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A theory of drift-diffusion transport in a low-dimensional field-effect transistor is developed. Two
cases of a semiconductor nanowire and a single-wall nanotube are considered using self-consistent
electrostatics to obtain a general expression for the transconductance. This quantum-wire channel
device description is shown to differ from a classical device theory because of the specific nanowire
charge density distribution. @003 American Institute of Physic§DOI: 10.1063/1.1604462

In the present work we consider the carrier distributionsufficiently high to support a local charge equilibrium. This
in a quantum-wire channel, which may be a semiconductois likely valid the most nanowire FETs and, at least, for some
nanowire or a carbon nanotube, placed between two metalf nanotube devices. In the opposifeallistic) limit, the
electrodes over a gate electrode. This calculation yields thehannel conductance has less influence on the CVC. The
current—voltage characteristi€VC) and transconductance ballistic modet is not considered in this work.
of a quantum-wire field-effect transist@FET). This type of We measure the bias from the middle point in the wire
FET is comprised of a fully constrained one-dimensional(x=0) so that the source and drain potentials afé,/2. In
(1D) electron gas in the quantum-wire channel. The 1D electhis case, the potentials along the wire and concentration
tron system is described both classicailg., for the semi- changes caused By, the contact potentials, and, are,
conductor nanowiteand quantum mechanicallje., for the ~ respectively, symmetric and antisymmetric functions xof
nanotubg The electrostatic characteristics of the device andnd denoted by subscripgsanda: ¢ 5(x) andng (x).
the transistor properties depend on the geometry of the TNhe potentialsps,(x) can be divided into two parts: the

source/drain and gate electrodes and are discussed. componen_tsﬁgq(x) created by the electrodémcluding the
In this letter, we focus on analytical rather than numeri-Work function difference if not zejp which should be found

from the Laplace equation containing no channel charge den-
sity and the component&u;a(x), caused by the electron
charge in the channet eng 4(x). We assume that the char-
acteristic lengtl =min{L,2d} determining the potential and

cal simulations. Numerical results on the transport propertie
of nanotube-FETs have been published recénflydere we
concentrate on a universal analytical solution for the trans
Egripeg;ﬁ tl\lt\)/E?ChuEgsrn ;?ieirr;ﬁcglr:fsuizfrr;dagr%r\(/)i)ém?;c:rq plgr(jensity distribution along the channel, exceed notigeably the
ticular, we present analytical expressions for conductance inan0W|re/rl1anotube radius. .In this case, the. rela_t|70nsh|p
etweengg ,(x) andng,(x) is approximately linedr’ and

a 1D-FET at zero drain bias, the cutoff gate voltage an ! . . .
. . or a nanowire with nondegenerate carriers, the curre@n
subthreshold CVGnear the cutoft Finally, numerical solu- be written as

tions for the nonlinear part of the CV(@t nonzero bigsare
given when analytical expressions are not available. i d¢°
The 1D-FET includes source and drain electrodaes —=n(x)d——
our model they are assumed to be idenjicainnected by a X
nanowire/nanotube— L/2<x<L/2, and a gate electrode
separated by a thin dielectric layer of the thickndsswWe
assume the quantum-wire channel to be uniformly dope@

with 1D charge densitf=constg). In pristine nanotubes, the last term corresponds to the diffusion current, which in

;\IZO’ thcl:))ugh chargr]]e |njhect|on| duztolthe vzork function dif- 1D transport cannot be neglected in comparison with the
erence between the channel and electrodes can occur ajgy cyrrent. For a nanotube with degenerate carriers, the

determines the equilibrium carrier density profile. When thethermal energykT should be replaced by the Fermi energy
structure is in operation, the source-drain volt¥gecauses a 4,4 Eq.(1) reads as

currentj along the channel and a redistribution of the carrier

concentration. A voltageVy is applied to the gate and i do° dn

changes the concentration in the channel, which controls the —=n(x)a—eC{1n(x)&, (2
FET transport. We employ the drift-diffusion model in this

letter and assume that the scattering rate in the channel {§nqre C{1:C’1+C’l is the inverse capacitance of the

nanotube derived in Refs. 6 and 7 and containing both the
3Electronic mail: rotkin@uiuc.edu logarithmic geometrical capacitan0@§1~log(lla), similar

dn

ax’ (1)

2e (I) KT
—In| =|n(x)+ —
& a e

wheren=ng+n,, ¢°=¢2+ ¢2, ¢ is the ambient dielectric
ermittivity, u is the carrier mobility. The second term de-
cribes the drift in the self-consistent fie{quSia(x) and
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to Eqg. (1) and the quantum capacitance of the 1D electrorthe screening length in the contact material and thus assumed

gas,CQ=1/(e2v)zO.31 for one degenerate subband of ato be infinite.

single wall nanotube. For the linear case, in the limA>1 when the expres-
The boundary conditions(*=L/2)=n. assume that the sion Eg. (3) is applicable, the dimensionless curreint

source and drain contacts support a constant concentration atjL/(ngenVy) has an explicit form

the contacts, independent of the applied voltage. The condi- B

. B . : . 2 dt 1

tion n,=N corresponds to an ideal Ohmic contact not dis- _ Zf ()

turbing the electrical properties of the wira,<N corre- o 1+g¥(t)|

sponds to a Schottky contact ang>N describes the _ i , ,

situation where the carriers are provided by electrodesNere 9=2¢Vq/[menyIn(l/a)] is the dimensionless gate

oltage and for nc=ny:  W(t)==5(—1)"(2n

which is often the case for nanotubes. We are aware of imY
portance of Schottky barriet§B), often forming at the con- + 1)cogat(2n+1)]exf —md(2n+1)1L. The channel conduc-

tacts, for transport in a nanotube SB—FEF Our theory tivity near the cutoff is determined by the point of minimal

can be generalized in a straightforward manner for this cas&€oncentration, which in a symmetric structure i&t0, and
Forn.=N, in the absence of current we have the trivial 1€Nce; is determined by the properties'b(t) at smallt.

answer for the equilibrium concentration profil,=N  EXPansion of’(t) allows us to integrate Ed4) and obtain
=constk). For n;#N in the close vicinity of the contacts -d
\/ (g—go)sinf< )

there exists a finite charge densgyN—n.) in the channel —
and its image charge e{N—n.) beyond the metallic con- = L ,
tacts. But this means a discontinuity in the charge density at V3 cos}‘(w—d)
x=*L/2 and brings into question the adequacy of the con- L
tinuum approach, which assumes smooth charge and poten-

tial variations. To avoid this difficulty, we measung from 7T
ne by assumingip(x) =n¢+Ang(x). Theng(x) represents Yo 2
the potential for a wire with uniform chargg{N—n_;) be- ) ) ) o
tween metallic contacts=~+L/2 as calculated in Ref. 5. 1hus, the transconductand€dg increases in the vicinity of
This is just the charge which, together with its images, haSutoff as~(9—9go) _
discontinuities at the contacts. Its potentitdking into ac- So far we have assumed that the source and drain con-
count its image in the gate electrodzan be calculated ex- tacts are bulk. _However, there al§o exist structure_s with 2D
actly for each contact geometry. and even quasi-1D contadizanowireg where potential pro-

Direct integration of the drift-diffusion equatiofEq. 1188 ¢c, ¢g, and¢, will have essentially different depen-
(1)] transforms it into an algebraic equation fng(x) de- dengg with smgulanﬂeg near the contattShe resulting
termining it for a giveng.(x). For a degenerate nanotufze m'od|f|ed FET characteristics have begn glso c;alculatecj a}nd
for (262N/ekT)log(/a)>1], the equation reduces to the di- will be_ publlshed_ elsewhere. The qyantltatlve dlffe_rence isin
rect proportionality:Ang(x) = C, (). a part|CL_1Iar pr_oﬂle of thel (t) function. It_s expansion near
Now we can find the analytical expressions fan and the maximum is, of course, also quadratic, and hence, results

; - da= Alq—q.) - 12
n, andj if we restrict ourselves to the linear case by assumin the same qualitative resudi/dg=A(g—go) ~“ near cut-
ing V4 to be sufficiently small. In the zeroth order approxi- ©ff; With particular values of the cutoff voltagg, and the

mation, there is no current and bo#i9(x) andn(x) contain coefficient_A di_ff_erent from t.he case of bulk contacts.
only a symmetric componenti(x)=nc+Ang(x). Ang(x) _ The simplified expressions Eq&2) and (4) neglected
should be found from the same equation fasy(x), with diffusion effects, which is equivalent to the limit=0. The '
b(x) replaced by¢2(x)=q§c(x)+¢g(x) where ¢(x) is formula Ano(x)=Ct¢c(>§) doe; not take into account acti-
the potential created by the ik at the gate electrode. ~ Vation processes and simply gives=0 for all points where
Whenng(x) is found, Eq.(1) can be linearized in, and ~ #s(*)<—Cy "nc. Thus, in the linear appro_x_|mag|on, the
solved under the condition,(0)=n,(L/2)=0. This gives Culoff voltage go corresponds to the conditios(0)="
the concentration profile and the currept which for a  —Ct "N and at lowerg(V,) the current is exactly zero. Itis

single-wall nanotube reduces to Kirchhoff’s law evident that af >0, the current ag<g, will have an acti-
vated character:j~exp(—A/KT), where Aze[—Ct_lnC

— $3(0)]. Since2(0) depends linearly oWy, the activa-
I — (3)  tion energyA is directly proportional tago—g.
o [Nct+Any(x)] Now we consider the case of arbitravy; voltage when
the linear approach fails. The problem requires a solution of
The resulting] depends on the gate voltayg through the the general nonlinear Eql) [or Eg. (2)] and the potential
functions ¢>2(x) and Ang(x), which allows us to calculate consists of three parts¢°(x)=¢C(x)+¢g(x)+¢a(x) de-
the transistor transconductanGe=dj/dV. scribing, respectively, the influence of contact work function,
The potential profile¢’(x) and, hence, all the results gate voltage, and source-drain voltage calculated earlier. Two
depend noticeably on the geometry of the structure, in parboundary conditionsn(=L/2)=n. determine the integra-
ticular, on the type of source and drain contacts. We consideion constant and the so far unknown valug oSincedy(x)
in detail bulk contacts representing metallic or heavily dopeds proportional toVy and ¢,(x) is proportional toVy, the
semiconductor regions with all three dimensions considerresulting solution gives us the CVC of a nanowj(&/,) for

ably exceeding the characteristic lengthsd, L as well as  various gate voltages.
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o ) ) FIG. 2. Dimensionless current vs dimensionless temperature at different
FIG. 1. Current-voltage characteristic of a nanowire with bulk contacts ang§jmensionless gate voltageg= —2.5 (1); —2.6 (2); —2.7 (3); and —2.8

d/L=0.3 at two gate voltageg= —2.5 in unitswen, In(l/a)/(2¢) (dashed ).
line) and g=—2.8 (solid lines for the dimensionless temperatures:
=ekT/(e’n,)=0.05(1); 0.1 (2), and 0.2(3). ) ) - )
In conclusion, an analytical theory of a drift-diffusion

To calculate it quantitatively, we choose particular val-transport in a field e_ffect dev_lce with a 1'_3 (_:hannel IS pre-
ues In{/a)=3 andd/L =0.3 and assume a bulk geometry andSented. The model gives a universal description for nanowire
Ohmic character for the contact with,=N, where the di- and nanotubénonballistio FETs. An essential difference for
mensionless threshold estimated with E8). (that is, in the e 1D—FET model as compared with textbook models for
limit of low temperaturesgo= — 2.7. Figure 1 shows CVC planar FET is due to poor screening at the low dimensions.
at g=— 2.8 (below the thresholdand g= — 2.5 (above the Thus, the zero-bias resistance of the channel, which is shown

threshold. All characteristics have a superlinear character!© depend on the self-consistent equilibrium charge density

which has a simple explanation. High driving voltaygg " the channel, can be more _effect_ive_ly controlled by a gate
tends to distribute carriers uniformly along the channel. In’Oltage. Although, the operation principle of the 1D-FET is

our conditions when powerful contact reservoirs fix the conSimilar to the planar device, different electrostatics for the
centrationn at the points where it is maximal, such a redis- 1D channel results in different behavior, and in different de-

tribution will increase the minimal value in the center of vice characteristics. For example, the transconductance at the

channel, and hence, increase conductivity of the latter. Suciiireshold isG=1/yV,—Vy, in contrast to the textbook result
superlinear behavior experimentally observed in nanowire{ G const). With a lower(leakag¢ OFF currents observed
based transistofst differs noticeably from a sublinear de- €ceéntly in 1ID—FETSs, this makes these devices very attrac-

pendence typical for both bulk FETs and ballistic V€ for electronic applications.
nanotub& ' structures. We assume that the mechanism of 50 of the authorgS.V.R) acknowledges support of

the CVC saturation is due to the Con_tact resistaim@® pre-  poE under Grant No. DE-FG02-01ER45932, and NSF under
sented hefe When the channel resistance becomes muclsant Nos. 9809520 and ECS-0210495. The authors are
less than the contact resistané®sR., alimost all the bias  gratefyl to Professor K. Hess for valuable discussions.
drops at the contacts.
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