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Angular perturbations modify the band structure of armchair �and other metallic� carbon nanotubes by
breaking the tube symmetry and may induce a metal-semiconductor transition when certain selection rules are
satisfied. The symmetry requirements apply for both the nanotube and the perturbation potential, as studied
within a nonorthogonal �-orbital tight-binding method. Perturbations of two categories are considered: an
on-site electrostatic potential and a lattice deformation which changes the off-site hopping integrals. Armchair
nanotubes are proved to be robust against the metal-semiconductor transition in second-order perturbation
theory due to their high symmetry, but can develop a nonzero gap by extending the perturbation series to higher
orders or by combining potentials of different types. An assumption of orthogonality between � orbitals is
shown to lead to an accidental electron-hole symmetry and extra selection rules that are weakly broken in the
nonorthogonal theory. These results are further generalized to metallic nanotubes of arbitrary chirality.
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I. INTRODUCTION

The subject of metal-insulator transitions has been studied
for decades.1 It is well understood that a metal-insulator tran-
sition is typically related to the breaking of a specific sym-
metry of the system, and carbon nanotubes are particularly
interesting to study, due to their low dimensionality and spe-
cial helical symmetry. In this paper we investigate the sym-
metry breaking in single-wall nanotubes �SWNTs� due to an
external potential which depends on the angular coordinate
along the SWNT circumference. This perturbation may in-
duce a transition in a SWNT changing the type of its elec-
tronic structure by opening �closing� the band gap in the
metallic �semiconducting� nanotube.2–6,8 It is important for
applications in which such gap engineering can potentially
be controlled locally—for instance, by the field of a sharp
tip, by a small molecule, or by a local gate.

SWNT lattice symmetry depends on two parameters, di-
ameter and chirality, which determine the type of band
structure.9 About one-third of possible SWNTs are metallic,
with one-dimensional energy subbands crossing at the Fermi
level, as confirmed by experiments.10 In this study, we con-
sider metallic nanotubes and focus mainly on the special case
of armchair SWNT �A-SWNT�, which has a higher symme-
try prohibiting an energy gap at the Fermi level11 for typical
nonchiral perturbations such as stretching, uniform electric
field, impurity potentials, and many-body interactions. The
same perturbations would open a small “secondary” band
gap in metallic nanotubes of different symmetry. The high
symmetry of A-SWNTs is also responsible for the absence of
backscattering in the conduction channels.7 Such ballistic
transport is very attractive for future electronic
applications,9,10 and a method to control the conductance of
A-SWNTs would be particularly desirable. Different pertur-
bations have been attempted to modify the electronic struc-
ture of A-SWNTs.2–6,8,9,12–15 Our goal is to demonstrate, us-
ing symmetry arguments, whether a particular perturbation

can open a gap at all and how the gap depends on the mag-
nitude of the perturbation potential. We will show below that,
with minor exceptions, this cannot be a linear dependence.
We call this transition a “metal-semiconductor transition”
�MST� since the gap size is smaller than in typical
insulators.12

A nonorthogonal tight-binding �TB� approach is used to
model the SWNT electronic structure. Despite its simplicity,
the TB approach may include as much important physics as
more sophisticated models with the right choice of empirical
parameters.16 In addition, it possesses a great advantage for
analytical derivations. Combining the TB approach and the
summation of perturbation series with a group theory tech-
nique, it was shown in previous work12 that mirror symmetry
breaking is a necessary condition to mix the two crossing
subbands �� and �*� and open a band gap in A-SWNTs.
Here, we find several additional significant results: �1� Due
to the high lattice symmetry, the second-order contributions
always cancel out and no second-order gap opening occurs.
One notes that the first-order process is suppressed unless
very specific selection rules are satisfied �see below�. �2�
Under potentials of a single angular Fourier component,
Vq cos q�, the lowest contributing coupling order between �
and �* bands, �0, is determined by the angular momentum
of the potential, q, and the index n of the �n ,n� A-SWNT as
�0=2n /gcd�2n ,q�, in which gcd is the greatest common di-
visor. The band gap opening is proportional to �Vq��0 for
small perturbation �Vq��vF /R, where vF and R are the nano-
tube Fermi velocity and radius. In a typical experiment,
when the perturbation has a small angular momentum �q
�1�, the coupling order is high ��0�n� and the gap is small
if any. To observe a linear effect ��0=1�, a high-q potential
must be applied �q=2n�. The high coupling order can be
reduced by choosing combinations of several angular Fourier
components or different types of perturbation. �3� Additional
symmetry of a particular model may lead to extra selection
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rules for the band gap opening. For example, gaping is for-
bidden for A-SWNTs with even n if perfect electron-hole
symmetry is assumed, as in an orthogonal basis. When the
slight asymmetry between the conduction and valence bands
is included, a gap proportional to the asymmetry parameter
occurs. �4� Significant changes in the A-SWNT density of
states �DOS� is observed even when the gap is absent. Modi-
fication of the low-energy band structure is mostly deter-
mined by the second-order perturbation. The DOS is en-
hanced near the Fermi level, and simultaneously vF
decreases. Peaks of the first pair of van Hove singularities
are brought closer, resulting in a smaller excitation energy
between these subbands.

Our study is restricted to the case of potentials which are
uniform along the tube axis, but certain results are easily
generalized for perturbations with even and odd axial depen-
dence.

This paper is organized as follows. We first formulate the
model and introduce the interaction matrix elements between
TB wave functions in Sec. II. Using nearly degenerate per-
turbation theory �Appendix� and symmetry-based selection
rules, we derive analytically the coupling between � and �*

subbands of A-SWNTs for both scalar potentials �Sec. III�
and tensor potentials �Sec. IV�. Comparisons are made with
numerical results from TB band structure calculation. These
results are further extended to metallic nanotubes of arbitrary
chirality in Sec. VI. Finally, we summarize our results in Sec.
VII.

II. MODEL FORMULATION

A. Perturbation series in the TB description

The electronic states �i are obtained within a nonorthogo-
nal single �-orbital TB method by solving the stationary
Schrödinger equation

H�i = EiS�i, �1�

where H and S are the Hamiltonian matrix and overlap ma-
trix, respectively. For the sake of simplicity, only the nearest-
neighbor hopping integral �0=−3.033 eV and overlap inte-
gral s=0.129 are considered.17

The wave function of an unperturbed A-SWNT can be
expressed as a linear combination of the two periodic func-
tions u��k�= �1/�N��ie

ik·�ri�−r�	�r−ri��, where �=A ,B label
the two sublattices and 	�r−ri�� is the atomic orbital func-
tion localized at ri�:

�
�k� =
eik·r

�2�1 − s
�f�k���
�ei�
�k�uA�k� + e−i�
�k�uB�k�� ,

E
�k� = �0
− 
�f�k��

1 − s
�f�k��
, f�k� = �

�=1

3

eik·r�, �2�

where 
= ±1 denote the conduction and valence bands. r�’s
are the nearest-neighbor bond vectors, and we refer to �=1
as the circumferential direction of A-SWNTs in the follow-
ing. The wave vector k is composed of an axial component kt
and a quantized circumferential component kc=m /R, with m

the angular momentum. 2�
�k�	arg�−
f�k�� indicates the
phase difference of the coefficients before uA�k� and uB�k�,
which make a pseudospinor �see also Sec. VI�. �
�k� is con-
stant through the whole range of kt for the two crossing
subbands: ���kt�=� /3 and ��*�kt�=��−� /2. Clearly, the �
and �* subbands are orthogonal due to this phase difference.

Consider a perturbation H1 which is uniform in the axial
direction; then, kt is conserved. To obtain the low-energy
behavior of � and �* subbands, we write the effective 2
2 perturbation Hamiltonian matrix using nearly degenerate
perturbation theory �see the Appendix�:

Heff�kt� = 
E��kt� + H���kt� H��*�kt�

H��*
* �kt� E�*�kt� + H�*�*�kt�

� , �3�

where the matrix element H���kt�, with ����=� or �*, can
be represented by the sum of the perturbation series over all
possible coupling orders � as

H���kt� = �
�

�
��i

H��
������i�, �i 	 �
i

�kt,mi� ,

H��
������i� = ����H1��1�

�i=2

�−1
��i−1�H1��i�

�i=1

�−1
�− Ei�

���−1�H1���� .

�4�

One notes that all intermediate states �i �i=1, . . . ,�−1� are
different from �� and ��* by definition. Figure 1 illustrates
an example of second-order coupling between � and �* sub-
bands via four different paths. Also shown is the phase angle
of the intermediate states, �±�kt ,n±q�, relative to �� and
��*. The relation between these phase angles will be dis-
cussed in detail in the following sections.

B. Interaction matrix element between Bloch states

Below, we derive the interaction matrix element
���H1���� of the angular perturbation of a single Fourier

FIG. 1. �Color online�. Schematics of the second-order coupling
between � and �* subbands and the corresponding phase angles of
intermediate states.
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component, H1=Vq cos q��−�0�, where Vq could be either
scalar or tensor. �0 is defined as the minimum angular dis-
placement between the vertical mirror planes �or glide
planes� of the A-SWNT and the mirror planes of the
potential.12 Assuming that �	1�H1�	2� is nonzero only when
	1 and 	2 are centered on the same atom or nearest-neighbor
atoms, the interaction matrix element can be decomposed
into an on-site term and an overlap term:

���H1���� =
�m−m�,qe−iq�0 + �m−m�,−qeiq�0

2��1 − s
�f ���1 − s
��f���
��H1�on-site

+ �H1�overlap� ,

�H1�on-site = �	�r��Vqeiq��	�r��cos�� − ��� ,

�H1�overlap = �
�=1

3

�	�r − r�/2��Vqeiq��	�r + r�/2��cos�� + ��

−
m + m�

2
�� − ktz�� , �5�

where it is used that 	�r� is real and invariant under �↔
−� inversion. �m−m�,±q arises from the conservation of angu-
lar momentum. This conservation law also allows q to differ
by multiples of 2n, an angular analog of the reciprocal lattice
vector, which is not considered here �see the discussion in
Sec. VI�. The interaction matrix can be further simplified
depending on the type of Vq:

Scalar potential: Vq=const. Define �	�r��Vqeiq��	�r��
=Uq; then,

�	�r − r�/2��Vqeiq��	�r + r�/2��

�
1

2
s��	�r + r�/2��Vqeiq��	�r + r�/2�� + �	�r

− r�/2��Vqeiq��	�r − r�/2��� = sUq cos
q��

2
, �6�

�H1�overlap =
1

4
sUq
ei��+����

�=1

3

�e−im��−iktz� + e−im���+iktz��

+ c.c.� = −
1

2
sUq cos�� − ����
�f � + 
��f��� ,

�7�

and Eq. �5� is reduced to

�H1�on-site + �H1�overlap � Uq cos�� − ���
1 −
1

2
s�
�f �

+ 
��f���� . �8�

Tensor potential: The Fourier component of a tensor po-
tential can be expressed in the second quantization formal-
ism as

�
�=1

3

���,q �
�i, j��

eiq��i+�j�/2ci
†cj , �9�

where pairs �i , j�� are confined to first nearest neighbors with
bonds along the r� direction and ���,q is the corresponding
change of the hopping integral. The on-site term is absent
while the overlap term is reduced to

�H1�overlap � �
�=1

3

g��kt;m,
;m�,
��

= �
�=1

3

���,q cos�� + �� −
m + m�

2
�� − ktz�� .

�10�

Comparing Eqs. �8� and �10�, one can conclude that the in-
teraction matrix elements from a scalar potential and a tensor
potential have quite a different dependence on the phase
angle � and quantum numbers kt ,m. We will show in next
section that certain selection rules can be derived for scalar
potentials of general form and also for simple tensor poten-
tials allowing summation over �.

III. SCALAR POTENTIAL

Assume that a scalar perturbation in the form of H1
=Vq cos q��−�0� is applied to the �n ,n� A-SWNT. Using the
interaction matrix element from Sec. II, we can now derive
the �th-order perturbation matrix elements within nearly de-
generate perturbation theory:

H��
������i� = e−i��q�0�Uq

2
�� P�����i�Q���i�

�i=1

�−1
�− Ei

0�
,

P�����i� = 
�
i=1

�−1

cos��i−1 − �i��cos���−1 + ��q�/3n

− ��� ,

Q���i� = �
i=1

� 
1 −
1

2
s�
i−1�f i−1� + 
i�f i��� , �11�

where the subscripts “0” and “�” correspond to the initial
state �� and final state ��, respectively, with m0=m�=n.
We stress that Ei

0	E
i

0 �kt ,mi�=−
i�0�f�kt ,mi��, since the fac-
tor �1−s
i�f i��−1 is canceled by those from the wave func-
tions. P�� is the total phase of the perturbation term and
corresponds to inner products of the pseudospinors �see Sec.
VI�. Q corrects for contributions from a nonzero nearest-
neighbor overlap. The intermediate states ��i	�
i

�kt ,mi�
satisfy the conservation law of angular momentum and have
the following constraints:

mi−1 − mi = ± q, i = 1, . . . ,� − 1,

m�−1 − m� = ± q + multiple of 2n , �12�

which leads to �i=1
� �mi−1−mi�=��q+multiple of 2n=0. The

role of a nonzero �� can be seen from the extra phase factor
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e−i��q�0 in H��
��� and the corresponding term ��q� /3n in

P��. Direct evaluation of Eq. �11� with all possible sets of
��i is formidable; nevertheless, one can get useful informa-
tion by applying symmetry arguments.

A. Off-diagonal coupling: Gapping of A-SWNTs

We first study the off-diagonal term H
��*
��� and replace mi

with m̃i=2n−m in Eq. �11�, which is allowed by conserva-
tion of angular momentum. The energy denominators and the
function Q remain unchanged because �f�kt , m̃��= �f�kt ,m��,
while the sign before ��q changes. Notice that for
A-SWNTs, f�kt , m̃�=ei4�/3f*�kt ,m�, so that by the definition

of �, cos��̃− �̃��=

� cos��−���. Define �̃i	�
i
�kt ,2n

−mi�; then,

P��*���̃i� = ��
i=1

�


i−1
i�P��*���i�

= 
�
�*P��*���i� = − P��*���i� , �13�

which leads to

H��*
��� ���i� + H��*

��� ���̃i� � �Uq

2
��

sin���q�0�P��*���i� .

�14�

Since the above relation is true for all possible sets of inter-
mediate states at all coupling orders, one can conclude the
following: �a� The coupling between � and �* subbands is
always zero if �0=0—i.e., when a mirror plane of the poten-
tial overlaps with one of the vertical mirror planes �or glide
planes� of the A-SWNT. This is an explicit result of the mir-
ror symmetry requirement.12 �b� The coupling is zero if
��=0, which results from reflection symmetry of the energy
bands: E
�kt ,m�=E
�kt ,2n−m�. This excludes the possibil-
ity of any nonzero second-order contribution—i.e., �
=2,��=0. In other words, a second-order band gap is for-
bidden in A-SWNTs. �c� The next lowest possible �� satis-
fying the angular momentum conservation in Eq. �12� is
�0	2n /gcd�2n ,q�, which is also the lowest contributing or-
der of the perturbation series.12 For small Uq, the band-gap

opening will be at least the �0th order in Uq,

Eg � 2�H��*�kF��

�
vF

R
u�0 sin��0q�0�h�q,n� + �terms of � � �0� ,

�15�

where kF=2� /3a is the Fermi point with a�2.5 Å. u
=UqR /vF is the dimensionless potential, and h�q ,n� is a
complicated function depending on the angular momentum
of the potential q, as well as the A-SWNT index n.

The summation over all possible intermediate states can
be further simplified by combining the original process with
��i and the reversal process with ��i

R	�−
�−i
�kt ,2n

−m�−i�. The sign change of the energy results in an extra
factor of �−1��−1 in the denominator and the function Q
changes accordingly. It can be proved that P��*���i

R�
= P��*���i�, and therefore at small s the relation holds:

H��*
��� ���i� + H��*

��� ���i
R� � �1 − �− 1��� − s�1

+ �− 1����
i=1

�−1


i�f i� + O�s2� .

�16�

Within the orthogonal model �s=0�, only the first term in Eq.
�16� exists and is nonzero when �0, and therefore �, is odd.
This constraint on �0 results from the invariance of the inner
product of pseudospinors upon reversal operation, in combi-
nation with the electron-hole symmetry E−


0 �kt ,m�
=−E


0�kt ,m�. The latter, however, is not an intrinsic property
of SWNTs, but rather due to the nearest-neighbor approxi-
mation. For instance, the energy band symmetry is broken
when the second-nearest-neighbor hopping integral is in-
cluded or, equivalently, if s�0. In the latter case, Q���i�
and −Q���i

R� do not cancel out and a nonzero band gap
proportional to s opens for even �0. Figure 2 plots the varia-
tion of band gap at q=2 calculated within the orthogonal and
nonorthogonal TB models. At s=0, the �6,6� A-SWNT re-
mains metallic, because the coupling order �0=6 is forbid-
den. At nonzero s, a small band gap occurs and increases as

FIG. 2. �Color online�. Band-gap variation of �a� �5, 5� and �b� �6, 6� A-SWNTs as a function of the applied angular potential with q
=2. Insets: the unwrapped unit cell and schematics of the potential. Mirror planes of the potential pass through atomic sites so that all vertical
mirror reflection and glide reflection symmetries are simultaneously broken.
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a power law of u. It is also found that the band gap grows
linearly with the magnitude of s, consistent with the predic-
tion of Eq. �16�. In contrast, the band-gap curve of a �5,5�
A-SWNT only shows a slight increase at nonzero s, because
the corrections is of the order of s2.

B. Diagonal coupling: Renormalization of the Fermi velocity

Except for a few special cases—for instance, with q
=multiples of 2n—the coupling order between � and �*

subbands is about the same order of n and the resulting band
gap remains small. For example, �0=2n at q=1 and �0=n at
q=2. However, the diagonal coupling matrix elements H��

and H�*�* are not necessarily small. The same symmetry
arguments can be applied here. Upon reflection or reversal
operation, P�� �or P�*�*� remains the same and one obtains

H��
������i� + H��

�����ĩi� � �Uq

2
��

cos���q�0�P�����i� ,

�17�

H��
������i� + H��

������i
R� � �P�� − �− 1��P���

− s�P�� + �− 1��P����
i=1

�−1


i�f i�

+ O�s2� , �18�

where ����=� ,�* and ���. Since cos���q�0� is always
unity whenever ��=0, the lowest contributing coupling or-
der is therefore �=2. So unlike the off-diagonal coupling,
nonzero diagonal terms H�� and H�*�* can always be ob-
tained from low-order angular perturbation. In an orthogonal
basis �s=0�, only the first term in Eq. �18� remains, which
corresponds to an energy shift for � and �* subbands in the
same direction when �=odd and the opposite direction when
�=even. If s�0, a relative shift between the two subbands
always occurs. The values of H�� and H�*�* do not contrib-
ute to the band-gap opening of the A-SWNT, but may influ-
ence the Fermi-point position as well as the DOS near the
Fermi level. Assume that s=0; then, the second-order pertur-
bation summation is reduced to

�
��i

H��
�2� = 2�Uq

2
�2cos2��� − �+�kt,n + q�� − cos2���* − �+�kt,n + q��

− E+�kt,n + q�
=

Uq
2

2��0�
F�kt,q� = − �

��i
H�*�*

�2� ,

F�kt,q� � −
1

2�1 + 2 cos�q�/n��
+

�3cos�2q�/3n�
8 sin2�q�/2n�

��kt� − kF�a + O��k2� . �19�

The � subband is a decreasing function of �kt�, and since
F�kt ,q� is an increasing function of �kt� at small q values, it
becomes flattened near ±kF as a result of the second-order
perturbation. A similar trend can be found for the �* sub-
band. The new Fermi points move toward kt=0 as
F�±kF ,q��0, and the renormalized Fermi velocity is given
by

v̄F � �1 +
u2

2q2�−1�vF −
�3n2a

4q2�2

Uq
2

��0�
� � �1 −

u2

q2�vF,

�20�

where the prefactor �1+u2 /2q2�−1 is due to the normalization
of the perturbed wave function. v̄F can also be estimated
from a chiral gauge transformation18 as J0�2u /q�vF��1
−u2 /q2�vF, with J0 the Bessel function of the first kind. The
renormalized Fermi velocity of a �10, 10� A-SWNT is plotted
in Fig. 3, and excellent agreement is found between the TB
results and the analytical predictions. Under potentials of
small q’s, the shape of � and �* subbands is strongly per-
turbed and the low-energy DOS is greatly enhanced �see the
insets of Fig. 3�, which becomes more evident for large ra-
dius A-SWNTs even at a relatively weak perturbation.

One may note that, for A-SWNTs, the finite curvature
shifts the Fermi point further toward k=0 while inclusion of

FIG. 3. �Color online�. Renormalized Fermi velocity v̄F of a �10,
10� A-SWNT as a function of u with q=1 �circles� and q=2
�squares�. Solid and dashed lines are corresponding predictions
from J0�2u /q�. Insets show the DOS structure near the Fermi level
at u=0 and u=1, with q=1.
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 orbitals may also modify the magnitude of the band-gap
opening.19,20 For the radius range considered in this paper,
the correction remains small, and since our symmetry argu-
ments are based on the lattice geometry of A-SWNTs �mirror
or angular symmetry�, the selections rules are not affected.

IV. TENSOR POTENTIAL: q=2

Another type of perturbation is realized by changing the
hopping integrals between neighboring atomic orbitals—for
example, by elastic deformations. Due to the high flexibility,
carbon nanotubes can sustain remarkable deformations,
which cause drastic changes in the electronic properties.
Stretching, twisting, and squashing the nanotubes have
been attempted both theoretically3–5,13–15,21,22 and
experimentally.23–26 Here, we apply a radial deformation
across the A-SWNT and derive the condition to open a sec-
ondary band gap.

Assume that a uniform stress is applied along the y direc-
tion, which is rotated from the A-SWNTs vertical mirror
planes �or glide planes� by �0. The cross section of the
A-SWNT is distorted into an ellipse with the two axes given
by

Ry = R0�1 − ��, Rx = R0�1 + ��� , �21�

where � is the strain along the y direction and � is the cross-
section Poisson ratio. At small strain, the hopping integral
between nearest neighbors can be linearly expanded as

��,i − �0 � � ��

�r
�

r0

�r�,i = ����1 − �

1 + �
+ cos 2��,i� , �22�

��� = − 2�r0�1 + ���R0

r0
sin

��

2
�2� ��

�r
�

r0

, �23�

where ��,i corresponds to the midpoint of the ith bond along
the r� direction. The first term in brackets in Eq. �22� has no
angular dependence and does not break mirror symmetry be-
cause �2=�3 and thus ��2=��3. Since the Poisson ratio was
found to be close to unity,13 the second term dominates,
which corresponds to an angular momentum q=2.

The perturbation matrix element H�� can be expanded
into a perturbation series in a similar fashion as in Eq. �11�,
but now with Q�����i�=1 and

P�����i� = �
i=1

�

�
�=1

3

g��kt;mi−1,
i−1;mi,
i� , �24�

where g� is defined in Eq. �10�. Using the fact that ��2
=��3, one can prove that

�
�=1

3

g��kt;m,
;m�,
�� = 

��
�=1

3

g��kt;2n − m,
;2n − m�,
��

�25�

=− �
�=1

3

g��kt;2n − m�,− 
�;2n − m,− 
� . �26�

By applying the reflection operation �→�̃ on the interme-
diate states, Eq. �13� and �14� are recovered, as required by
mirror symmetry conservation. The lowest contributing order
is therefore �0=2n /gcd�2n ,2�=n. Now apply a reversal op-
eration �→�R as in Sec. III. Since E−


0 �kt ,2n−m�
=−E


0�kt ,m�, from Eq. �26� one has

H��*
��� ���i� + H��*

��� ���i
R� = H��*

��� ���i�
1 +
�− 1��

�− 1��−1� = 0.

�27�

This means that a band gap does not occur in any perturba-
tion order and such a strain cannot induce MST in
A-SWNTs. Certainly, a hidden symmetry—namely, the
electron-hole symmetry E−


0 �kt ,−m�=−E

0�kt ,m�—forbids

the � and �* subband mixing. By including the second-
nearest-neighbor interactions, this symmetry can be weakly
broken and a finite band gap occurs.27 The magnitude of this
band gap depends strongly on the parity of the A-SWNT
index n. It was reported earlier that squashing a �6, 6� or �8,
8� A-SWNT does not induce a MST in the range of elastic
deformation,13,14 and the nanotube remains metallic until the
two opposite walls are brought close enough to form new
bonds. We prove that the vanishing band gap is caused by the
high coupling order between � and �* subbands, �0=n, and
the additional smallness of the overlap integral s and higher
neighbor interactions, which make it impossible to observe
the MST effect until the A-SWNT collapses. The situation is
quite different, for example, for a �5, 5� A-SWNT which has
an odd number index and a smaller coupling order, and a
finite band gap was observed at moderate deformation.5 On
the other hand, when the radial deformation is large enough
to induce a strong �-
 interaction, the single �-orbital de-
scription may no longer be sufficient.

V. COMBINATION OF DIFFERENT TYPES OF
POTENTIALS

One way to reduce the coupling order �0 is by combining
potentials of different angular momenta. For example, we
have shown that by applying a scalar potential of the form of
V0�sin �+sin 2��, �0 can be reduced to 3 for all values of
n.12 The combination of elastic radial deformation and
uniaxial electrostatic potential will have a similar effect. By
choosing appropriate angular momentum and relative posi-
tion of the two components, the coupling order can be even
lowered to �0=2, as shown below.

Assume that a scalar potential �denoted as U� is applied
on an A-SWNT together with a tensor perturbation �denoted
as E���q� of the same angular momentum q, but with an
angular difference �d between the mirror planes of these two
components. As shown in Secs. III and IV, the second-order
contribution from either component is zero, but the cross
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terms do not necessarily vanish. For the second-order cou-

pling between � and �* subbands, ��→
E,U

�
�kt ,m�→
U,E

��*,

there are eight different cross terms with m=n±q and 

= ±1. At kt=kF, the cross terms add up to

� H��*,cross
�2� �kF� = sin�q�d��

�=1

3
Uq���,q cos�kFz��

i�E+
0�kF,n + q��

sin�2�+�kF,n + q� − �n + q/2���� � u� sin�q�d�
��0�
q

, q � n , �28�

where u=UqR /vF and ���� /�0 are the dimensionless po-
tential and strain, respectively. According to Eq. �28�, the
coupling between � and �* subbands is largest when �d
=� /2q and always vanishes whenever the mirror planes of U
and E overlap. The magnitude of the band gap, Eg

�2��H
��*,cross
�2� �kF��, is linear in both u and �, and the depen-

dence on the A-SWNT radius R �or index n� is very weak.
This differs from the situation of mixed scalar potentials of
different angular momenta, in which case Eg decreases with
R as an inverse power law.12

In the case of radial deformation �Sec. IV�, the tensor
perturbation on the hopping integrals and the effective on-
site potential27 have overlapping mirror planes so that no
second-order coupling occurs. Assume that one applies on
the A-SWNT a scalar potential with the q=2 component
shifted �d=� /4 relative to the stress—for example, by
changing the electrostatic environment around the A-SWNT.
The resulting band gap is plotted in Fig. 4 for A-SWNTs of
different radius as a function of u. The hopping integral un-
der deformation is assumed to change as ��r−2, where the
new bond length r is calculated from Eq. �21�. The Poisson
ratio is taken to be unity. The numerical values of Eg clearly
follow a linear dependence on u and � when the perturbation
is weak. The radius dependence is barely seen even at large
u, which means that one can always generate a substantial
band gap in a large-radius A-SWNT using only a moderate

external potential. Recently, it was found that the conduc-
tance of a carbon nanotube can be controlled by tuning the
voltage of the local gate placed near mechanical defects on
the tube �kinks or bends�.28 This scenario is reminiscent of
the combination of scalar and tensor potentials of q=1, and
might be related to the resulting second-order band gap.

VI. METALLIC SWNTs WITH ARBITRARY
CHIRALITY

In this section, we generalize our derivation of subband
coupling to arbitrary metallic SWNTs by expanding the TB
wave functions near the Fermi point. Only angular perturba-
tions will be considered here; i.e., the axial wave vector is
always conserved. An analogy is made to the cancellation
rules of the backscattering process in SWNTs.7 For the sake
of clarity of the derivation, the overlap integral s is assumed
zero. We recall that some cancellation rules will be weakly
broken if the electron-hole symmetry is lifted, for example,
by s�0.

First, the electronic states are approximated as the product
of a plane-wave part and a pseudospinor part by expanding
the wave vector near the Fermi point K of two-dimensional
graphite:

�
�k̂� =
eik̂·r

�2
� ei�k̂,


e−i�k̂,

�, 2�
�k̂� = − 


�

2
+ arg�k̂t + ik̂c� + � ,

�29�

where k̂= �k̂t , k̂c= m̂ /R� is measured from K and � is the

chiral angle. It can be proved that the definition of �
�k̂�
here is consistent with that of �
�k� in Sec. II. In contrast to
Ref. 7, the phase difference due to the sign of 
 is absorbed

in the definition of �
�k̂� so that the product of two pseudos-
pinors is always real. In addition, the wave functions of the
two crossing subbands of metallic SWNTs remain continu-

ous as a function of k̂t when the wave vector passes through
the Fermi point.

Assume applying an arbitrary angular scalar potential
V���=�qVqeiq�, where Vq is the angular Fourier component
of the potential: Vq	�2��−1�d�V���e−iq�. The direct cou-

pling matrix element between two states �
1
�k̂� and

�
2
�k̂��, with k̂t= k̂t�, can be reduced to

FIG. 4. �Color online�. Band-gap variations of A-SWNTs �a� as
a function of u at �=0.05, 0.1 and �b� as a function of � at u=0.5,
1. Dashed lines are to guide the eye.
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M�k̂,
;k̂�,
�� 	 �k̂,
�V����k̂�,
��

� �
Q

Um̂−m̂�+QeiQ��0A+�0B�/2 cos�� − ��

+ Q��0B − �0A�/2� , �30�

where �0A and �0B are angular coordinates of any A and B
atoms. Angular quantum number Q corresponds to the angu-
lar analog of the reciprocal lattice vector of two-dimensional
graphite and accounts for contributions from the short-
wavelength component of the potential. When all nonzero

Q’s are neglected, the matrix element M�k̂ ,
 ; k̂� ,
�� is re-
duced to the product of the Fourier transform of the potential
and the inner product of two pseudospinors, comparable with
the on-site term in Eq. �5� for A-SWNTs.

If the perturbation is a tensor potential—i.e., affecting the
off-site hopping integrals instead of the on-site energies—
one can similarly write the coupling matrix as

M�k̂,
;k̂�,
�� 	 �k̂,
���op�k̂�,
��

� �
�=1

3

���,m̂−m̂�cos
� + �� − � k̂ + k̂�

2

+ K� · r�� , �31�

where ���,q is the discrete angular Fourier transform of the
change in hopping integrals: ���,q=N−1�i���,ie

−iq��,i. Com-
paring with Eq. �30�, one finds that matrix elements for the
two types of perturbations have a different dependence on

the phase angle �
�k̂�.

A. First-order coupling

The first-order subband coupling corresponds to direct

mixing between �+�k̂� and �−�k̂� and has a straightforward
description within nearly degenerate perturbation theory,

where k̂= �k̂t ,0� for metallic SWNTs. Since �
�k̂� is continu-

ous in the vicinity of k̂t=0, the diagonal matrix element

M�k̂t ,
 ; k̂t ,
� is continuous as well and merely shifts the
location of the Fermi point and renormalizes the Fermi ve-
locity. The change of the band gap is therefore determined by

the off-diagonal term M�k̂t ,
 ; k̂t ,−
�.
According to Eq. �30�, only Fourier components of the

scalar potential with q=Q’s contribute to the direct coupling.
For example, for �n ,n� armchair or �n ,0� zigzag nanotubes,
it can be an angular perturbation of the form cos�2n��. Such
a Fourier component can be obtained by applying torsion,
using chemical and biological decoration of the tube surface
or the high multipoles of inhomogeneous potentials. On the
other hand, since the pseudospinors of �+�k� and �−�k� are
always orthogonal, the matrix element in Eq. �30� is reduced
to

M�k̂t, + ; k̂t,− � = �
Q

UQeiQ��0A+�0B�/2 sin
Q��0B − �0A�

2

= i�ŨA − ŨB�/2, �32�

with ŨA,B=�QUQeiQ�0A,0B. Equation �32� indicates that such
potential components must be distinguishable at the two sub-
lattices so as to mix the two orthogonal pseudospinors di-
rectly.

For the tensor potential, the symmetry is lower and even a
uniform deformation �q=0� can result in the first-order cou-
pling. The matrix element in Eq. �31� is reduced to

M�k̂t, + ; k̂t,− � = �
�=1

3

��� cos�arg�k̂t� + � − �k̂ + K� · r��

=
k̂t→0

sgn�k̂t����1 cos�� − 2�/3� + ��2 cos �

+ ��3 cos�� + 2�/3��

= sgn�k̂t�
cos ����2 −
��1 + ��3

2
�

+
�3

2
sin ����1 − ��3�� , �33�

and more specifically for metallic achiral SWNTs,

M�0, + ;0,− � � ���2 − ��3, armchair,

2��2 − ���1 + ��3� , zigzag,
�

�34�

which is consistent with previous findings about band-gap
changes in metallic SWNTs under uniaxial and torsional
strain.4

B. High-order coupling

When the first-order coupling between states �+�k̂� and

�−�k̂� is forbidden, one has to turn to higher orders of the
perturbation. Deriving the coupling could be tedious but
some general rules can be built using the symmetry of pseu-
dospinors. Similar to the case of A-SWNTs, coupling be-
tween the two crossing subbands of arbitrary metallic SWNT

can be represented by H+−�k̂t�=�����i
H+−

������i�, and the
lowest contributing coupling order �0 can be determined by
the dominating Fourier components of the potential.

We first discuss the case of a scalar potential V��� and
restrict Q=0 in Eq. �30�. The cancellation rule is similar to
those which led to Eq. �16�. Assume there is a �th-order

coupling process between �+�k̂� and �−�k̂� through inter-

mediate states ��i	�
i
�k̂t , m̂i� with i=1, . . . ,�−1:

H+−���i� =
�i=1

�
Um̂i−1−m̂i

cos��
i−1
�k̂t,m̂i−1� − �
i

�k̂t,m̂i��

�i=1

�−1
�− E
i

0 �k̂t,m̂i��
,

�35�
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where the subscripts “0” and “�” correspond to �+�k̂� and

�−�k̂�, respectively, with m̂0= m̂�=0. Define a reversal pro-

cess with intermediate states ��i
R	�−
�−i

�k̂t ,−m̂�. After re

arrangement of the summation orders and using the relation

�−
�k̂t ,−m̂�=�−�
�k̂t , m̂�, one arrives at

H+−��k̂t,− m̂�−i,− 
�−i� =
�i=1

�
Um̂i−1−m̂i

cos��−
i−1
�kt,− mi−1� − �−
i

�k̂t,− m̂i��

�i=1

�−1
�− E−
i

0 �k̂t,− m̂i��
� �− 1��−1H+−��k̂t,m̂i,
i� , �36�

which cancels out with Eq. �35� for even �. The approxima-
tion sign for the subband coupling process in Eq. �36� arises

from assumptions on the reflection symmetry E

0�k̂t , m̂�

=E

0�k̂t ,−m̂� and reversal symmetry E


0�k̂t , m̂�=−E−

0 �k̂t , m̂�,

which can be derived from the linear dispersion

approximation—i.e., E

0�k̂�=
vF�k̂�. More generally, the re-

flection symmetry does not hold except for A-SWNTs due to

the trigonal warping effect. For example, E
�k̂t ,1��E
�k̂t ,
−1� for metallic zigzag SWNTs, and a secondary band gap
Eg�R−2 always opens under a uniform electric field perpen-
dicular the nanotube radius.6 Here m̂= ±1 is measured rela-
tive to the Fermi point K. When a nonzero overlap s or
high-order nearest-neighbor interaction is included, the re-
versal symmetry can also be weakly broken. We conclude
that the selection rules for arbitrary metallic SWNTs are
similar to those for A-SWNTs, but may acquire a chirality
dependence beyond the linear dispersion approximation.

For general tensor potentials, M�k̂t ; m̂i ,
i ; m̂j ,
 j� and

M�k̂t ,−m̂j ,−
 j ;−m̂i ,−
i� usually have different magnitude
and no simple cancellation rule can be built. An exception is
when �2=�3 for A-SWNT, e.g., under a radial deformation.
In that case, the coupling between � and �* subbands is
reduced to zero as shown in Sec. IV due to cancellation from
the reversal process within the nearest-neighbor approxima-
tion.

VII. CONCLUSION

In this paper we employ the group theory approach to
clarify the issue of MST in armchair and other metallic
SWNTs under angular perturbations. We study the symmetry
requirements of MST on the nanotube and the perturbation
potential, and demonstrate that the smallness of the MST
effect is related to the symmetry of the pseudospinor compo-
nents of the electron wave functions. Namely, the spinors of
the crossing subbands are orthogonal; thus, any interaction
between them is strongly weakened. For A-SWNTs, the gap
is diminishing for almost any pure angular perturbation with
a single angular Fourier component, due to the high coupling
order. The coupling order is proportional to the number of
atoms along the tube circumference for both types of pertur-
bation studied here: the on-site �scalar� potential and off-site

�tensor� deformation. The MST effect can be greatly en-
hanced by combining perturbations of different types and/or
different angular momenta.

We formulate selection rules for the band-gap opening
and its dependence on the perturbation strength. The combi-
nation of the diagrammatic derivation of interaction matrix
elements and group theory technique allows one to predict
the scaling of the band gap on the potential: Eg� �V��0, where
the scaling exponent �0 can be easily calculated for an arbi-
trary metallic SWNT for given symmetry of the potential.
Corrections may arise due to refinement of the model TB
Hamiltonian—e.g., the electron-hole asymmetry, the inclu-
sion of 
 orbitals, and others not considered here. As an
example of such refined model, we calculate the gap depen-
dence on the overlap integral s added to the classic orthogo-
nal TB model.

We present the analytical expression for the renormaliza-
tion of the Fermi velocity, which occurs even if no MST is
observed. The decrease of the Fermi velocity due to the per-
turbation is also seen as the enhancement of the DOS close
to the Fermi level.

The MST effect by SWNT symmetry breaking could have
potential applications for nanoscale electronic and optoelec-
tronic devices. Additionally, we emphasize the possibility of
engineering the nanotube DOS even when MST is forbidden
under given perturbations, which can be potentially em-
ployed for SWNT opticals as well as switching devices.
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APPENDIX: NEARLY DEGENERATE PERTURBATION
THEORY

When calculating the coupling between two nearly degen-
erate states �� and ��, it is more convenient to treat them as
degenerate states. Since E�=E�=0 only at the crossing point,
one can include the energy dispersion by redefining the un-
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perturbed Hamiltonian and the external perturbation, for
�E�−E�� being small:

H̃0 = H0 − E��������� − E��������� ,

H̃1 = H1 + H0 − H̃0. �A1�

�� and �� now become degenerate states of H̃0 with Ẽ�,�
=0. Their original energy difference is absorbed in the per-

turbation while other states �� are not affected:

���,��H̃1���,�� = E�,�, ����H̃1���� = ����H1���� ,

����H̃1���,�� = ����H1���,��, ����H̃1���� = ����H1���� .

�A2�

As long as H̃1−H1 is small, the rearrangement of H0 and H1
will not affect the results of the perturbation theory.
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