

structure (Figure 2) changes considerably as compared to
the caseE ) 0, all DOS features may be attributed to specific
symmetry of the states. We stress that many experimental
techniques, ranging from Raman scattering to scanning
tunneling spectroscopy use high electric fields to probe the
electronic properties of a nanotube, which may perturb the
underlying electronic structure. Our theoretical results may
help to understand disagreements between experimental
measurements and predictions for DOS, effective masses,
and the locations of VHS peaks. For example, we obtained
different shifts of optical transition energyE11 andE22.

For quasi-metallic zigzag tubes, the physics is quite
different. At weak fields, a band gap opens at the Fermi point
k ) 0. When the total field is smaller than a critical field
Ec, the gap is quadratically proportional to the product of
the field strengthE and the radiusR, as shown in Figure 3.
The analytical expression for the gap can be obtained within
a degenerate perturbation theory:

When the field increases beyondEc, the minimum gap shifts
away from the original Fermi pointk ) 0 and the gap starts
to decrease. The value of the critical field depends on the
nanotube radius (see Figure 3 inset) and is fitted to be

Thus, the degenerate perturbation theory which is used in
deriving eq 9 is no longer valid, when the external potential
exceeds the energy distance between neighboring subbands,
∆E ∝ VF/R.

Figure 2. Bandstructures (a,b,c) and DOS (d,e,f) of a [10,10]
armchair tube at various transverse electric fields:E ) 0, 0.1, 0.3
V/Å. Higher bands (E > 2.5 eV) are not displayed.
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It may be interesting for electronics applications to be able
to modulate locally the gap of the nanotube. Our study shows
that for metallic zigzag NT one can, indeed, open the gap.
However, the gap cannot exceed some critical value beyond
which a further increase of the field begins to close the gap.
From eqs 9 and 10, the critical band gap for a metallic zigzag
tube [n ) 3k, 0] is approximately

which is almost negligible for nanotubes with large radius
(n > 20). Although larger radius NTs may seem more
attractive because the critical field is smaller, in these
structures the maximum gap will also be smaller. On the
other hand, we notice that for very narrow NTs, theσ-π
mixing may results in the opening of secondary gaps, which
may prohibit using very narrow NTs for band modulations.

The transverse field effect discussed above, including gap
opening or preserved subband crossing as well as degeneracy
lifting, can be explained by using methods of group theory.
For a detailed description of a group theory technique for
nanotubes, we refer the reader to ref 11. For armchair and
zigzag tubes, the full set of quantum numbers includes the
longitudinal momentumk, the angular momentumm, and
parities with respect to the vertical mirror reflectionσv and
the horizontal mirror reflectionσh.11 Of the 4n bands (for a
[n, n] or [n, 0] tube), only those withm ) 0, n have definite
even or odd parity aboutσv and they are nondegenerate (spin
degeneracy is not relevant here and is not discussed). All
the other bands are doubly degenerate at zero field with
respect to+ m and- m indices.

We assume that the components of the electron state on
different sublattices are not mixed when the magnitude of
the field satisfieseEac-c , t, where ac-c is the nearest
neighbor distance in the CNT. Thus, a uniform transverse
electric field possesses an odd parity with respect to a vertical

mirror plane of the nanotube. Due to the commutation of a
perturbed HamiltonianH ) H0 + eEx and the vertical parity
operatorσv, parities with respect toσv remain good quantum
numbers. For an armchair tube, the two crossing subbands
(m ) n, s ) ( 1) have oppositeσv parities.

In the presence of a transverse field, the degeneracy of
these two subbands atkF ) 2π/3a is lifted in the second
order of perturbation theory, but since they have different
σv parities, the crossing at the new Fermi points is not
prohibited. In contrast, for metallic zigzag tubes, electron
states in the four lowest subbands (m ) ( 2n/3, s ) ( 1)
do not have definiteσv parities and can be mixed by the
external field in a high order perturbation theory by coupling
to the states withm ) 2n/3 ( 1. Two pairs of new states
with opposite parities with respect toσv are the result.
According to the anticrossing rule for NTs subbands noticed
in ref 12, the degeneracy atkF ) 0 will be lifted. Similarly,
the splitting of the degenerate subbands( m is explained
by their mixing to the other subbands by the transverse field.
Because of the selection rulem′ ) m( 1, the two degenerate
states|ψm

(0)〉 and|ψ-m
(0) 〉 can only be mixed and split at a high

order of perturbation theory. Thus, the coupling strength
between|(m〉 states depends on min [m, n - m], which is
a “distance” between these two states and the nondegenerate
states|0〉 and |n〉. This explains why, at low energy, the
splitting is more prominent for subbands in armchair tubes,
i.e., nearm ) n and almost indiscernible for subbands in
zigzag tubes, i.e., away fromm ) 0, n.

In summary, we studied for the first time the effect of
doping and/or charge injection on the transverse polarizability
of nanotubes. We found that for metallic tubes, the polar-
izability grows quadratically withEF and scales asR4 at low
Fermi levels, leading to an enhancement of the dielectric
function for the doped nanotubes. With an increase of the
applied field, the bandstructure is considerably modified due
to the lowering of symmetry. The zero-gap structure of
armchair tubes is always preserved while gap opening and
closing occur in metallic and semiconducting zigzag tubes,
respectively. Degeneracy lifting of( m subbands and the
flattening of lowest subbands are predicted, which changes
the shape and magnitude of the peaks in the density of
states.Thus we conclude that formation of multiple valleys
in the bandstructure, enhancement of DOS at the Fermi level,
and engineering of subbands with required effective mass
of charge carriers are possible with a transverse electric field.
We also predict a maximum band gap which opens in a
metalic tube and gives an optimal range of nanotube radius
for band gap engineering.
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Supporting Information Available: Three .gif animated
files illustrating electronic bandstructures of a [10,10], a
[17,0], and a [18,0] nanotube under transverse electrical fields

Figure 3. Band gap variation of a [18,0] tube with increasing field
strength. The arrow indicates the critical field strengthEc (see text).
Inset: Ec as a function of the radiusR. Open circles represent the
numerical results for metallic zigzag tubes and the dashed line is
the fitting curveEc ) VF/eR2.
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in the range from 0 V/Å to 0.3 V/Å with step of 0.03 V/Å;
each 11 frames. This material is available free of charge via
the Internet at http://pubs.acs.org.
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