
Europhys. Lett., 69 (6), pp. 1003–1009 (2005)
DOI: 10.1209/epl/i2004-10434-8

EUROPHYSICS LETTERS 15 March 2005

Conductance modulation of metallic carbon nanotubes
by remote charged rings

S. Barraza-Lopez
1
, S. V. Rotkin

2
, Y. Li

1 and K. Hess
1

1 Department of Physics and Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign - 405 North Mathews Avenue
Urbana, IL 61801, USA
2 Physics Department, Lehigh University - 16 East Memorial Drive
Bethlehem, PA 18015, USA

received 22 October 2004; accepted in final form 17 January 2005
published online 16 February 2005

PACS. 73.63.Fg – Nanotubes.
PACS. 71.30.+h – Metal-insulator transitions and other electronic transitions.
PACS. 73.23.Ad – Ballistic transport.

Abstract. – We calculate the effects of a longitudinal electrostatic perturbation on a metallic
single-wall carbon nanotube and demonstrate conductance modulation. Such external modu-
lation would be completely screened in bulk 3D metals but is possible in SWNTs because their
electrons are quasi–two-dimensional and can interact with a nearby system of charges. The
resultant modulation of the conductance is determined by the strength of the self-consistent
potential and its periodicity over shorter or longer distances. We employ the zero-temperature
single-particle Green’s function transport approach in the empirical tight-binding approxima-
tion to quantify the modulation of conductance and also consider the limit of a superlattice.

Introduction. – The high quantum conductance of metallic Single-Wall Carbon Nan-
otubes (SWNTs), in the absence of defects or interconnects, is promising for applications. It
has been demonstrated that vacancies, configurational defects [1,2] and mechanical deforma-
tions lower the conductance of a pristine tube. All-metallic SWNT circuits would have the best
performance if one were able to modulate their conductance without recourse to structural
modifications. SWNTs are cylinders created by rolling a graphene sheet; i.e., quasi–two-
dimensional (surface) entities, in contrast to 3D metallic systems. Therefore, a perturbation
placed along a SWNT implemented —e.g., by a molecule or surface potential with given
periodicity [3]— will alter the electronic properties of an isolated tube. We propose in this
letter some conditions that will lead to the modulation of conductance by the creation of local
gaps in a metallic SWNT. We recently suggested the possibility of conductance modulation
in metallic SWNTs by local gates [4], and have also been exploring symmetry properties that
are involved in gap creation [5]. We consider a periodic oscillation of the self-consistent po-
tential for the conduction electrons along the length of an infinite SWNT and a perturbation
of a finite section of the tube that also shows similar conductance modulation. The three
c© EDP Sciences
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Fig. 1 – a) A metallic, [5, 5] SWNT placed in an electrostatic potential φ(r) originating from axial-
symmetric rings of radius 2r, where r is the SWNT radius. A charge of magnitude |q| alternating in
sign is placed on consecutive rings. b) The change in potential energy, −eφ(r), caused by the external
rings alone (dashed line) and the resulting potential energy after self-consistent rearrangement of π-
electrons (within Hartree-Fock theory), for 5 pairs (left) and 20 pairs (right) of rings, using |q| = 2.5e.
Twice the distance between equally spaced rings defines the superlattice length L which here is four
times the SWNT lattice constant, L = 4L0. L0 =

√
3a and a = 1.44 Å is the distance between nearest

carbon atoms.

factors involved are:
1) The strength of the self-consistent-potential induced by the remote charges.
2) The length of the unit cell of the superlattice.
3) The total number of unit cells of the superlattice that are in proximity to the SWNT.

Model and methods. – We consider a neutral SWNT and focus on the perturbation
caused by excess charges alternating in sign, placed onto equally spaced rings. The charge is
uniformly distributed on a given ring of radius 2r, where r is the SWNT radius (fig. 1(a)). A
typical magnitude of the excess charge we use is |q| = 2.5e. We choose an axially symmetric
potential to model the effect caused by the variation of the potential along the SWNT. The
resultant redistribution of the π-electrons caused by the external potential φ(r) induces an
electrostatic Coulomb potential that counteracts the external potential. As one can see in
fig. 1(b), the self-consistent potential oscillates within the gated region and exhibits long tail-
ends. The total self-consistent potential is naturally more uniform than the external potential
φ(r) given by the dashed line in fig. 1(b). However, the screening is far from complete.
This oscillation period plays a crucial role for the modulation of conductance. We employ
and combine single-particle Green’s functions, a modified tight-binding Hamiltonian and also
use the Kronig-Penney model to capture the elementary physics involved in the conductance
modulation. We account for the effect of charge redistribution [6] within the Hartree-Fock
approximation assuming charge equilibrium for the remote rings. The π-electrons that are
responsible for electron transport are modelled by using the empirical nearest-neighbor tight-
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binding approach [7]:
〈r|Ψn0〉 =

∑
i

Ci
n0

Φπ(r − ri). (1)

Here {ri} represent the positions of the SWNT carbon atoms. Φπ(r − ri) are atomic or-
bitals for the π-electrons. The nearest-neighbor tight-binding approximation reproduces the
characteristics of π-electrons fairly well. The Hamiltonian in this approximation is given by

Ĥ0 =
∑
〈ij〉

γπ ĉ
†
i ĉj , (2)

where γπ = −2.7 eV is the hopping integral [7], and 〈ij〉 indicates that the sum is performed
only for neighboring sites i and j. The coefficients Ci

n0
are determined by the eigenvectors

|Ψn0〉 of H0 according to (1). (We sort the eigenvectors in order of their energy levels En0 .)
However, because charge neutrality is locally violated, one must modify the Hamiltonian (2)
and we follow a procedure described in [6]. For our basis, the Coulomb kernel is

Uij,kl = δijδkl ×
{

1
rik

, i �= k,

U0 (in our units, eU0 = 14.6 V), i = k
(3)

(rik = |ri −rk|). For our perturbation —an external potential energy of magnitude −eφ(r)—
the SWNT as a whole remains neutral (the total number of π-electrons for a given spin nCN

is well defined once the length of the SWNT to be modeled has been chosen), but a local
redistribution of charge occurs. We assume that the charge distribution of the remaining
atomic electrons (both core and σ-electrons which we refer to as background charge) is not
modified by the external field, which holds provided the field is small. Then the relative
change of the charge with respect to the unperturbed tube is related to the density matrix:

δρij =−2e

[
nCN∑
n=1

〈ri|Ψn〉〈Ψn|rj〉−
nCN∑
n0=1

〈ri|Ψn0〉〈Ψn0 |rj〉
]
=−2e

[
nCN∑
n=1

Ci
n

(
Cj

n

)∗−nCN∑
n0=1

Ci
n0

(
Cj

n0

)∗]
.

We now calculate both δρij and {|Ψn〉} self-consistently within the Hartree-Fock approxima-
tion as a solution of the following Hamiltonian (Einstein’s summation rule implied):

Ĥ = Ĥ0 +
(−eφe(i)δi,j + eUHF

ij,klδρkl

)
ĉ†i ĉj , (4)

where

eUHF
ij,klδρkl = e

(
Uij,kl − 1

2
Uil,kj

)
δρkl =

∑
i�=k

δije
δρk,k

rik
− e

2
δρij

rij
.

In the previous equation, the term −eδρij/2rij runs for j �= i. For −eφ(rj) → 0 the positive
and negative charges balance and δρij → 0. This reduces the Hamiltonian (4) to the familiar
case, (2).

For φ(r) produced by a periodic arrangement of rings (fig. 1(a)), the self-consistent poten-
tial energy exhibits a few oscillations with period L equal to twice the spacing between rings.
We consider here a [5, 5] nanotube. However, the following argument applies to any metallic
SWNT, provided modifications to the dispersion relation and analytical Green’s functions
are made.

The eigenvalues of H0 for an unperturbed [5, 5] SWNT are given by [7]

Es,0(k,m) = sγπ

√√√√1 + 4 cos

(√
3

2
ka

) [
cos

(√
3

2
ka

)
+ cos

(πm

5

)]
, (5)
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Fig. 2 – a) Dispersion relation for the two bands (E+5,0, E−5,0) crossing at the Fermi level (E = 0) for
a [5, 5] SWNT. A small, periodic perturbation along the SWNT will cause, according to the Kronig-
Penney model, forbidden gaps for electronic motion at the regions where folding occurs. b) For a
field with the periodicity given in fig. 1, folding would occur at the energies shown. c) For comparison
purposes, we also show the dispersion relation for a superlattice length L equal to 6L0. A [5, 5] SWNT
placed in this superlattice would become a semiconductor.

where k is the wave vector along the length of the SWNT, m is the (quantized) circumferential
wave vector and s = ±1 (sometimes referred to as “pseudospin”) arises from orthogonality of
the two wave functions belonging to different sublattices for the hexagonal lattice. For the
Es,0(k, 5) bands, which are the most important for transport, we need to modify eq. (5) so
that the energies are monotonic functions of k. We depict them in fig. 2(a), which shows the
two bands present close to the Fermi level. There are more bands present in the gray zone,
but they are not displayed because they are not relevant for the discussion. For this region,
conductance is equal to 2G0, where G0 = 2e2

h is the quantum of conductance.
Consider first an infinitely long SWNT embedded in a superlattice created by an infinite

array of equally spaced rings. The self-consistent potential would then be periodically oscillat-
ing and this would induce, according to the Kronig-Penney model, a folding of the bands. We
show the effect in the dispersion relation in fig. 2. Vertical lines in fig. 2(a) indicate the zone
folding as a result of a perturbation which decreases the size of the Brillouin zone by a factor
of four. In fig. 2(b) we show the modified band structure. Bold horizontal lines show forbidden
energy regions for the electrons of a given band. Since there are two bands and folding does
not occur simultaneously for both of them for the same value of energy, we expect in this case
the conductance to be lowered at most by 1G0. The reason for this modulation is that for a
vicinity of the k-points where folding occurs, a mini-gap develops. This gap-opening is equiva-
lent to a lowering of the density of states (DOS), and this suppression of the DOS results in the
modulation of the conductance. For large enough |V | (|V | is the strength of the self-consistent
potential), an overlap of two gaps and further suppression of the conductance becomes pos-
sible. Also, a perturbation with periodicity that equals a multiple of 3L0 will fold the bands
at the Fermi point, where the two bands cross: We show the modified band structure for a
self-consistent potential with periodicity 6L0, ∼ 1.5 nm in fig. 2(c). Such a perturbation will
create a gap for both bands and, as a result, the conductance at the Fermi point will be zero.
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Previous argument can be applied when the length of the CNT unit lattice (L0) is com-
mensurate with twice the spacing between rings (L): nL0 = mL for n and m integers. The
Kronig-Penney model cannot be used if the periods of the CNT lattice and the lattice for
the rings are incommensurate. For a finite system, we believe that even an incommensurate
potential will alter the dispersion of the CNT charge carriers in certain regions in k-space
corresponding to the Fourier component of the potential. This translates into conductance
modulation at certain values of energy. Since a strong modulation of conductance requires
a long section in which the local density of states is suppressed, one must consider a finite-
length potential that is long enough or strong enough. This indicates the relation between
the modulating effect and the size of the unit cell for the superlattice.

We now describe the effects of a small number of rings around a metallic SWNT. We
use the approach of Datta [8] to calculate the electron transport properties. We obtain the
relative decrease in conductance in the [5, 5] SWNT in terms of zero-temperature single-
particle Green’s functions. The Green’s function we use is

GR(E) = [H − E × I + ΣL(E) + ΣR(E)]−1
, (6)

where H is defined by eq. (4) and

ΣL(E) ≡ −HCLG
R
LL(E)

[
ILL −HLCG

R
CL(E)

]−1
HLC ,

ΣR(E) ≡ −HCRG
R
RR(E)

[
IRR −HLCG

R
CR(E)

]−1
HRC .

HCL and HCR are the submatrices in the Hamiltonian connecting the section under study
(C) and semi-infinite, unperturbed sections of the [5, 5] SWNT at its left (L) and right (R)
(which we call hereafter “leads”). HLC = HT

CL and HRC = HT
CR. For the [5, 5] SWNT,

ΣL,R are nonzero only for the submatrices of dimensions 10 × 10 which are located at the
positions where our finite tube is in contact with the leads. GR

LL, GR
RR, GR

CL as well as GR
CR

are also 10 × 10 matrices. Further symmetry for the [5, 5] SWNT allows to have orthogonal
wave functions within a unit cell having two carbon atoms. This allows one to obtain the
aforementioned GR-submatrices in terms of the 2 × 2 matrix:

GR
(
(p, q), (p′, q′);E

)
=

√
3a

10π

5∑
m=−4

∫ π√
3a

− π√
3a

M(k,m) exp
[
ik · (r − r′)

]
dk, (7)

where the matrix M(k,m) carries the information required by orthogonality of wave functions
in a unit cell having two atoms:

M(k,m) ≡

 1

E−1,0(k,m)−E+iη + 1
E+1,0(k,m)−E+iη

e−iθ(k,m)

E−1,0(k,m)−E+iη − e−iθ(k,m)

E+1,0(k,m)−E+iη

eiθ(k,m)

E−1,0(k,m)−E+iη − eiθ(k,m)

E+1,0(k,m)−E+iη
1

E−1,0(k,m)−E+iη + 1
E+1,0(k,m)−E+iη


 ,

(8)
η → 0+, the eigenenergies Es,0(k,m) are given by eq. (5),

φq(p) ∈
{{

0, 2π
5 , 4π

5 , 6π
5 , 8π

5

}
for odd p,{

π
5 ,

3π
5 , π, 7π

5 , 9π
5

}
for even p,

eiθ(k,m) =
2e

mπi
5 cos

(√
3

2 ka
)

+ 1√
1 + 4 cos

(√
3

2 ka
) [

cos
(√

3
2 ka

)
+ cos

(
πm
5

)] ,
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Fig. 3 – a) Conductance as obtained with our method for an unperturbed [5, 5] SWNT of length
∼ 50 nm. b) Modulation of conductance for 50 pairs of rings, |q| = 2.5e and spacing between rings
given in fig. 1. c) Dip positions agree with values predicted by the Kronig-Penney model. Besides
additional interference, only one conduction channel is at most suppressed.

and the factor
k · (r − r′) =

√
3(p− p′)

ka

2
+ m

(
φq(p) − φq′(p′)

)
gives the phase relations for electrons to propagate between different unit cells. For the Green’s
functions we are concerned about, we have p = 0, ±1.

Although this scheme has been used to calculate electronic transport in semiconducting
SWNTs, to our knowledge this is the first instance in which an analytical Green’s function
is explicitly presented for a nanotube. Finally, we calculate the transmittance T (and hence
ballistic conductance G(E) = G0T (E)) as

T (E) = Tr
[
ΓLG

R†(E)ΓRG
R(E)

]
, (9)

with the additional identification [8] ΓL,R(E) = 2 Im ΣL,R(E).

Results and conclusions. – In fig. 3(b) we show the conductance modulation for 50 pairs
of rings as those shown in fig. 1(a). They correspond to a unit lattice of length 4L0. The
self-consistent potential is caused by a charge |q| = 2.5e on each ring and applied to a [5, 5]
SWNT of length 200L0. A significant suppression of the conductance can be seen at four
values of energy which are determined by the energies at which band-folding occurs. These
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have been given in fig. 2(b) and are shown for comparison in fig. 3(c). They clearly agree
even though now the perturbation is of finite length. For an unperturbed [5, 5] SWNT, the
conductance in this energy range is equal to 2G0, since there are two conduction channels
present (fig. 3(a)). In our results, the transmission varied from 2 to 1.8 and shows a number
of low-amplitude dips and heights in the transmittance that increases linearly with the length
of the SWNT. Because the goal of our work is to investigate the major suppression of the
conductance due to the periodic self-consistent potential, we did not further investigate this
low-amplitude structure or attempt to remove it by thermal averaging.

A clear suppression of conductance at the energy points calculated within the Kronig-
Penney model can be seen. Unlike the case of heterojunctions created by nanotubes of different
chiralities, in this case there is no mismatch between the quantized component of the wave
vector. This means that the conductance is high and close to the nominal value 2G0 for
energy regions apart from the folding energies. We finally mention that we have observed in
our calculations a logarithmic dependence between the length to which the perturbation is
applied (for fixed external potential) and conductance, and similarly a logarithmic dependence
between conductance modulation and the magnitude of q (for a fixed length).

In conclusion, we have shown the possibility of conductance modulation in metallic SWNTs
by applying a longitudinal periodic electrostatic perturbation along a section of finite size. We
remark the fact that if any metallic tube (independent of its actual chirality) is being placed in
the proximity of a structure as the one we have described, its conductance can be modulated.
Furthermore, since the electrostatic potential that we consider does not have any components
along the circumference, no mismatch between wave functions in the gated region and the
free tube arises, as is usually the case for metall-semiconducting junctions. This keeps the
value of the conductance close to that of a free, ballistic, metallic SWNT in regions comprising
energies other than the ones where bending occurs.
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