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Universal description of channel conductivity for nanotube
and nanowire transistors
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A theory of drift-diffusion transport in a low-dimensional field-effect transistor is developed. Two
cases of a semiconductor nanowire and a single-wall nanotube are considered using self-consistent
electrostatics to obtain a general expression for the transconductance. This quantum-wire channel
device description is shown to differ from a classical device theory because of the specific nanowire
charge density distribution. ©2003 American Institute of Physics.@DOI: 10.1063/1.1604462#
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In the present work we consider the carrier distributi
in a quantum-wire channel, which may be a semiconduc
nanowire or a carbon nanotube, placed between two m
electrodes over a gate electrode. This calculation yields
current–voltage characteristic~CVC! and transconductanc
of a quantum-wire field-effect transistor~FET!. This type of
FET is comprised of a fully constrained one-dimensio
~1D! electron gas in the quantum-wire channel. The 1D el
tron system is described both classically~i.e., for the semi-
conductor nanowire! and quantum mechanically~i.e., for the
nanotube!. The electrostatic characteristics of the device a
the transistor properties depend on the geometry of
source/drain and gate electrodes and are discussed.

In this letter, we focus on analytical rather than nume
cal simulations. Numerical results on the transport proper
of nanotube-FETs have been published recently.1–3 Here we
concentrate on a universal analytical solution for the tra
port equations under the drift-diffusion approximation
1D–FETs, which has not been considered previously. In p
ticular, we present analytical expressions for conductanc
a 1D–FET at zero drain bias, the cutoff gate voltage a
subthreshold CVC~near the cutoff!. Finally, numerical solu-
tions for the nonlinear part of the CVC~at nonzero bias! are
given when analytical expressions are not available.

The 1D–FET includes source and drain electrodes~in
our model they are assumed to be identical! connected by a
nanowire/nanotube2L/2,x,L/2, and a gate electrod
separated by a thin dielectric layer of the thicknessd. We
assume the quantum-wire channel to be uniformly do
with 1D charge densityN5const(x). In pristine nanotubes
N50, though charge injection due to the work function d
ference between the channel and electrodes can occur
determines the equilibrium carrier density profile. When
structure is in operation, the source-drain voltageVd causes a
currentj along the channel and a redistribution of the carr
concentration. A voltageVg is applied to the gate an
changes the concentration in the channel, which controls
FET transport. We employ the drift-diffusion model in th
letter and assume that the scattering rate in the chann

a!Electronic mail: rotkin@uiuc.edu
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sufficiently high to support a local charge equilibrium. Th
is likely valid the most nanowire FETs and, at least, for so
of nanotube devices. In the opposite~ballistic! limit, the
channel conductance has less influence on the CVC.
ballistic model1 is not considered in this work.

We measure the bias from the middle point in the w
(x50) so that the source and drain potentials are6Vd/2. In
this case, the potentials along the wire and concentra
changes caused byVg , the contact potentials, andVd are,
respectively, symmetric and antisymmetric functions ofx
and denoted by subscriptss anda: fs,a(x) andns,a(x).

The potentialsfs,a(x) can be divided into two parts: th
componentsfs,a

0 (x) created by the electrodes~including the
work function difference if not zero!, which should be found
from the Laplace equation containing no channel charge d
sity and the componentsfs,a

1 (x), caused by the electron
charge in the channel2ens,a(x). We assume that the cha
acteristic lengthl 5min$L,2d% determining the potential and
density distribution along the channel, exceed noticeably
nanowire/nanotube radiusa. In this case, the relationshi
betweenfs,a

1 (x) andns,a(x) is approximately linear4–7 and
for a nanowire with nondegenerate carriers, the currentj can
be written as

j

em
5n~x!

df0

dx
2F2e

«
lnS l

aDn~x!1
kT

e G dn

dx
, ~1!

wheren5ns1na , f05fs
01fa

0 , « is the ambient dielectric
permittivity, m is the carrier mobility. The second term de
scribes the drift in the self-consistent field2¹fs,a

1 (x) and
the last term corresponds to the diffusion current, which
1D transport cannot be neglected in comparison with
drift current. For a nanotube with degenerate carriers,
thermal energykT should be replaced by the Fermi ener
and Eq.~1! reads as

j

em
5n~x!

df0

dx
2eCt

21n~x!
dn

dx
, ~2!

where Ct
215Cg

211CQ
21 is the inverse capacitance of th

nanotube derived in Refs. 6 and 7 and containing both
logarithmic geometrical capacitance,Cg

21; log(l/a), similar
3 © 2003 American Institute of Physics
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to Eq. ~1! and the quantum capacitance of the 1D elect
gas, CQ51/(e2n).0.31 for one degenerate subband of
single wall nanotube.

The boundary conditionsn(6L/2)5nc assume that the
source and drain contacts support a constant concentrati
the contacts, independent of the applied voltage. The co
tion nc5N corresponds to an ideal Ohmic contact not d
turbing the electrical properties of the wire.nc,N corre-
sponds to a Schottky contact andnc.N describes the
situation where the carriers are provided by electrod
which is often the case for nanotubes. We are aware of
portance of Schottky barriers~SB!, often forming at the con-
tacts, for transport in a nanotube SB–FET.13,14 Our theory
can be generalized in a straightforward manner for this c

For nc5N, in the absence of current we have the triv
answer for the equilibrium concentration profilen05N
5const(x). For ncÞN in the close vicinity of the contact
there exists a finite charge densitye(N2nc) in the channel
and its image charge –e(N–nc) beyond the metallic con
tacts. But this means a discontinuity in the charge densit
x56L/2 and brings into question the adequacy of the c
tinuum approach, which assumes smooth charge and po
tial variations. To avoid this difficulty, we measuren0 from
nc by assumingn0(x)5nc1Dn0(x). Thenfc(x) represents
the potential for a wire with uniform chargee(N2nc) be-
tween metallic contactsx56L/2 as calculated in Ref. 5
This is just the charge which, together with its images,
discontinuities at the contacts. Its potential~taking into ac-
count its image in the gate electrode! can be calculated ex
actly for each contact geometry.

Direct integration of the drift-diffusion equation@Eq.
~1!# transforms it into an algebraic equation forDn0(x) de-
termining it for a givenfc(x). For a degenerate nanotube@or
for (2e2N/«kT)log(l/a)@1], the equation reduces to the d
rect proportionality:Dn0(x)5Ctfc(x).

Now we can find the analytical expressions forDns and
na and j if we restrict ourselves to the linear case by assu
ing Vd to be sufficiently small. In the zeroth order approx
mation, there is no current and bothf0(x) andn(x) contain
only a symmetric component:n(x)5nc1Dns(x). Dns(x)
should be found from the same equation asDn0(x), with
fc(x) replaced byfs

0(x)5fc(x)1fg(x) where fg(x) is
the potential created by the biasVg at the gate electrode.

Whenns(x) is found, Eq.~1! can be linearized inna and
solved under the conditionna(0)5na(L/2)50. This gives
the concentration profile and the currentj , which for a
single-wall nanotube reduces to Kirchhoff’s law

j 5
Vd

R
, R5

2

em E
0

L/2 dx

@nc1Dns~x!#
. ~3!

The resultingj depends on the gate voltageVg through the
functionsfs

0(x) and Dns(x), which allows us to calculate
the transistor transconductanceG5d j /dVg .

The potential profilef0(x) and, hence, all the result
depend noticeably on the geometry of the structure, in p
ticular, on the type of source and drain contacts. We cons
in detail bulk contacts representing metallic or heavily dop
semiconductor regions with all three dimensions consid
ably exceeding the characteristic lengthsa, d, L as well as
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the screening length in the contact material and thus assu
to be infinite.

For the linear case, in the limitA@1 when the expres-
sion Eq. ~3! is applicable, the dimensionless currenti
5 jL /(n0emVd) has an explicit form

i 5F2E
0

1/2 dt

11gC~ t !G21

, ~4!

where g52«Vg /@pen0 ln(l/a)# is the dimensionless gat
voltage and for nc5n0 : C(t)5(0

` (21)n/(2n
11)cos@pt(2n11)# exp@2pd(2n11)/L. The channel conduc
tivity near the cutoff is determined by the point of minim
concentration, which in a symmetric structure is atx50, and
hence, is determined by the properties ofC(t) at small t.
Expansion ofC(t) allows us to integrate Eq.~4! and obtain

i 5

A~g2g0!sinhS pd

L D
& coshS pd

L D ,

g05H p

2
2arctan@exp~2 pd/L !#J 21

. ~5!

Thus, the transconductancedi/dg increases in the vicinity of
cutoff as;(g2g0)21/2.

So far we have assumed that the source and drain
tacts are bulk. However, there also exist structures with
and even quasi-1D contacts~nanowires! where potential pro-
files fc , fg , andfa will have essentially differentx depen-
dence with singularities near the contacts.5 The resulting
modified FET characteristics have been also calculated
will be published elsewhere. The quantitative difference is
a particular profile of theC(t) function. Its expansion nea
the maximum is, of course, also quadratic, and hence, res
in the same qualitative resultdi/dg5A(g2g0)21/2 near cut-
off, with particular values of the cutoff voltageg0 and the
coefficientA different from the case of bulk contacts.

The simplified expressions Eqs.~2! and ~4! neglected
diffusion effects, which is equivalent to the limitT50. The
formula Dn0(x)5Ctfc(x) does not take into account act
vation processes and simply givesns50 for all points where
fs

0(x),2Ct
21nc . Thus, in the linear approximation, th

cutoff voltage g0 corresponds to the conditionfs
0(0)5

2Ct
21nc and at lowerg(Vg) the current is exactly zero. It is

evident that atT.0, the current atg,g0 will have an acti-
vated character: j ;exp(2D/kT), where D5e@2Ct

21nc

2fs
0(0)#. Sincefs

0(0) depends linearly onVg , the activa-
tion energyD is directly proportional tog02g.

Now we consider the case of arbitraryVd voltage when
the linear approach fails. The problem requires a solution
the general nonlinear Eq.~1! @or Eq. ~2!# and the potential
consists of three parts:f0(x)5fc(x)1fg(x)1fa(x) de-
scribing, respectively, the influence of contact work functio
gate voltage, and source-drain voltage calculated earlier.
boundary conditions:n(6L/2)5nc determine the integra
tion constant and the so far unknown value ofj . Sincefg(x)
is proportional toVg and fa(x) is proportional toVd , the
resulting solution gives us the CVC of a nanowirej (Vd) for
various gate voltages.
AIP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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To calculate it quantitatively, we choose particular v
ues ln(l/a)53 andd/L50.3 and assume a bulk geometry a
Ohmic character for the contact withnc5N, where the di-
mensionless threshold estimated with Eq.~5! ~that is, in the
limit of low temperatures! g0522.7. Figure 1 shows CVC
at g522.8 ~below the threshold! and g522.5 ~above the
threshold!. All characteristics have a superlinear charac
which has a simple explanation. High driving voltageVd

tends to distribute carriers uniformly along the channel.
our conditions when powerful contact reservoirs fix the co
centrationn at the points where it is maximal, such a red
tribution will increase the minimal valuen in the center of
channel, and hence, increase conductivity of the latter. S
superlinear behavior experimentally observed in nanow
based transistors8–11 differs noticeably from a sublinear de
pendence typical for both bulk FETs and ballis
nanotube12–14 structures. We assume that the mechanism
the CVC saturation is due to the contact resistance~not pre-
sented here!. When the channel resistance becomes m
less than the contact resistance,R!Rc , almost all the bias
drops at the contacts.

Figure 1 presents also information on temperature
pendence of the channel conductivity. Above the thresh
this dependence is practically absent. The CVC curves
g522.5 at different temperatures do not deviate from
dashed line corresponding to«kT/(e2nc)50.2 more than by
10% and for this reason are not shown in the figure. ForVg

below threshold and for not very highVd , Fig. 1 demon-
strates a strong temperature dependence of the cur
shown in more detail in Fig. 2 calculated for lowVd (Vd

50.02), corresponding to the linear~zero bias! part of CVC.
While the two upper curves, corresponding to the earl
thresholdVg , have no noticeable temperature dependen
the two lower curves demonstrate such a dependence
the activation energy growing withuVgu, in accordance with
our predictions. At highVd , where contact injection and
electric field tend to create uniform carrier concentrat
equal tonc , different CVC curves approach each other a
temperature dependence collapses.

FIG. 1. Current–voltage characteristic of a nanowire with bulk contacts
d/L50.3 at two gate voltagesg522.5 in unitspenc ln(l/a)/(2«) ~dashed
line! and g522.8 ~solid lines! for the dimensionless temperatures:t
5«kT/(e2nc)50.05 ~1!; 0.1 ~2!, and 0.2~3!.
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In conclusion, an analytical theory of a drift-diffusio
transport in a field effect device with a 1D channel is p
sented. The model gives a universal description for nanow
and nanotube~nonballistic! FETs. An essential difference fo
the 1D–FET model as compared with textbook models
planar FET is due to poor screening at the low dimensio
Thus, the zero-bias resistance of the channel, which is sh
to depend on the self-consistent equilibrium charge den
in the channel, can be more effectively controlled by a g
voltage. Although, the operation principle of the 1D–FET
similar to the planar device, different electrostatics for t
1D channel results in different behavior, and in different d
vice characteristics. For example, the transconductance a
threshold isG}1/AVg2Vth in contrast to the textbook resu
(G}const). With a lower~leakage! OFF currents observed
recently in 1D–FETs, this makes these devices very att
tive for electronic applications.
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