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The theory of the remote Coulomb impurity scattering in single-wall carbon nanotubes is developed within
a one-electron approximation. The Boltzmann equation is solved within the drift-diffusion model to obtain the
tube conductivity. The conductivity depends on the type of the nanotube band structure(metal or semiconduc-
tor) and on the electron Fermi energy. We found that the exponential dependence of the conductivity on the
Fermi energy is due to the Coulomb scattering rate having a strong dependence on the momentum transfer. We
calculate intrasubband and intersubband scattering rates and present general expressions for the conductivity.
Numerical results, as well as obtained analytical expressions, show that the degenerately doped semiconductor
tubes may have very high mobility unless the doping level becomes too high and the intersubband transitions
impede the electron transport.
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I. INTRODUCTION

Carbon nanotubes, discovered in the last decade,1 attract
the attention of physicists not only due to their beautiful
symmetry, extreme quantum scale, and quasi-one-
dimensional(1D) structure, but also due to numerous appli-
cations, already existing2–4 and foreseen in the future.
Among those, the applications, which will use transport
properties of nanotubes,3,5 are sensitive to details of a charge
carrier scattering. It was shown that the scattering in an ideal
metallic single-wall nanotube(SWNT) is greatly diminished
as in a full symmetry of an armchair nanotube the back-
scattering between states at a Fermi level(in a thin shell near
an electrochemical potential atTÞ0) is forbidden.6 In con-
trast, an electron in a dopedsemiconductorSWNT, which
has different symmetry(zigzag or other chiral symmetry),
can be backscattered. In field effect devices the semiconduc-
tor nanotubes are used. To obtain high conductivity the dop-
ing level is controlled, thus, our study of the transport
mechanisms and the semiconductor SWNT conductivity7

and their dependence on the doping level becomes very
timely.

Among most important mechanisms of elastic8 scattering,
responsible for the low-temperature resistivity of nanoscale
systems, one may encounter a defect scattering, a Coulomb
center scattering, and an electron-electron interaction; the lat-
ter is beyond the scope of one-electron theory and will be
studied elsewhere. The first two are distinct as a scattering
potential is long ranged for the Coulomb center, and it is
short ranged for a neutral(mechanical) defect, which may be
a substitutional(not charged) impurity or another type of
lattice defect. The charge carrier scattering by the Coulomb
center, charged impurity, and/or ionized dopant is the focus
of our paper. At low temperatures this mechanism is compa-
rable or even stronger than other scattering mechanisms.
Modern high mobility semiconductor devices have so small
a size scale that the device channel may contain no substitu-
tional impurity/dopant atom. The remote impurity scattering
may still limit the transport in this case. Recent
experiments9,10 showed that even long channel semiconduc-

tor SWNT devices may have very high mobility at the high
doping level. Our theory addresses this case, taking into ac-
count Coulomb scattering at the remote impurities and in-
cluding effects of intersubband scattering at the high(dop-
ing) Fermi energy.

Specifics of the Coulomb interaction in nanotubes is that
the effective potential, seen by the delocalized electrons, has
a cutoff at the radius of the tubeR. Thus, even if the Cou-
lomb impurity is at the closest(atomic) distance from the
tube surface,11 the effective Coulomb potential is the poten-
tial of a remote scatterer. The situation is similar to what is
known for HEMT devices. We propose that the remote im-
purity scattering mechanism is responsible for a residual re-
sistance of the semiconductor nanotube at low temperature.
It may define a limit for an electron mobility(on current) in
the nanotube field effect transistor if other scattering mecha-
nisms are less effective. The same theory is applicable to the
scattering in metallic nanotubes which are proposed for use
as interconnects and ballistic wires12 and especially in metal-
lic field effect transistors.13

We develop a theory of the remote impurity scattering for
the SWNT device, calculate a scattering rate at one surface
impurity, scattering by a dilute distribution of random impu-
rities (in a Born approximation), a zero and finite tempera-
ture conductivity in a drift-diffusion(DD) model. It is known
that in pure(mesoscopic) systems, a quantum interference
correction to the DD conductivity depends on the system
dimension and it is of the order of the conductivity itself in
the 1D case. This manifests as a 1D localization. However,
for a quasi-1D system of the nanotube it may not hold due to
fast phase breaking. It may explain why considerably simple
classical one-electron theory describes the nanotube experi-
ment fairly well.14–16 Among possible mechanisms respon-
sible for the fast phase breaking we noticee-e ande-phonon
interactions. The latter mechanism was shown to be very fast
in SWNT’s in optical studies.17 We will discuss the role of
e-e interaction later on.

We calculate the dependence of the SWNT conductivity
on the Fermi energy. The strong degeneracy of carriers in the
semiconductor tubes is required to obtain the high mobility.18
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We show that this is consistent with calculated scattering
rates. The same condition of the large Fermi energy allows
one to apply the Boltzmann equation for transport calcula-
tions.

It is commonly used that the conduction in SWNT’s hap-
pens via states of one subband(of orbital quantization). We
note that at the high doping level the new conduction chan-
nel (through the next subband) must appear. Then, an inter-
esting question arises: how the scattering betweendifferent
subbandsmay change the conductivity. In semiconductors,
the role of intervalley scattering is not very important. The
difference in the transport at high fields consists mainly of
the renormalization of an effective mass of the electron of
the conduction band. We will show that for the quasi-1D
band structure of the SWNT, where a phase space of scatter-
ing is very restricted, the opening of a new scattering channel
may change the conductivity qualitatively, especially for me-
tallic armchair nanotubes and for high mobility semiconduct-
ing nanotubes. We found that for the Coulomb scattering
mechanism it results in a giant drop of the conductivity at
low temperature. We present a general expression for the
concentration dependence of the conductivity and study its
analytical limits that clearly demonstrates the physics of this
effect.

1D conductivitys1D is known to have a dimension of a
diffusion coefficientklengthl2/ ktimel (see, for example, Ref.
19). Thus, the conductance of the 1D system iss1D/L where
L is the system length. We demonstrate below that a simple
expression is valid for the DD conductivity of the SWNT:
s1D,G0L, whereG0=e2/2p" is the quantum of conduc-
tance andL,vt is a mean free path of the electron(v andt
are the electron velocity and lifetime). We calculatedL as a
function of the Fermi energy and a strength of the random
impurity potential. Within the model discussed, the conduc-
tance can be written as

G , s1D
1

L
, G0

R

L
f1SEF

Us
D f2SEF

Eg
DgSEF

Eg
D , s1d

whereR is the SWNT radius(characteristic transverse length
of the 1D channel), EF is the electron Fermi energy,Us

=see* dÎns is a strength of the 1D potential of the Coulomb
impurities with an effective chargee* and a surface density
ns, Eg is the SWNT gap,f1 and f2 are some power law
functions, andgsxd is an exponential function of its argu-
ment. The conductivity(and conductance) is so sensitive to
the change of the Fermi energy(exponential function ofEF)
because of the exponential dependence ofgsxd that reflects a
strong dependence of the Coulomb matrix element on a
transferred momentum. Allowed backscattering transitions
within a single subband have a large momentum transfer at
large EF, while the transition between subbands may have
smaller momentum transfer. Thus, the appearance of the new
scattering channel drastically decreases the mean free path of
the electronL, which becomes small, andG drops several
orders of magnitude. We notice that the power law function
f1sxd@1 because its argument is large:EF@Us. This in-
equality is also a necessary condition for applicability of the
Boltzmann equation.

Below we consider charged impurities which are likely
present on the surface of any substrate. The deposition meth-
ods which are currently used in fabrication of the nanotube
devices may produce such impurities in large quantities.
Charged impurities are known to exist at the surface of SiO2
substrate, commonly used for nanotube devices. Use of high-
e dielectrics may even increase the role of this scattering
mechanism.

We assume that the impurities are(single) ionized and
uniformly distributed on the insulating surface with a 2D
densityns. Both assumptions are not vital for the model and
make no qualitative change in the final results. However, the
derivation of the Eq.(1), for example, is more clear in this
geometry. The generalization of our theory to the case of 3D
distribution of the Coulomb centers is straightforward. It
gives a description for the SWNT embedded in an insulating
matrix and will be published elsewhere.20 For the Coulomb
substitutional impurities located directly in the lattice of the
SWNT and for the charged impurities encapsulated inside
the tube, an order of magnitude estimate for the DD conduc-
tivity can be obtained by substitutingUs

2 by WsEc, whereWs
is the strength of a random potential of 1D impurities and
Ec,e2/C is a Coulomb charging energy of the tube. We note
the logarithmic divergence of the latter withL as well as the
same logarithmic divergence of the 1D Coulomb matrix
element.21

II. REMOTE IMPURITY SCATTERING RATE

A. Model assumptions

The nanotube is situated at the van der Waals distance
from the surface of the substrate. This distance is about
3.4 Å, and the Coulomb centers are removed from the device
channel. The Born approximation, which implies indepen-
dent scattering events, is used in what follows to calculate
the elastic scattering rate. We consider scattering of the elec-
trons in different subbands and between subbands. One can
apply this theory to the transport in multiwall nanotubes,
which are believed to conduct by the outermost shell. Here,
we restrict ourselves to the case of single-wall tubes and
consider armchair and zigzag SWNT’s, though, the final re-
sult is more general and can possibly be used for an arbitrary
tube.

The Coulomb scattering manifests itself in low-
dimensional systems. The long-range Coulomb potential is
known to be underscreened in a 1D case,21,22 in nanowires14

and nanotubes,23,24 which means that the screened potential
diverges as a logarithm of the distance. Thus, the Coulomb
scattering becomes the most important scattering mechanism
in certain conditions. It is well known that the random po-
tential results in a localization of carriers in an infinite 1D
system.25 We assume that an effective phase breaking
mechanism exists in the SWNT’s, which destroys the inter-
ference. It is known that thee-e scattering time is very short
for these systems, even though thee-e interaction ina single
1D bandcannot suppress the localization, because the total
momentum of the electronic subsystem is conserved. How-
ever, in the nanotubes there is a number of differente chan-
nels which may be not coherent. It is clear that thee-e scat-
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tering between the electrons that belong tothe different
bands breaks the phase of the wave function and, thus,
destroys the interference. What are these differente bands?
The transport in nanotubes occurs via the band formed by
highest valence electrons, so called,p-electron band. The
rest of the valence electrons are localized and form low-lying
s bands. Thee-e scattering between these two different
bands does not preserve the electron phase. Also, in a real
experimental situation, in the SWNT rope or in the multiwall
nanotube, the scattering betweenp electrons at the different
walls/tubes destroys the interference as well. For what fol-
lows we accept that the phase breaking time is short enough
to neglect the interference correction and use the Boltzmann
equation approach for the calculation of the DD conductivity
of the SWNT.

B. Envelope wave functions

We use SWNT envelope wave functions26 for the elec-
tronic structure calculation, which are obtained as a solution
of a tight-binding(TB) Hamiltonian forp electrons.27 Our
approach is very close to what was presented in Ref. 26 and
then widely used in the nanotube literature, so we skip de-
tails and give only the final wave functions for the two-band
scheme(p electrons only):

ucm,k,zl =
1
Î2

suAl + zcmkuBldeikzeima, s2d

where an orbital momentumm labels orbital subbands of the
SWNT electronic structure,k labels states with a longitudinal
momentum, bothm and k are good quantum numbers(dis-
crete and continuum, respectively) for an ideal, long enough
nanotube.z= ±1 is a pseudospin. A pseudospinor vector is
formed by a two-component amplitude of the wave function
defined for two atoms in a graphite unit cell(A and B).
Coordinate along the tube isz, anda is an angle along the
nanotube circumference(by this we explicitly assume the
electron to be confined to a surface of a cylinder of fixed
radius R). The components of the pseudospinor are
c-numbers, in general, defined up to an arbitrary phase. It is
taken such that the coefficient for theA component is purely
real and equal to 1/Î2, then a matrix element of the dimen-
sionless TB Hamiltonian gives the second component of the
pseudospinor.28 This determines a dependence ofcmk on the
subband indexm and the 1D momentumk. The pseudospinz
distinguishes between states of valence and conduction
band.29

So far, we considered an equilibrium(nonperturbed) elec-
tronic wave functions. We assume, as usual, that the scatter-
ing can be modeled perturbatively if the interference terms
are negligible as it was discussed in the last section. The
perturbation operator is the Coulomb potential

Visr d =
ee*

Îsz− Zid2 + sx − Xid2 + sy − Yid2
, s3d

wheree,0 is an electron charge.x, y, andz are the coordi-
nates of the electron. These three coordinates are not inde-
pendent as the electron motion is restricted to the surface of

the cylinder.e* is an effective charge of an impurity, its
position is given in a Cartesian coordinate system as
fXi ,Yi ,Zig. For the scattering at a single impurity, a relative
position of the Coulomb center along the(infinite) nanotube
Zi may be chosen arbitrary. The coordinateXi (normal to the
substrate surface) approximately equalsh, a negative height
of the nanotube, which assumes that the impurity size is
negligible and that the impurity is not buried in the substrate
(both assumptions are reasonable but the model works with-
out this simplification as well). We will define an effective
charge of the impurity,e*, in the last section, when discuss-
ing the screening.

C. Matrix element of the impurity potential

One needs to know matrix elements of the Coulomb po-
tential between the TB wave functions of the electron to
calculate the scattering. The potential of the remote impurity
is smooth at the surface of the nanotube and, therefore, it is
almost constant within the unit cell. Hence, the matrix ele-
ments of the potential with the envelope wave functions(2)
can be approximated by the 1D Fourier components of Eq.
(3):

kkmu
ee*

ur u
uk8nl =

2ee*

L
e−iwsm−nde−iZsk−k8d

3 I um−nusuk − k8uRdKum−nusuk − k8urd, s4d

where Imsxd and Kmsxd are the modified Bessel functions30

(of imaginary argument) of the orderm, r is the vector be-
tween the impurity center and the point on the surface of the
nanotube, andR is the nanotube radius. In a cylindrical co-
ordinate system,w is the angle of the impurity position,r is
the distance from the axis of the nanotube to the impurity
andZ is its longitudinal coordinate.

These matrix elements of the potential are needed for cal-
culating the remote scattering rates. In addition to that, the
analytical expression for the remote potential(4) is interest-
ing by itself. We are not aware of a calculation of the Cou-
lomb potential for the charge centerremoved from the nano-
tube. This formula gives a generalization of an expression for
the 1D Fourier transformation of the Coulomb interaction
between charges which areboth on the nanotube surface
(which may be found, for example, in Ref. 31). Let us
present analytical limits of our result at large and small trans-
ferred momentum and demonstrate how the dimension of the
nanotube system shows up.

The interaction strength decreases rapidly with the trans-
ferred momentumq= uk−k8u, which is well known property
of the Coulomb potential at any dimensions. Using the as-
ymptote of the Bessel function atq@r−1,R−1, we reduce Eq.
(4) to

2ee*

L
e−iwsm−nde−iZsk−k8d e−uk−k8usr−Rd

uk − k8uÎr − R
s5d

and recover formulae−qa/q, the expression for the Fourier
component of the Coulomb potential in 2D.32 This is not
surprising, because in the short-wavelength limit one restores
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the planar geometry when the curvature of the graphite sheet
becomes unimportant.

On the other hand, at smallq andm=n the matrix element
(4) logarithmically diverges as,lnsqr /2d, which is accord-
ing to 1D electrostatics.21 In contrast, atmÞn and smallq,
the limit of the matrix element has no dependence onq.
Instead it is proportional tosR/rdum−m8u, and decays exponen-
tially with the transferred angular momentumum−m8u as in
the multipole expansion series. It is consistent with under-
standing ofR−1 as a minimum cutoff momentum in the Cou-
lomb matrix element.

D. Averaging of the random potential

In the Born approximation each scattering event is statis-
tically independent and the electron wave function is not
coherent between events. Thus, one has to sum probabilities
of the scattering over the realization of impurities(to be av-
eraged later). Let us write the partial probability of the single
scattering event using the Fermi golden rule

Wmnskd =
2p

"
o
q
S2ee*

L
D2

I um−nu
2 sqRd

3 Kum−nu
2 sqÎh2 + Y2ddsEn,k+q − Em,kd, s6d

whereq is the transferred momentum, and for the SWNT the
sum has only several terms(less than four) if any, which
depends onm, n, andk quantum numbers. Here,h andY are
the Cartesian coordinates of the impurity(without loss of
generality, we chose the coordinate origin such thatZ=0).
We remind the reader that the axis of the nanotube is at the
distanceX=h from the substrate.L is the tube length.

The Coulomb centers are distributed on the surface of the
substrate randomly. One has to perform averaging in the
plane to obtain a statistical description of the scattering. We
assume that the impurity positions are not correlated. Then
for the electron with the momentumk in the subbanduml, an
elastic lifetime due to the remote impurity scattering is writ-
ten as

t−1sm,kd =
8

"
see* d2nso

n
o
qk

S ]En

]k
D

k=qk

−1 Gsqkd
qk

, s7d

wherens is a 2D density of the surface impurities andqk are
the solutions of the equationEn,k+q=Em,k. As we noticed be-
fore, this equation may have up to four solutions within the
first Brillouin zone(see Fig. 1). For example, for thefN,Ng
armchair nanotube we have

qk = − k ±
2

b
arccosF−

1

2
cos

mp

N
±

1

2

3Îcos2
mp

N
+ 4 cos

kb

2
Scos

kb

2
+ cos

np

N
DG ,

s8ad

and for thefN,0g zigzag SWNT

qk = − k ±
2

Î3b
arccos3 1

2 cos
mp

N

S− cos
2mp

N
+ cos

2np

N

+ cos
Î3kb

2
cos

np

N
D4 , s8bd

whereb.0.14 nm is the bond length andN is the SWNT
index.

We use the notationGsqkd= I um−nu
2 sqkRdFum−nusqkhd for a re-

duced Coulomb matrix element in Eq.(7). Here the factorF
comes after averaging in the plane and equals

Fnsxd =E
−`

`

dtKn
2sÎx2 + t2d

=
p

2
E

4x

`

dtK2nstd

=
p2

4 Hs− 1dnh1 − 4xfK0s4xdL −1s4xd + K1s4xdL 0s4xdgj

+
4

p
o
j=1

n

s− 1d j+1K2sn−jd+1s4xdJ , s9d

whereL are the modified Struve functions30 (of imaginary
argument).

Now we analyze these expressions in the limit of small
and largeqk. For smallqkh one can write

FIG. 1. (Color online) Electron energy disper-
sion for armchair [10,10] and zigzag [17,0]
SWNT’s. Inset: Zoom out of the lowest subbands
and the electrochemical potential(green dashed
line).
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qk
−1Gsqkd

= qk
−1I um−nu

2 sqkRdFum−nusqkhd

< 5
p2/4qk if n = m,

pR

16

R

h
if un − mu = 1,

phs2un − mu − 3d ! !

23um−nu+1un − muun − mu!
SR

h
D2um−nu

if un − mu . 1.

s10d

The numerical factor is rather small in case of intersubband
transitionsnÞm and decreases with the separation between
subbandsum−nu rapidly. Thus, the scattering into the same
subband(transition with the orbital quantum number conser-
vation) is the most effective scattering channel for smallqk.

For largeqkR the scattering rate exponentially decreases
with the transferred momentum,expf−2s2h−Rdqkg, due to
the exponential decay of the modified Bessel function. The
main term of a Poisson series of the matrix element does not
depend onum−nu:

qk
−1Gsqkd <Î p

128hR2qk
5e−2s2h−Rdqk

3S1 +
sh/R− 1

4dsum− nu2 − 1
4d + 1

64

qh
+ ¯ D .

s11d

We will use these analytical expressions(10) and(11) for the
calculation of the scattering rates in what follows.

III. CONDUCTIVITY: DRIFT-DIFFUSION APPROACH

In this section we calculate the conductivity in a drift-
diffusion (DD) model which is widely used for description of
the transport in multiwall nanotubes. It is also applicable for
very long SWNT’s if the phase breaking and/or inelastic
scattering lifetime is short as discussed in the Introduction.

It is known that a Schottky barrier forms near the metal
contact.15,33 For the short channel SWNT device this
Schottky barrier almost determines important transport char-
acteristics. The theory of the nanotube transport, taking into
account phenomena in the contact regions, is presented in
Refs. 15 and 33 and we do not address this subject in our
paper. Instead we focus on the scattering in the rest of the
tube. The contact region has a finite length which is about a
typical screening length, e.g., a distance to the backgate.34,35

If this distance is much smaller than the length of the nano-
tube, one may define the device channel conductivity.36,37

For the sake of clarity, we restrict ourselves to the case of the
armchair or zigzag SWNT. The generalization of our model
to the case of any chiral SWNT is straightforward.

The conductivity in a single channel is as follows:

si =
g

2p
E e2tsEd

"2

]E

]ki

]f

]E
dE. s12d

Hereg is the degeneracy of the current channel. By the chan-
nel of conductivity we understand here any fixed subband of

the orbital quantization which can carry the current.tsEd is
the transport lifetime andfsEd is an equilibrium distribution
function. The derivative of the distribution function]f /]E is
peaked at the electrochemical potential(delta function of the
Fermi energyE=EF for T=0). However, we keep the inte-
gral sign even atT=0 because of several channels corre-
sponding to several non-zero terms in the conductivity, as
given by Eqs.(8a) and (8b). s has nontrivial temperature
dependence due to the strong dependence of the lifetime on
the electron energy.

It is important to include the intersubband scattering terms
(if corresponding transition is allowed) because the Coulomb
scattering rate decreases with the transferred momentum(see
also Fig. 3). With increasingEF the scattering into the same
subband may become less effective than the scattering into
the other subband. We demonstrate below that this is the case
for the semiconductor SWNT at the high doping levels.

Equation(7) can be conveniently rewritten as

t−1sm,kd =
8Us

2

"2 o
n,qk

8vn,qk

−1 qk
−1Gum−nusqkd, s13d

with use of notationsUs=see* dÎns for a characteristic en-
ergy of the Coulomb disorder andvm="−1]E/]k for the elec-
tron velocity. The prime sign reminds us that the summation
is over the roots of Eqs.(8a) and (8b).

Let us first consider the scattering of the electron in the
same subbandum,kl→ um,k+ql.

A. Armchair nanotubes: Intrasubband scattering

The expression for the scattering roots for the armchair
SWNT, (8a) in the limit of intrasubband scatteringsm=nd
reduces to

qk = − k ±
2

b
arccosFcos

mp

N
+ cos

kb

2
G,− 2k,0. s14d

We remind the reader thatN is the fN,Ng SWNT index.
The last root means no scattering because all quantum

numbers are conserved and has to be discarded. The first root
is, in fact, the intersubband backscattering near the same
Fermi point(see Fig. 1, right inset), which is forbidden for
the two crossing subbands of the armchair SWNT by the
pseudospin conservation rule.38 The rootq=−2k is the back-
scattering of the electron within the same subband to other
Fermi point(see Fig. 1, right). Only this transition between
two Fermi points with a large transferred momentum(qk
<4p /3Î3b for smallEF) is allowed by the symmetry of the
armchair SWNT. Thus, the analytical limit(11) can be used
for calculatingtsEd. The transport lifetime of the electron
contains a large exponential factor~expf4ps2h−Rd /3Î3bg
and, hence, this mechanism gives the negligible scattering
rate.

Because of the exponential dependence of the matrix ele-
ment on the transferred momentum, the conductivity of the
armchair nanotube increases dramatically, when the Fermi
energy reaches the next subband. This subband has a differ-
ent symmetry29 and the intersubband scattering near the
same Fermi point(see Fig. 1, right inset) is not forbidden.
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Then, the intersubband scattering rate of the armchair nano-
tube is high and given by an expression which is similar to
the case of zigzag nanotube. We will consider these two
mechanisms together in Sec. III C.

B. Zigzag nanotubes: Intrasubband scattering

In the last section we show that the remote impurity scat-
tering is negligible in the armchair SWNT’s. The scattering
due to any other long range potential, except for torsional
phonon modes,39 was shown to be ineffective as well.16 The
case of the zigzag nanotube is less trivial. We substitute Eq.
(7) into Eq.(12) and obtain the conductivity at zero tempera-
ture

s =
e2g

2p"8Us
2 o

m,kFm

F o
n,kFn

Gum−nusukWFm − kWFnd

vmvnukWFm − kWFnu
G−1

, s15d

whereg=4 is the current channel degeneracy(for the spin
and orbital momentum); vm is the electron velocity at the
Fermi energy(near theG point), vm="−1]E/]k. Taking into
account the nonparabolicity of the energy dispersion of the
mth subbandEk,m we obtain

vm =
6bg

4"EF

ÎEF
2 − Em

2 = VFÎ1 −
Em

2

EF
2 , s16d

whereVF=3bg / s2"d is the Fermi velocity in the(metallic)
massless subband. The Fermi momentum of the electron in
the mth subband is

kmsEFd =
2

3bg
ÎEF

2 − Em
2 , s17d

where the bottom of themth subband is

Em = gU1 + 2 cos
pm

N
U .

"VFm

3R
. s18d

These expressions are essentially similar but not equivalent
to the ones obtained with thekp method because of the non-
parabolicity of the energy dispersion in the tight-binding
model.

For the Fermi energy located within the lowest subband
Em,EF,Em±1, the only level of orbital quantization is
populated atT=0, which hasm=sN+Mod3fNgd /3. We use
the standard notation Mod3fNg for N modulo 3,(the remain-
der on division ofN by 3) here and below. Because the
intersubband transitions become allowed only atEF.Em±1
the single backscattering term withm=n has to be substi-
tuted in Eq.(15) which gives

sz
s1d = G0gvmtsm,kFd =

G0g"2

8Us
2 2kFvm

2G−1s2kFd, s19d

whereG0=e2/2p" is the conductance quantum and the elec-
tron velocity is

vm
2 sEFd = VF

2 3 51 −
Em

2

EF
2 if h = Mod3sNd Þ 0,

1 if h = Mod3sNd = 0,

s20d

where the indexh=Mod3sNd distinguishes between the zig-
zag metallicfh=Mod3sNd=0g and semiconductor SWNT’s
fh=Mod3sNdÞ0g.

Let us now apply the expression(10) for analysis of the
conductivity at smallEF. Because at smallkF the function
G−1s2kFd does not depend onkF in the leading term, we find
the DD conductivity of the zigzag tube at the low doping
level depends on the concentration as

sz
s1d =

G0gEF"VF

4Us
2 G−1 3 5S1 −

Em
2

EF
2 D3/2

if h Þ 0,

1 if h = 0.

s21d

We drop the argument ofG−1 in the expression above be-
cause its limit is 4/p2 at smallkF. The DD conductivity is
different for the metallic and semiconductor tubes: it is linear
in EF for the metallic(zigzag,h=0) SWNT and it depends
on the Fermi energy as

EFS1 −
Em

2

EF
2 D3/2

for the degenerately doped semiconductor SWNT(zigzag,
hÞ0).

The conductivity at smallEF depends linearly onEF ow-
ing to the matrix element of the Coulomb potential of the 2D
remote centers. The square of the matrix element is,q−1,
because in our model the centers are distributed on the(2D)
surface of the substrate(the generalization to the 3D case is
obvious). The linear dependence of the square of the matrix
element inq−1 results in the linear dependence of the con-
ductivity on EF.

At larger EF the energy dependence of the transport life-
time (of the matrix element of the transition) is different. In
this case, Eq.(11) has to be used, which results in a fast
exponential growth of the conductivity because of the large
suppression of the transitions with increasing momentum
transfer. Then, Eq.(21) transforms into

sz
s1d .

8RG0gEF
2

Us
2 Î hEF

p"VF
Î1 −

Em
2

EF
2 S1 −

Em
2

EF
2 D2

3expF4s2h − Rd
EF

"VF
Î1 −

Em
2

EF
2 G

,
eF→1221/4RG0gEF

2

Us
2 Î hm

3pR
seF − 1d9/4

3expf8s2h − RdseF − 1dg, s22d

whereeF=EF /Em is the dimensionless Fermi energy of the
semiconductor tube:eF→1 and eF,1 in expression(22).
This equation gives the conductivity of the zigzag nanotube
for the transport through only one channel(of the lowest
subband). The result of our calculation[Eqs.(21) and(22)] is
presented in Fig. 2, where the drift-diffusion conductivity of
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the zigzag SWNT is plotted as a function of the Fermi energy
(doping level). With increasing doping level the conductivity
grows exponentially. This is not because more carriers are
available for transport but due to the energy-dependent trans-
port lifetime that grows exponentially with the increase of
the momentum transfer between initial and final states. This
momentum transfer is 2kF~EF when the linearization of the
TB Hamiltonian is possible. The momentum transfer in-
creases until the Fermi energy reaches the next subband.
Then, suddenly, the new backscattering channel opens. The
momentum transfer between the next subband and the lowest
subband is small at this critical doping level. Thus, the re-
mote impurity scattering becomes very efficient and the con-
ductivity drops several orders of magnitude.

The maximum conductivity may be reached when the
Fermi energy is close to the edge of the second subband but
lower than it. We note that the phonon scattering may limit
the transport, at least, at high temperatures.40 Therefore, for
not very low temperature and high enough doping level, it
may be possible to observe switching from the remote scat-
tering to the phonon scattering mechanism.

Also at TÞ0, the finite temperature distribution function
makes thessEFd dependence smooth near the step ateF,1,
as it will be shown next.

C. Intersubband scattering

The remote impurity scattering between the subbands
may happen only when the doping level is high enough to
essentially populate the second subbandEFùEm±1. Then, the
scattering rate becomes high and the mean free path becomes
short. The expressions for the DD conductivity of armchair
metallic, zigzag quasimetallic, and zigzag semiconductor
nanotubes are essentially the same in this region. This is
because the density of state(DOS) in the vicinity of the
Fermi point is a universal function41 of the energy(doping
level), and because there is no special selection rule for the
transitionsbetween different subbandsof the orbital quanti-
zation. Let us consider the single Fermi point and find which
scattering channel defines the conductivity atEFùEm±1. As
before, because of the large momentum transfer, we neglect
transitions between different Fermi points, which are pos-
sible for the armchair SWNT. As shown in Fig. 3, we have
two left-going and two right-going(current) states/channels
(to be multiplied with the spin and orbital momentum degen-

eracyg=4). We introduce four scattering ratesti j
−1 and cal-

culate it with the Eq.(13).
Let us assign the indexi =1 to the subband with the larg-

est momentum at the Fermi energykFi (which may change
with changing the Fermi energy if the subbands cross). The
intrasubband lifetimest11/22are given by the terms in Eq.(7)
with n=m. There are two intersubband lifetimestr

s12d and
tm

s12d for the transition with the same/opposite sign of the
electron velocity in the initial and final statesunl and uml
= un±1l.

For certain tube symmetry the subband crossing may hap-
pen with increasingEF. When the Fermi energy is above the
crossing point the subbands 1 and 2 are interchanged in the
equations given below. The case of the metallic(armchair or
zigzag) SWNT is similar to the case of noncrossing subbands
and will not be considered separately. There is only one dif-
ference for the armchair SWNT as compared with the zigzag
SWNT case: the dispersion in the subband 1 is massless.
Thus,v1=VF is the constant and, by symmetry,t11=` (“in-
trasubband” scattering in the lowest subband is not allowed).

We recalculate the distribution functions in all four chan-
nels using the Boltzmann equation and taking into account
the interchannel transitions. When the scattering is weak one
can neglect it and use the equilibrium distribution function.
This is not the case for the SWNT ateFù1, where the scat-
tering rates at the edge of the second subband are very high.

General expression for the DD conductivity with nonzero
intersubband scattering is rather cumbersome even in the ap-
proximation of the two closest subbands:

s = G0g

v1tr +
sv1 + v2d2

2v1
t22 −

sv1 − v2d2

2v1

tr

tm
t22 + v2

tr

t11
t22

1 +
tr

tm
+

2v2

v1

t22

tm
+

2tr

t11
+

v2

v1

t22

t11
S1 +

tr

tm
D

.
G0g"2

8Us
2 Hv1v2uk1 − k2uG−1suk1 − k2ud

3S1 −
uk1 − k2uG−1suk1 − k2ud
uk1 + k2uG−1suk1 + k2udD +

sv1 + v2d2v2

2v1
2k2G−1s2k2d

3F1 −S1 +
sv1 − v2d2

sv1 + v2d2D uk1 − k2uG−1suk1 − k2ud
uk1 + k2uG−1suk1 + k2udG + ¯ J ,

s23d

FIG. 2. (Color online) Conductivity of a zigzag[17,0] SWNT vs
the electrochemical potential(the doping level).

FIG. 3. (Color online) Bandstructures for zigzag SWNT’s of
two types. Left:f3q+1,0g SWNT; Right: f3q−1,0g SWNT. Dop-
ing level is shown as horizontal lines: pink/green(lower/upper) line
is for low/high doping level. Insets show the scattering rates for
different scattering mechanisms as a function of energy as in left
and right diagrams, respectively.
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and we study below the limiting cases where simpler analyti-
cal expressions are available.

At small kF2, at the second subband edge(see Fig. 3, the
Fermi energy is at lower/pink line), the momentum transfer
of the intersubband scatterings1�2d is larger than of the
intrasubband scatterings2�2d (see Fig. 3, inset) and the last
scattering channel is more effective. The corresponding con-
tribution to thes is ~v2t22, where the velocity at the Fermi
energy is given by Eq.(16) (the lowest subbandi =1 has the
larger velocity).

According to the inequality

tr
−1 . t22

−1 . tm
−1 . t11

−1 s24d

the most important term in thes is ~v1tr, if the shortest time
is t22. Thus the DD conductivity reads

s = G0gv1tr + ¯ .
G0g"2

8Us
2 v1v2uk1 − k2uG−1suk1 − k2ud,

s25d

where v1=VFÎ1−s"VFd2/ s3REFd2 and v2

=VFÎ1−s2"VFd2/ s3REFd2.
With increasingEF (see Fig. 3, Fermi energy at upper/

green line), sinceq22.q12, then,t22,tr (see inset of Fig. 3),
and the leading term of Eq.(23) is due to the intrasubband
transition s2�2d. Then, for the armchair and zigzagshÞ
+1d nanotubes, the main term in the DD conductivity is

s = G0g
sv1 + v2d2

2v1
t22 + ¯

.
G0g"2

8Us
2

sv1 + v2d2v2

2v1
2k2G−1s2k2d. s26d

In the zigzagh= +1 SWNT, the crossing of the lowest
subbands occurs in the studied region(shown in Fig. 3, left).
In that casekF1.kF2 for the EF is lower than the crossing
point, andkF1,kF2 for the EF is higher than the crossing
point. So the greatest scattering rate is due tos2�2d intra-
subband transition below the crossing point ands1�1d in-
trasubband transition above the crossing point(see left inset
of Fig. 3). Thus, the indices 1 and 2 must be exchanged in
Eqs.(23) and(26). By considering these two cases we cover
all possible situations and present possible analytical expres-
sions for the DD conductivity within the remote center scat-
tering model.

IV. CONDUCTIVITY AT FINITE TEMPERATURE AND
IMPURITY POTENTIAL FLUCTUATION

In the last section we studied the conductivity of the nano-
tube in the zero temperature limit. The temperature depen-
dence adds to the above result via substituting Fermi-Dirac
distribution functions in Eq.(12) instead of step functions as
we implicitly used before. We present the numerical result on
the temperature dependence of the conductivity in Fig. 4.

We already discussed an important assumption of our
model: the phase breaking time has to be short enough which
seems to fulfill for the nanotubes due to thee-e interaction

and scattering of the electron into the channels/bands which
are different from the transport channel/band. This allows
one to neglect the interference correction which is normally
dominating in pure 1D systems. However, the bare 1D Cou-
lomb potential may still localize the carriers in a nanowire
for the infinite channel length. We remind the reader that the
quasi-one-dimensionalpotential created at the nanotube
channel by the random distribution of remote impurities on
the substrate surface has the cutoff length and, thus, a maxi-
mum amplitude of the potential. The localization length in a
finite system is defined by the average fluctuation of the
random potential. Our theory is applicable only in the limit
of the electrochemical potential which is much higher than
the average fluctuation of the random potential of the remote
scatterers.

Since the Coulomb centers are located on the substrate
and the 1D electron is on the nanotube, there are two differ-
ent types of averaging for the 2D distribution of impurities
and for the 1D random potential for the electron. The opera-
tor of the Coulomb potential is given by Eq.(3). It creates
the 1D potential along the nanotube, which reads

U1Dszd = o
i

VsYi,Zid, s27d

where the sum is over impurities that have random positions.
To calculate the average fluctuation of this potential along

the nanotube we average it over the impurity positions

FIG. 4. (Color online) Temperature dependence of the conduc-
tivity of a zigzag[17,0] SWNT vs the electrochemical potential in a
vicinity of the second subband edge.
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dU = ÎkU1D
2 l − kU1Dl2 = 2Î2 + 2 ln 2 + ln2 2ee* Îns.

s28d

At low temperature, for random impurity distribution, this
average fluctuation gives an estimate for a lower bound of
the electrochemical potential at which the Born approxima-
tion for the scattering is applicable:

m,EF @ Us. s29d

V. EFFECTIVE IMPURITY CHARGE AND SWNT
DEPOLARIZATION

Though the actual charge of impurity is not known, we
assume it to be an elementary chargee. However, the sub-
strate polarization results in a reduction of this value. As long
as the distance between the charge center and the substrate
surface is much smaller than all other lengths of the problem:
R, h, etc., one may use an effective dielectric function of the
substrate to define the effective charge ase* →2e/ s«+1d
where« is the dielectric function of the substrate and unity
stays for the permittivity of the vacuum. It is the leading
term of expansion series of the image charge potential, which
has to be kept in the remote scattering calculation.

One must take into consideration an effect of depolariza-
tion of the Coulomb potential due to the screening by carri-
ers in the nanotube. This changes the remote scattering po-
tential essentially. We calculate this effect using a continuum
model for SWNT electrostatics.35,42 Within the model, the
depolarization of the SWNT at a distanceDg from a conduct-
ing gate is given by the following expression:

Veff =
1

1 + a
V =

CQ
−1

Cg
−1 + CQ

−1V, s30d

where the depolarizationa is written in terms of the geomet-
ric capacitance per unit length of the SWNTCg

−1

=2 lns2Dg/Rd and the quantum capacitance per unit length,
which equalsCQ

−1=1/se2nMd for the metallic and degener-
ately doped semiconductor tube. The depolarization can be
taken into account together with the substrate image charge
effect simultaneously:

e* = e
2

« + 1

C Q
−1

C g
−1 + C Q

−1 . s31d

VI. CONCLUSION

In summary, we have developed a microscopic quantum-
mechanical model of an electron scattering by remote Cou-
lomb impurities lying on the substrate surface. We consider a
uniform 2D distribution of the charged impurities. The
theory is readily generalized for the three-dimensional distri-

bution of the impurities whose case is applicable to the mod-
eling of an insulator surrounding the nanotube channel(to be
published elsewhere). A general expression for a Fourier
transform of the Coulomb potential of a charge which is
removed from the nanotube surface is given. The matrix el-
ement for calculating the remote impurity scattering in the
nanotubes is derived. We obtain a zero and finite temperature
conductivity within a drift-diffusion transport model. We as-
sume that thee-phonon ande-e scattering between the elec-
trons in thep-electron band(transport band) and the elec-
trons in other bands(or/and other tubes in the rope, or/and
other walls in a multiwall nanotube) presents a fast mecha-
nism of the phase breaking. It allows us to use the Boltz-
mann equation and neglect interference corrections for the
classical conductivity. Self-consistent calculation of the
SWNT depolarization factor, taking into account image
charges in the substrate, is performed and yields an effective
charge of the impurity, used for computing the scattering
rate.

The remote impurity scattering is almost negligible for the
armchair SWNT’s if the Fermi energy is below the edge of
the second subband, which is consistent with other calcula-
tions for other scattering mechanisms with long range poten-
tials. In contrast, the scattering rate for the zigzag SWNT is
high enough. In general, the DD conductivity of the SWNT
is ,G0L, where the mean free pathL,vt. Analytical ex-
pressions for the conductivity are obtained in the limit of
small and large momentum transfer. We numerically studied
the dependence of the conductivity on the Fermi energy po-
sition and found that the highest conductivity(of a semicon-
ductor SWNT) may be observed for the degenerately doped
SWNT when the Fermi energy is close to(but lower than)
the second subband edge. The dependencessEFd is not
monotonic. At even higher doping level, the conductivity is
low when we take into account the intersubband scattering.
This is becauseL becomes short with opening a new scat-
tering channel, when the Fermi energy is higher than the
second subband edge. Thus, overdoping of a semiconducting
nanotube does not improve its transport properties. Our
theory may be applicable for multiwall nanotubes, although,
an additional analysis will be required, especially because of
different screening.
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