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Transport in nanotubes: Effect of remote impurity scattering
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The theory of the remote Coulomb impurity scattering in single-wall carbon nanotubes is developed within
a one-electron approximation. The Boltzmann equation is solved within the drift-diffusion model to obtain the
tube conductivity. The conductivity depends on the type of the nanotube band strictiat or semiconduc-
tor) and on the electron Fermi energy. We found that the exponential dependence of the conductivity on the
Fermi energy is due to the Coulomb scattering rate having a strong dependence on the momentum transfer. We
calculate intrasubband and intersubband scattering rates and present general expressions for the conductivity.
Numerical results, as well as obtained analytical expressions, show that the degenerately doped semiconductor
tubes may have very high mobility unless the doping level becomes too high and the intersubband transitions
impede the electron transport.
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I. INTRODUCTION tor SWNT devices may have very high mobility at the high

Carbon nanotubes, discovered in the last dedaateact doPing level. Our theory addresses this case, taking into ac-
the attention of physicists not only due to their beautiful€ount Coulomb scattering at the remote impurities and in-
symmetry, extreme quantum scale, and quasi-one?'“d'”g effects of intersubband scattering at the hidbp-

dimensional1D) structure, but also due to numerous appli-N9) Fermi energy. _ o .
cations, already existifg® and foreseen in the future. Specifics of the Coulomb interaction in nanotubes is that

Among those, the applications, which will use transport!n€ eff?fctivehpotedn_tial, sfe(;n byt}‘?e_rc:]elocalized_]fekra]ctrgns, has
properties of nanotubés are sensitive to details of a charge & le)tq at t_te ra Itufho tl et 3 'us(,j.e;/en : ; N tc;‘u—
carrier scattering. It was shown that the scattering in an idea{Pm impurity is at the closestatomiq distance from the

S . YL ube surfacé! the effective Coulomb potential is the poten-
met_alllcsmgle-wall nanotubeSWNT) IS greatly diminished tial of a remote scatterer. The situation is similar to what is
as in a full symmetry of an armchair nanotube the back

. . ) known for HEMT devices. We propose that the remote im-
scattering between states at a Fermi |éirel thin shell near brop

| hemical al is forbiddent purity scattering mechanism is responsible for a residual re-
an electrochemical potential @t 0) is forbidden? In con- gjgrance of the semiconductor nanotube at low temperature.
trast, an electron in a dopesemiconductolSWNT, which |t may define a limit for an electron mobiliton current in

has different symmetryzigzag or other chiral symmefty the nanotube field effect transistor if other scattering mecha-
can be backscattered. In field effect devices the semicondugisms are less effective. The same theory is applicable to the
tor nanotubes are used. To obtain high conductivity the dopscattering in metallic nanotubes which are proposed for use
ing level is controlled, thus, our study of the transportas interconnects and ballistic witésind especially in metal-
mechanisms and the semiconductor SWNT conducfivity lic field effect transistors?
and their dependence on the doping level becomes very We develop a theory of the remote impurity scattering for
timely. the SWNT device, calculate a scattering rate at one surface
Among most important mechanisms of elabgcattering,  impurity, scattering by a dilute distribution of random impu-
responsible for the low-temperature resistivity of nanoscaleities (in a Born approximatiop a zero and finite tempera-
systems, one may encounter a defect scattering, a Coulontbre conductivity in a drift-diffusiofDD) model. It is known
center scattering, and an electron-electron interaction; the lathat in pure(mesoscopig systems, a quantum interference
ter is beyond the scope of one-electron theory and will becorrection to the DD conductivity depends on the system
studied elsewhere. The first two are distinct as a scatterindimension and it is of the order of the conductivity itself in
potential is long ranged for the Coulomb center, and it isthe 1D case. This manifests as a 1D localization. However,
short ranged for a neutranechanicgldefect, which may be for a quasi-1D system of the nanotube it may not hold due to
a substitutional(not charged impurity or another type of fast phase breaking. It may explain why considerably simple
lattice defect. The charge carrier scattering by the Coulomiclassical one-electron theory describes the nanotube experi-
center, charged impurity, and/or ionized dopant is the focusnent fairly well1*-16 Among possible mechanisms respon-
of our paper. At low temperatures this mechanism is compasible for the fast phase breaking we note&e ande-phonon
rable or even stronger than other scattering mechanismteractions. The latter mechanism was shown to be very fast
Modern high mobility semiconductor devices have so smalin SWNT'’s in optical studies! We will discuss the role of
a size scale that the device channel may contain no substite-e interaction later on.
tional impurity/dopant atom. The remote impurity scattering We calculate the dependence of the SWNT conductivity
may still limit the transport in this case. Recent onthe Fermienergy. The strong degeneracy of carriers in the
experiment$1% showed that even long channel semiconduc-semiconductor tubes is required to obtain the high mobfity.
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We show that this is consistent with calculated scattering Below we consider charged impurities which are likely
rates. The same condition of the large Fermi energy allowgresent on the surface of any substrate. The deposition meth-
one to apply the Boltzmann equation for transport calculaods which are currently used in fabrication of the nanotube
tions. devices may produce such impurities in large quantities.

It is commonly used that the conduction in SWNT’s hap- Charged impurities are known to exist at the surface of,SiO
pens via states of one subbagud orbital quantization We  substrate, commonly used for nanotube devices. Use of high-
note that at the high doping level the new conduction chane dielectrics may even increase the role of this scattering
nel (through the next subbapdnhust appear. Then, an inter- mechanism.
esting question arises: how the scattering betwaiéerent We assume that the impurities afgingle) ionized and
subbandsmay change the conductivity. In semiconductors,uniformly distributed on the insulating surface with a 2D
the role of intervalley scattering is not very important. Thedensityn,. Both assumptions are not vital for the model and
difference in the transport at high fields consists mainly ofmake no qualitative change in the final results. However, the
the renormalization of an effective mass of the electron ofderivation of the Eq(1), for example, is more clear in this
the conduction band. We will show that for the quasi-1Dgeometry. The generalization of our theory to the case of 3D
band structure of the SWNT, where a phase space of scattatistribution of the Coulomb centers is straightforward. It
ing is very restricted, the opening of a new scattering channajives a description for the SWNT embedded in an insulating
may change the conductivity qualitatively, especially for me-matrix and will be published elsewhet®For the Coulomb
tallic armchair nanotubes and for high mobility semiconduct-substitutional impurities located directly in the lattice of the
ing nanotubes. We found that for the Coulomb scatteringSWNT and for the charged impurities encapsulated inside
mechanism it results in a giant drop of the conductivity atthe tube, an order of magnitude estimate for the DD conduc-
low temperature. We present a general expression for thivity can be obtained by substitutirtgg by WiE., whereW,
concentration dependence of the conductivity and study it& the strength of a random potential of 1D impurities and
analytical limits that clearly demonstrates the physics of thiss.~ €?/C is a Coulomb charging energy of the tube. We note
effect. the logarithmic divergence of the latter withas well as the

1D conductivity oyp is known to have a dimension of a same logarithmic divergence of the 1D Coulomb matrix
diffusion coefficientlength?/(time) (see, for example, Ref. elemeng!
19). Thus, the conductance of the 1D systeroig/L where

L is the system length. We demonstrate below that a simple II. REMOTE IMPURITY SCATTERING RATE

expression is valid for the DD conductivity of the SWNT: ]

010~ GoA, where Gy=€?/2# is the quantum of conduc- A. Model assumptions

tance and\ ~v 7 is a mean free path of the electranand The nanotube is situated at the van der Waals distance

are the electron velocity and lifetimewe calculated\ as a  from the surface of the substrate. This distance is about
function of the Fermi energy and a strength of the randong.4 A, and the Coulomb centers are removed from the device
impurity potential. Within the model discussed, the conducchannel. The Born approximation, which implies indepen-

tance can be written as dent scattering events, is used in what follows to calculate
the elastic scattering rate. We consider scattering of the elec-
G~ UlDE _ GoBf1<&)fz<E>g<E), 1 trons in _different subbands and bet\_/veen s_ubbands. One can

L L "\Ug Eq Eq apply this theory to the transport in multiwall nanotubes,

which are believed to conduct by the outermost shell. Here,
whereR is the SWNT radiugcharacteristic transverse length e restrict ourselves to the case of single-wall tubes and
of the 1D channg| Er is the electron Fermi energ¥s  consider armchair and zigzag SWNT'’s, though, the final re-
=(ee*)Vns is a strength of the 1D potential of the Coulomb syt is more general and can possibly be used for an arbitrary
impurities with an effective charge® and a surface density tube.
ns, Eg is the SWNT gap,f, and f, are some power law  The Coulomb scattering manifests itself in low-
functions, andg(x) is an exponential function of its argu- dimensional systems. The long-range Coulomb potential is
ment. The conductivityand conductangds so sensitive to  known to be underscreened in a 1D c&s&in nanowire$*
the change of the Fermi energgxponential function oEr)  and nanotube® 24 which means that the screened potential
because of the exponential dependencg(ef that reflects a  diverges as a logarithm of the distance. Thus, the Coulomb
strong dependence of the Coulomb matrix element on acattering becomes the most important scattering mechanism
transferred momentum. Allowed backscattering transitionsn certain conditions. It is well known that the random po-
within a single subband have a large momentum transfer aential results in a localization of carriers in an infinite 1D
large Er, while the transition between subbands may havesysten?®> We assume that an effective phase breaking
smaller momentum transfer. Thus, the appearance of the nemechanism exists in the SWNT'’s, which destroys the inter-
scattering channel drastically decreases the mean free pathfefence. It is known that the-e scattering time is very short
the electronA, which becomes small, an@ drops several for these systems, even though tie interaction ina single
orders of magnitude. We notice that the power law functionlD bandcannot suppress the localization, because the total
f1(x)>1 because its argument is larg->U,. This in- momentum of the electronic subsystem is conserved. How-
equality is also a necessary condition for applicability of theever, in the nanotubes there is a number of diffeeechan-
Boltzmann equation. nels which may be not coherent. It is clear that ¢he scat-
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tering between the electrons that belong the different the cylinder.e* is an effective charge of an impurity, its
bands breaks the phase of the wave function and, thusposition is given in a Cartesian coordinate system as
destroys the interference. What are these diffeeebands? [X;,Y;,Z]. For the scattering at a single impurity, a relative
The transport in nanotubes occurs via the band formed bposition of the Coulomb center along ttiafinite) nanotube
highest valence electrons, so callegtelectron band. The Z, may be chosen arbitrary. The coordinXignormal to the
rest of the valence electrons are localized and form low-lyingsubstrate surfageapproximately equalk, a negative height

o bands. Thee-e scattering between these two different of the nanotube, which assumes that the impurity size is
bands does not preserve the electron phase. Also, in a reaégligible and that the impurity is not buried in the substrate
experimental situation, in the SWNT rope or in the multiwall (both assumptions are reasonable but the model works with-
nanotube, the scattering betweerelectrons at the different out this simplification as well We will define an effective
walls/tubes destroys the interference as well. For what foleharge of the impuritye*, in the last section, when discuss-
lows we accept that the phase breaking time is short enoughg the screening.

to neglect the interference correction and use the Boltzmann

equation approach for the calculation of the DD conductivity

of the SWNT. C. Matrix element of the impurity potential

One needs to know matrix elements of the Coulomb po-
tential between the TB wave functions of the electron to
] calculate the scattering. The potential of the remote impurity

We use SWNT envelope wave functidhgor the elec- js smooth at the surface of the nanotube and, therefore, it is
tronic structure calculation, which are obtained as a solutioyimost constant within the unit cell. Hence, the matrix ele-
of a tight-binding(TB) Hamiltonian for 7 electrons” Our  ments of the potential with the envelope wave functic®s

approach is very close to what was presented in Ref. 26 anghn be approximated by the 1D Fourier components of Eq.

then widely used in the nanotube literature, so we skip deg):

tails and give only the final wave functions for the two-band

scheme(w electrons only. (krd£|k’n> _ e
Irl L

1 ikzaima
|k = E(|A> + {CdB)) €R%E™Me, (2 X Hmeny (K= K [RIK (k= K'[p),  (4)

B. Envelope wave functions

i e(mn) g=iZ(k=k')

where an orbital momentum labels orbital subbands of the Wherel,(x) andK,,(x) are the modified Bessel functiotls
SWNT electronic structure labels states with a longitudinal (of imaginary argumentof the ordery, r is the vector be-
momentum, botim andk are good quantum numbegdis-  tween the impurity center and the point on the surface of the
crete and continuum, respectivefipr an ideal, long enough Nhanotube, and is the nanotube radius. In a cylindrical co-
nanotube{=+1 is a pseudospin. A pseudospinor vector isordinate systemy is the angle of the impurity positiomis
formed by a two-component amplitude of the wave functionthe distance from the axis of the nanotube to the impurity
defined for two atoms in a graphite unit c¢\ and B). ~ andZis its longitudinal coordinate.

Coordinate along the tube 5 and « is an angle along the These matrix elements of the potential are needed for cal-
nanotube circumferencéoy this we explicitly assume the culating the remote scattering rates. In addition to that, the
electron to be confined to a surface of a cylinder of fixedanalytical expression for the remote potentidl is interest-
radius R) The Componentg of the pseudospinor areing by itself. We are not aware of a calculation of the Cou-
c-numbers, in general, defined up to an arbitrary phase. It imb potential for the charge centemoved from the nano-
taken such that the coefficient for thecomponent is purely tube This formula gives a generalization of an expression for
real and equa| to ]_\72, then a matrix element of the dimen- the 1D Fourier transformation of the Coulomb interaction
sionless TB Hamiltonian gives the second component of th@etween charges which aigoth on the nanotube surface
pseudospinat® This determines a dependencecgf, on the  (Which may be found, for example, in Ref. 3lLet us
subband indexn and the 1D momenturk The pseudospigi ~ Present analytical limits of our result at large and small trans-
distinguishes between states of valence and conductiotgred momentum and demonstrate how the dimension of the
band?® nanotube system shows up.

So far, we considered an equilibriumonperturbeglelec- The interaction strength decreases rapidly with the trans-
tronic wave functions. We assume, as usual, that the scattefierred momentung=|k—k’|, which is well known property
ing can be modeled perturbatively if the interference term®f the Coulomb potential at any dlr_nlenﬂons. Using the as-
are negligible as it was discussed in the last section. Th¥mptote of the Bessel function g&>p™,R™", we reduce Eq.

perturbation operator is the Coulomb potential (4)to
ee 2eer e €K R
Vi(l') — ’ = = =, (3) e—|<p(m—n)e—|2(k—k ) ’ (5)
V(Z=2Z)"+ (X=X)“+(y-Y)) L k-K'[Vp-R

wheree< 0 is an electron charge, y, andz are the coordi- and recover formula&™?/q, the expression for the Fourier
nates of the electron. These three coordinates are not indeemponent of the Coulomb potential in 2B This is not
pendent as the electron motion is restricted to the surface &urprising, because in the short-wavelength limit one restores
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FIG. 1. (Color onling Electron energy disper-

\ - sion for armchair[10,10 and zigzag[17,0]
SWNT'’s. Inset: Zoom out of the lowest subbands

and the electrochemical potenti@reen dashed

Z line).

N3

T

the planar geometry when the curvature of the graphite sheet 2 1 mr 1
becomes unimportant. O=—kt b arccos - > COSW x >
On the other hand, at smallandm=n the matrix element
(4) logarithmically diverges as-In(gp/2), which is accord- mar kb kb nar
ing to 1D electrostatic&! In contrast, atn# n and smallg, X \/CO52 ~ 4 COS_<C°S_ + COSW)]'

the limit of the matrix element has no dependenceqon

Instead it is proportional téR/p) ™™, and decays exponen- (8a)
tially with the transferred angular momentym-m’| as in

the multipole expansion series. It is consistent with under- _

standing ofR" as a minimum cutoff momentum in the Cou- &nd for the[N, 0] zigzag SWNT

lomb matrix element.

D. Averaging of the random potential ae=-k= ’i arcco 1 (_ Coszﬂr + coszﬂr
In the Born approximation each scattering event is statis- V3b 2 Cosm_Tr N N
tically independent and the electron wave function is not
coherent between events. Thus, one has to sum probabilities _
of the scattering over the realization of impuritiés be av- + cos@ cosn—w> (8b)
eraged later Let us write the partial probability of the single 2 N/
scattering event using the Fermi golden rule
2
Wil =275 (2% ) (o
q whereb=0.14 nm is the bond length ard is the SWNT

. e use the notatiof(qy) = q qch) for are-
whereq is the transferred momentum, and for the SWNT theg,,ced Coulomb matrix elkeména_tni‘n II(E(G'-)-‘r'T‘Ten‘re lf[he factor”

sum has only several termiess than four if any, which .o ac after averaging in the plane and equals
depends om, n, andk quantum numbers. Herh,andY are

the Cartesian coordinates of the impurityithout loss of
generality, we chose the coordinate origin such #haD). -
We remind the reader that the axis of the nanotube is at th‘?‘n(x) - dtKﬁ(\/xz +12)

distanceX=h from the substrate. is the tube length. —o

The Coulomb centers are distributed on the surface of the "
substrate randomly. One has to perform averaging in the :Zf dtK, (1)
plane to obtain a statistical description of the scattering. We 2 )4 8

assume that the impurity positions are not correlated. Then

i i L
for the electron with the momentukiin the subbandm), an = T3 (= D = AKo(AX)L _y(4%) + Ky(4X)L o(4X)]}

elastic lifetime due to the remote impurity scattering is writ- 4
ten as
4 n
8 JE,\ 7t G I3 (- 1)k,
T_l(m, k) - _(ee* )Znsz 2 (_n) (qk) ' (7) + 71_];1( 1) K2(n—J)+1(4X) ’ (9)
h n oy K k=ay Ak

whereng is a 2D density of the surface impurities aggdare

the solutions of the equatidf, x.q=Emk. As we noticed be- whereL are the modified Struve functiot¥s(of imaginary
fore, this equation may have up to four solutions within theargument

first Brillouin zone(see Fig. 1. For example, for thé¢N,N] Now we analyze these expressions in the limit of small
armchair nanotube we have and largeq,. For smallgh one can write
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a4 "G (a the orbital quantization which can carry the currefE) is
~ the transport lifetime andl(E) is an equilibrium distribution
=g 12 (R Fimenl () : o S . .
k ! Jm-n|{ Q)7 mn] (G function. The derivative of the distribution functi@/JE is
( 72l4q if n=m peaked at the electrochemical potengielta function of the
K ' Fermi energyE=E; for T=0). However, we keep the inte-
7RR if [n—m|=1 gral sign even aff=0 because of several channels corre-
~1{ 16h ' sponding to several non-zero terms in the conductivity, as
mh2n-m-3 11 (R 2men| given by Egs.(8a) and (8b). o has nontrivial tempgratgre
TS TI —i\h if [n—m[>1. dependence due to the strong dependence of the lifetime on
\ 2 n=mijn—mi! the electron energy.
(10 It is important to include the intersubband scattering terms

if corresponding transition is allowgtecause the Coulomb

The r_u;mencal factor is rather smgll in case of 'nterSUbbanécattering rate decreases with the transferred momegseen
transitionsn# m and decreases with the separation betweer‘J;‘ISO Fig. 3. With increasingE, the scattering into the same

suggandfm—rﬂt_ raplo!![)r/]. t'{]hus,bﬁ?elz scatt;erlng 'nt% the same subband may become less effective than the scattering into
subbandtransition wi € orbital quantum number CoNSery, o qiner subband. We demonstrate below that this is the case

vatllzon) IIS e nFlzoti[ effectttwe_ scatt;armg chanrlglnfordsmmll for the semiconductor SWNT at the high doping levels.
or largeqyR the scatlering rate exponentially decreases Equation(7) can be conveniently rewritten as

with the transferred momentumexd-2(2h-R)q,], due to

the exponential decay of the modified Bessel function. The . 8U§ R
main term of a Poisson series of the matrix element does not 7 (mk) = 52 2 Un,q 0k Gimen] (G » (13
depend orjm-n|: M
with use of notationdJ =(ee* )\n, for a characteristic en-
GGG =~ /Lse_z(Zh_R)QK ergy of the Coulomb disorder ang,=%"19E/ ok for the elec-
12enReq, tron velocity. The prime sign reminds us that the summation
(WVR-3)(Jm-n]2-3) + & is over the roots of Eqg8a) and (8b). _
x(l + 4 4/ 64 ) Let us first consider the scattering of the electron in the
gh same subbanfin,k) —|m,k+q).
(11)
We will use these analytical expressiqi®) and(11) for the A. Armchair nanotubes: Intrasubband scattering
calculation of the scattering rates in what follows. The expression for the scattering roots for the armchair
SWNT, (8a) in the limit of intrasubband scatteringn=n)
IIl. CONDUCTIVITY: DRIFT-DIFFUSION APPROACH reduces to

In this section we calculate the conductivity in a drift- 2 mar kb
diffusion (DD) model which is widely used for description of qe=—-kx— arcco{cos— + cos—] ,—2k,0. (14
the transport in multiwall nanotubes. It is also applicable for b 2
very long SWNT's if the phase breaking and/or inelastic\\e remind the reader that is the[N,N] SWNT index.
scattering lifetime is short as discussed in the Introduction.  The |ast root means no scattering because all quantum
Itis lksn?gwn that a Schottky barrier forms near the metal, mpers are conserved and has to be discarded. The first root
contact>** For the short channel SWNT device this js in fact, the intersubband backscattering near the same
Schottky barrier almost determines important transport charFgrm; point(see Fig. 1, right insgtwhich is forbidden for
acteristics. The theory of the nanotube transport, taking intgne two crossing subbands of the armchair SWNT by the
account phenomena in the contact regions, is prgseqted Bseudospin conservation rifeThe rootq=-2k is the back-
Refs. 15 and 33 and we do not address this subject in 0Wcattering of the electron within the same subband to other
paper. Instead we focus on the scattering in the rest of thegrmi point(see Fig. 1, right Only this transition between
tube. The contact region has a finite length which is about &, Fermi points with a large transferred momentig
typical screening length, e.g., a distance to the backfdte. _4./3,3p for smallEp) is allowed by the symmetry of the
If this distance is much smaller than the length of the nanoxmchair SWNT. Thus. the analytical limit1) can be used
tube, one may define the device channel conduct®i®. for calculating {E). The transport lifetime of the electron
For the sake of clarity, we restrict ourselves to the case of the i« o large exponential facteexy4m(2h-R)/3y3b]

armchair or zigzag SWNT. The generalization of our model : . : - .
) - ) nd, hen his mechanism gives the negligibl rin
to the case of any chiral SWNT is straightforward. and, hence, this mechanism gives the negligible scattering

o ; ’ ) rate.
The conductivity in a single channel is as follows: Because of the exponential dependence of the matrix ele-
g ( €7E) oE of ment on the transfefred momentum, t.he conductivity of the.
= Z-r Ta_ki&_EdE' (12) armchair nanotube increases dramatically, when the Fermi

energy reaches the next subband. This subband has a differ-
Hereg is the degeneracy of the current channel. By the chanent symmetr§® and the intersubband scattering near the
nel of conductivity we understand here any fixed subband ofame Fermi pointsee Fig. 1, right insgtis not forbidden.
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Then, the intersubband scattering rate of the armchair nano-
tube is high and given by an expression which is similar to
the case of zigzag nanotube. We will consider these two

mechanisms together in Sec. Il C.

B. Zigzag nanotubes: Intrasubband scattering

In the last section we show that the remote impurity sca

tering is negligible in the armchair SWNT's. The scattering > )
afonductivity at smallEg. Because at smak the function

due to any other long range potential, except for torsion
phonon mode&? was shown to be ineffective as wéflThe

PHYSICAL REVIEW B70, 035408(2004

2
En

2
Er

if 7=Mody(N) # 0,

v2(Ep) = V& X (20

1 if 7=Mods(N) =0,

where the indexy=Mod;(N) distinguishes between the zig-
zag metallic[ 7=Modz(N)=0] and semiconductor SWNT'’s

[ 7=Mods(N) # 0].

Let us now apply the expressi@h0) for analysis of the

G 4(2kr) does not depend ok in the leading term, we find

case of the zigzag nanotube is less trivial. We substitute E4Ne DD conductivity of the zigzag tube at the low doping
(7) into Eq.(12) and obtain the conductivity at zero tempera- '€vel depends on the concentration as

ture

glm—n|(|IZFm B len)

> -

nken UmUn“ZFm - an‘

-1
€g
= , (15
7 2ﬂﬁsugm%m 15
whereg=4 is the current channel degenergéyr the spin
and orbital momentuim v, is the electron velocity at the
Fermi energy(near thel’ point), v,,=%"*JE/dk. Taking into

account the nonparabolicity of the energy dispersion of th

mth subbancE ,, we obtain

-8 ey /1 En (16)
omToanE.F M F E2’

whereVe=3by/(2%) is the Fermi velocity in thémetallic)
massless subband. The Fermi momentum of the electron
the mth subband is

2 ——s
kn(Ep) = ——VE2-E2, (17)
3by
where the bottom of theith subband is
E =y|1+2c0os™| = 2VEM (18)
m=Y N| 3R

E2 3/2
m :
GogEFﬁV,:g_l>< (1_E_,2:) if n+#0,

(1) —
o, =
’ 4U%

(21

1 if =0.

We drop the argument of ! in the expression above be-
cause its limit is 442 at smallke. The DD conductivity is
different for the metallic and semiconductor tubes: it is linear
in Eg for the metallic(zigzag, n=0) SWNT and it depends

©on the Fermi energy as

for the degenerately doped semiconductor SW(Xi§zag,
n#0).

The conductivity at smalEr depends linearly ok ow-
iRg to the matrix element of the Coulomb potential of the 2D
remote centers. The square of the matrix elementdgs?,
because in our model the centers are distributed ori2bg
surface of the substratéhe generalization to the 3D case is
obvioug. The linear dependence of the square of the matrix
element ing™* results in the linear dependence of the con-
ductivity on Eg.

At larger E¢ the energy dependence of the transport life-
time (of the matrix element of the transitipis different. In
this case, Eq(11) has to be used, which results in a fast
exponential growth of the conductivity because of the large
suppression of the transitions with increasing momentum

These expressions are essentially similar but not equivaleRansfer. Then, Eq21) transforms into

to the ones obtained with tHg method because of the non-

parabolicity of the energy dispersion in the tight-binding

model.

For the Fermi energy located within the lowest subband

E<Er<E1, the only level of orbital quantization is
populated aff=0, which hasm=(N+Mods[N])/3. We use
the standard notation Mgd\] for N modulo 3,(the remain-
der on division ofN by 3) here and below. Because the
intersubband transitions become allowed onlyEat> E, .1
the single backscattering term with=n has to be substi-
tuted in Eq.(15) which gives

Gogti?
= 2ke202ke),  (19)
S

o = Gogumr(mke) =

2 2 2\ 2
Vi mhVg E2 E2

E E2

Xexp| 4(2h-R)—/1-—2

AVe E2
—1021/4n 2 hm

~ cj)gEF (EF _ 1)9/4
Ug 37R

xexd8(2h - R) (e - 1)], (22)

where ee=E¢/E,, is the dimensionless Fermi energy of the
semiconductor tubeer—1 and ee<1 in expression(22).
This equation gives the conductivity of the zigzag nanotube
for the transport through only one chanref the lowest

whereG,=€?/2 is the conductance quantum and the elec-subbangl The result of our calculatiofEgs.(21) and(22)] is

tron velocity is

presented in Fig. 2, where the drift-diffusion conductivity of
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3 ) [19,0] \\.:/ )
10°F r

) [17,0]
5 / \ \ //

C3 22 A - ~
b 10-7 E " m \/ \/

10-12

0.4 0.6 0.8 1.0 1.2 FIG. 3. (Color online Bandstructures for zigzag SWNT's of
w(eV) _two typeg. Left:[3q+1,0]_SWNT;_ Right:_[3q—1,0] SWNT. Dpp-
ing level is shown as horizontal lines: pink/gre@mwer/uppey line
FIG. 2. (Color onling Conductivity of a zigzag17,0l SWNT vs ig for low/high QOping Ievel'. Insets show the scattering rates for
the electrochemical potentigthe doping level different scattering mechanisms as a function of energy as in left
and right diagrams, respectively.

the zigzag SWNT is plotted as a function of the Fermi energyeracyg=4). We introduce four scattering rate«ﬁ,l and cal-
(doping leve). With increasing doping level the conductivity culate it with the Eq(13).

grows exponentially. This is not because more carriers are Let us assign the index=1 to the subband with the larg-
available for transport but due to the energy-dependent trangst momentum at the Fermi enerlgy (which may change
port lifetime that grows exponentially with the increase of with changing the Fermi energy if the subbands cxohe
the momentum transfer between initial and final states. Thigtrasubband lifetimes; ;,,,are given by the terms in E@7)
momentum transfer iskg « Ex when the linearization of the with n=m. There are two intersubband |ifetime§2> and
TB Hamiltonian is possible. The momentum transfer in-;12 for the transition with the same/opposite sign of the

creases until the Fermi energy reaqhes the next subbangiectron velocity in the initial and final statés) and |m)
Then, suddenly, the new backscattering channel opens. Thep+ 1),

momentum transfer between the next subband and the lowest For certain tube symmetry the subband crossing may hap-

subband is small at this critical doping level. Thus, the r€pen with increasinge. When the Fermi energy is above the
mote impurity scattering becomes very efficient and the congrossing point the subbands 1 and 2 are interchanged in the
ductivity drops several orders of magnitude. equations given below. The case of the metaiicnchair or
The maximum conductivity may be reached when thezigzag SWNT is similar to the case of noncrossing subbands
Fermi energy is close to the edge of the second subband byhq will not be considered separately. There is only one dif-
lower than it. We note that the phonon scattering may limitference for the armchair SWNT as compared with the zigzag
the transport, at least, at high temperatdfeBherefore, for  SWNT case: the dispersion in the subband 1 is massless.
not very low temperature and high enough doping level, itThus,vl=VF is the constant and, by symmetry,=c (“in-
may be possible to observe switching from the remote scarasubband” scattering in the lowest subband is not allowed
tering to the phonon scattering mechanism. We recalculate the distribution functions in all four chan-
Also at T+ 0, the finite temperature distribution function pg|g using the Boltzmann equation and taking into account
makes ther(Er) dependence smooth near the steprat 1, the interchannel transitions. When the scattering is weak one

as it will be shown next. can neglect it and use the equilibrium distribution function.
This is not the case for the SWNT gt=1, where the scat-
C. Intersubband scattering tering rates at the edge of the second subband are very high.

The remote impurity scattering between the subbands tGenstr)aI E(:jxpreftsiqn f(_)r th‘tehDD cont()juctivity with n_ontﬁero
may happen only when the doping level is high enough tdntersubband scattering is rather cumbersome even in the ap-

essentially populate the second subbBget E,.,,. Then, the ~ Proximation of the two closest subbands:

scattering rate becomes high and the mean free path becomes (v1+v,)? (v1-v2)? 7 T
short. The expressions for the DD conductivity of armchair vam t 2w, 2T T o) 7_7'22"’ V2722
metallic, zigzag quasimetallic, and zigzag semiconductoro = Gyg = ! = L
nanotubes are essentially the same in this region. This is 1+ 4 omp 27 22(1 + l)
because the density of statPOS) in the vicinity of the Tm Vi1 7m Ti1 U1T11 Tm

Fermi point is a universal functiéh of the energy(doping Goah2

level), and because there is no special selection rule for the = iz v102|Ky = K| GH(|ky — Ky|)
transitionsbetween different subbanad$ the orbital quanti- 8Ug

zation. Let us consider the single Fermi point and find which Iy — kol G 2([Ky — ko)
scattering channel defines the conductivitygat= E 1. AS ( - - )
before, because of the large momentum transfer, we neglect kg + kol G ([ + k)
transitions between different Fermi points, which are pos- [ ( (vl—u2)2>|k1—k2|g‘1(|k1—k2|)} }
sible for the armchair SWNT. As shown in Fig. 3, we have X[1-{1 > ) R
two left-going and two right-goingcurreny states/channels (W1 +v2)"/ Ky + |G ([ky + ko))

(to be multiplied with the spin and orbital momentum degen- (23

(v1+v2)%;

2k G (2ko)
2U1
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and we study below the limiting cases where simpler analyti- 0.5
cal expressions are available.

At small kg,, at the second subband edgee Fig. 3, the
Fermi energy is at lower/pink linethe momentum transfer
of the intersubband scatterind=2) is larger than of the
intrasubband scatterin@ = 2) (see Fig. 3, insg¢tand the last
scattering channel is more effective. The corresponding con-
tribution to theo is xv,7,, Where the velocity at the Fermi
energy is given by Eq16) (the lowest subbant=1 has the 0.1
larger velocity.

According to the inequality

0.3 Oax ...Ox0x

0.2

¢ (cm/kOhm)

0.3 0.4 0.5 0.6 0.7

Tr_l > TE% > 7';11 > 7'111_ (24) n (ev)
the most important term in the is «v, 7, if the shortest time
iS 755. Thus the DD conductivity reads
G 10

o= GogvlTr + e = Wvlvz“(l - k2|g_1(|k1 - k2|),

25) 10

where v1=Ve\1-(AVe)?/ (3RE)? and s
=Vey1-(24VE)?/ (3RE:)2

With increasingEg (see Fig. 3, Fermi energy at upper/
green ling, sinceq,,> 05, then,m,< 7, (see inset of Fig. B -y s s o o
and the leading term of E@23) is due to the intrasubband ) ) (e'v) ) )
transition (2=2). Then, for the armchair and zigzdg +# H
+1) nanotubes, the main term in the DD conductivity is

o (cm/Ohm)

107 Ok ...O0k

FIG. 4. (Color online Temperature dependence of the conduc-

(v +v )2 tivity of a zigzag[17,0 SWNT vs the electrochemical potential in a
o= Gog¥7-22+ vicinity of the second subband edge.
U1
_ Gogh? (v +v)% and scattering of the electron into the channels/bands which

2 -1
8U§ 20, 2kaG (2K (26) are different from the transport channel/band. This allows

one to neglect the interference correction which is normally
In the zigzagn=+1 SWNT, the crossing of the lowest dominating in pure 1D systems. However, the bare 1D Cou-
subbands occurs in the studied regishown in Fig. 3, left  Jomb potential may still localize the carriers in a nanowire
In that caseke; > kg, for the Er is lower than the crossing for the infinite channel length. We remind the reader that the
point, andke; <kg, for the Er is higher than the crossing quasi-one-dimensionapotential created at the nanotube
point. So the greatest scattering rate is du¢2to®2) intra-  channel by the random distribution of remote impurities on
subband transition below the crossing point @hd>1) in-  the substrate surface has the cutoff length and, thus, a maxi-
trasubband transition above the crossing p@ee left inset mum amplitude of the potential. The localization length in a
of Fig. 3). Thus, the indices 1 and 2 must be exchanged irfinite system is defined by the average fluctuation of the
Egs.(23) and(26). By considering these two cases we coverrandom potential. Our theory is applicable only in the limit
all possible situations and present possible analytical expresf the electrochemical potential which is much higher than
sions for the DD conductivity within the remote center scat-the average fluctuation of the random potential of the remote
tering model. scatterers.
Since the Coulomb centers are located on the substrate
and the 1D electron is on the nanotube, there are two differ-
IV. CONDUCTIVITY AT FINITE TEMPERATURE AND ent types of averaging for the 2D distribution of impurities
IMPURITY POTENTIAL FLUCTUATION and for the 1D random potential for the electron. The opera-

In the last section we studied the conductivity of the nano{or of the Coulomb potential is given by E¢B). It creates
tube in the zero temperature limit. The temperature deperfn® 1D potential along the nanotube, which reads
dence adds to the above result via substituting Fermi-Dirac
distribution functions in Eq(12) instead of step functions as Uip(2 = > V(Yi,2), (27
we implicitly used before. We present the numerical result on [
the temperature dependence of the conductivity in Fig. 4.

We already discussed an important assumption of ouwhere the sum is over impurities that have random positions.
model: the phase breaking time has to be short enough which To calculate the average fluctuation of this potential along
seems to fulfill for the nanotubes due to tee interaction  the nanotube we average it over the impurity positions
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sU = V/<U§D> —(Uyp)2=212+21n2 +If 2ee* \FS bution of the impurities whose case is applicable to the mod-
eling of an insulator surrounding the nanotube chafiosbe
(28) published elsewheye A general expression for a Fourier
At low temperature, for random impurity distribution, this transform of the Coulomb potential of a charge which is
average fluctuation gives an estimate for a lower bound ofémoved from the nanotube surface is given. The matrix el-
the electrochemical potential at which the Born approximaement for calculating the remote impurity scattering in the

tion for the scattering is applicable: nanotubes is derived. We obtain a zero and finite temperature
conductivity within a drift-diffusion transport model. We as-
M, Ep > Us. (290 sume that the-phonon and-e scattering between the elec-

trons in them-electron bandtransport bangand the elec-
trons in other bandgor/and other tubes in the rope, or/and
V. EFFECTIVE IMPURITY CHARGE AND SWNT other walls in a multiwall nanotuberesents a fast mecha-
DEPOLARIZATION nism of the phase breaking. It allows us to use the Boltz-

Though the actual charge of impurity is not known, we Mann equation and neglect interference corrections for the
assume it to be an elementary chasgeHowever, the sub- classical conductivity. Self-consistent calculation of the
strate polarization results in a reduction of this value. As longSWNT depolarization factor, taking into account image
as the distance between the charge center and the substr&f#rges in the substrate, is performed and yields an effective
surface is much smaller than all other lengths of the problem¢harge of the impurity, used for computing the scattering
R, h, etc., one may use an effective dielectric function of therate- . . o o
substrate to define the effective chargeeds— 2e/(e+1) The remote impurity scattering is almost negligible for the
wheree is the dielectric function of the substrate and unity @mchair SWNT's if the Fermi energy is below the edge of
stays for the permittivity of the vacuum. It is the leading the second subband, which is consistent with other calcula-
term of expansion series of the image charge potential, whicHons for other scattering mechanisms with long range poten-
has to be kept in the remote scattering calculation. tials. In contrast, the scattering rate for the zigzag SWNT is

One must take into consideration an effect of depolarizalligh enough. In general, the DD conductivity of the SWNT
tion of the Coulomb potential due to the screening by carriiS ~GoA, where the mean free path~uv 7. Analytical ex-
ers in the nanotube. This changes the remote scattering pBIeSSIons for the conductivity are obtained in the limit of
tential essentially. We calculate this effect using a continuun$Mall and large momentum transfer. We numerically studied
model for SWNT electrostatic®:42 Within the model, the the dependence of the conductivity on the Fermi energy po-

depolarization of the SWNT at a distandg from a conduct- ~ Sition and found that the highest conductivigf a semicon-
ing gate is given by the following expression: ductor SWNT may be observed for the degenerately doped

SWNT when the Fermi energy is close @out lower than

the second subband edge. The depender@g) is not
monotonic. At even higher doping level, the conductivity is
low when we take into account the intersubband scattering.
where the depolarizatioa is written in terms of the geomet- Thjs is because\ becomes short with opening a new scat-
ric capacitance per unit length of the SWNT,' tering channel, when the Fermi energy is higher than the
=21In(2Dg4/R) and the quantum capacitance per unit lengthsecond subband edge. Thus, overdoping of a semiconducting
which equaIsC’lell(eva) for the metallic and degener- nanotube does not improve its transport properties. Our
ately doped semiconductor tube. The depolarization can bgheory may be applicable for multiwall nanotubes, although,
taken into account together with the substrate image chargan additional analysis will be required, especially because of
effect simultaneously: different screening.

-1

Vo= =
M1 +a Ct+Cy

V, (30)
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