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We study capacity reservation contracts in high-tech manufacturing, where the manufacturer (the
supplier) shares the risk of capacity expansion with her OEM customer (the buyer). We focus on short-
life-cycle, make-to-order products under stochastic demand. The supplier and the buyer are partners who
enter a "design-win" agreement to develop the product, and who share demand information. The supplier
would expand her capacity in any case, but reservation may encourage her to expand more aggressively.
To reserve capacity, the buyer pays a fee upfront while (a pre-specified portion of) the fee is deductible
from the order payment. As capacity expansion demonstrates diseconomy of scale in this context, we
assume convex capacity costs. We first analyze the players' incentives as a means to evaluating the value
of reservation. We show that as the buyer's revenue margin decreases, the supplier faces a sequence of
four profit scenarios with decreasing desirability. We examine the effects of market size and demand
variability to the contract conditions, and show that it is the demand variability that affects the
reservation fee, and that the convex cost assumption leads to somewhat different insights than the linear
cost cases in the literature. We propose two channel coordination contracts, and discuss how such
contracts can be tailored for situations where the supplier has the option of not complying with the
contract, and when the buyer's demand information is only partially updated during the supplier's
capacity lead time. We conclude the paper by summarizing insights useful for high-tech capacity
management.

1. Introduction

Manufacturing capacity plays a significant role in high-tech industries such as semiconductors,
electronics, and telecommunications equipment. This paper is motivated by our involvement with
designing capacity reservation contracts for a US telecommunications integrated circuit (IC) device
manufacturer. During the upside market in the late 1990's, the manufacturer has constantly suffered from
capacity shortages, resulting in lost revenue, eroding their long-term market position. Despite the need
for improved service levels and higher revenue, aggressive capacity expansion would expose the firm to
significant financial risk due to high capacity cost, long (capacity) lead times, and high demand volatility.
For instance, a state-of-the-art semiconductor manufacturing Fab costs $500 million to $2 billion to
build, but the demand volatility might be as high as 80% deviation from the forecast during a particular
quarter. Moreover, the overall market size might drop sharply in reaction to economic contraction, as
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evident from the decline of telecommunications demand that took place in the early 2000's. In this
environment, the device manufacturers (the supplier) are forced to adopt a conservative capacity
expansion policy, limiting their downside risk at the expense of upside potentials. Consequently, their
downstream buyers (e.g., OEM manufacturers) may not have adequate supplies to fill the market orders.
However, if the buyer  is willing to mitigate the supplier's downside risk by assuming a certain level of
liability, the supplier might be willing to expand capacity more aggressively. For instance, the customer
may offer early commitment on a certain portion of future capacity, in exchange, the supplier commits to
increase her capacity to meet the customer's demand. This provides a win-win situation for the supplier
and the buyer by creating additional surplus in the channel.

In this paper, we propose capacity reservation contracts designed for short life-cycle, make-to-order
high-tech products under stochastic demand. We consider the case where the supplier's wholesale price
and the buyer's selling price are exogenous. The wholesale price is typically determined exogenously by
the market when the negotiating firms are of similar size, or when the firms settle wholesale price
negotiation early-on thus decouples the decision from capacity reservation. The latter captures a reality in
the consumer electronics and telecommunications equipment industries: oftentimes, an OEM
manufacturers and their component suppliers agree on pricing when a "design-win" agreement is reached
(this is when the OEM manufacturer gives a supplier the right to develop a product, such as a custom IC
chip). This is followed by full-scale product design, development, testing, and production ramp-up. The
issue of capacity reservation arises much later during, or right before, regular production. At this point,
the wholesale price is considered a given. In this context, we examine capacity reservation contracts with
deductible reservation fees: the buyer pays a  upfront for each unit of capacity  she would like tofee that
reserve for a certain time in the future. When the buyer actually utilizes the reserved capacity (i.e.,
placing a firm order), the reservation fee is deducted from the order payment. However, if the reserved
capacity is not fully utilized  the specified time, the reservation fee associated with unused capacitywithin
is not refundable. Since the reservation fee is typically lower than the wholesale price, the reservation
contract  the buyer flexibility  it does not ordain a firm commitment prior to demandprovides in that
realization. , capacity reservation reduces the supplier's risk  capacity expansionMoreover associated with
since for the capacity the buyer is liable  to a certain extent. This form of risk sharing is particularly
attractive in high-tech manufacturing  where the demand is volatile and the capacity isenvironment
capital intensive.

It has been well established in the literature that capacity reservation using options contracts
achieves channel coordination so long as the wholesale price is  (see Cachon 2003 andendogenous
references therein). In its simplest form, an  specifies the price to purchase the optionoptions contract
before uncertainties are resolved, and the price to exercise the option after the uncertainties are resolved.
Motivated by the high-tech product development setting discussed earlier, we consider a version of
options contracts where the wholesale price is determined . We will show that the standardexogenously
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options contract do not lead to channel coordination when the wholesale price is , or when theexogenous
uncertainty is not completely resolved at the time the option is exercised. More importantly, in this case
the options contract may not be for the players involved. This is true because whenindividually rational 
the wholesale price is exogenous, the supplier may have incentive to expand capacity based on her
knowledge of market demand, consequently, the buyer could count on the supplier to make extra capacity
available without reservation. Therefore, there is an incentive issue that must be examined since we can
no longer assume that entering a reservation contract is always for the best interests of both players.

We will start our exposition by investigating the conditions under which capacity reservation is
beneficial for both the supplier and the buyer. It will be shown that both parties are willing to participate
in the negotiations for capacity reservation if the supplier's capacity cost and the buyer's expected margin
are both F, and the end-item demand is volatile. This helps to establish the relevance of capacity
reservation in high-tech manufacturing since the above conditions are commonplace. At the same time,
the analysis helps to identify situations when capacity reservation is not supported by both players'
incentives, therefore undesirable. We then examine the implementation of capacity reservation contracts
as a means to achieving channel coordination. Two generalized versions of capacity reservation
mechanisms are proposed:  and . It will be shownpartial payment deduction reservation with cost sharing
that although both mechanisms could achieve coordination with the same expected payoffs for the
players, they have different cash flow implications when the capacity cost is nonlinear.

To consider further implications of capacity reservation contracts in the high-tech environment, we
generalize our results to two important cases: 1) voluntary contract compliance, and 2) partial
information updating. The notion of  in the context of supply contracting has beenvoluntary compliance
investigated by Cachon and Lariviere (2001). Tomlin (2003) extends their analysis by introducing the
concept of "partial compliance." In both cases, the authors show that the equilibrium decisions deviate
from the  case. In our analysis, we first determine the penalty scheme for forced compliance
noncompliance under which the coordination can be still achieved. It is shown that in a supplier-lead
supply chain (with exogenous wholesale price), even with the absence of forced compliance, the supplier
has incentive to signal the buyer that she will fully comply. Next we consider partial information
updating; in our base model, a main assumption is that the demand uncertainty is resolvedcompletely 
after the capacity is built, but before utilized by the buyer. This assumption is common in the options
contract literature (see Cachon 2003). However, due to long production lead-time in high-tech
manufacturing such as semiconductors, it is quite possible that the buyer has to finalize her order (utilize
the reserved capacity)  knowing the actual demand, but  a partial information (forecast)before after
update. In other words, the buyer must exercise her option with partially resolved demand uncertainty.
We examine channel coordination in this situation, and find that coordination can be achieved if the
contracts developed for the base case are coupled with buy-back agreements. Ultimately, we make the
case that for the high-tech manufacturing environments, practical supply contracts should incorporate
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terms related to capacity reservation, compliance regime, partial information update, and buy-back
agreements, while leaving wholesale price exogenously defined

The paper is organized as follows: in the next section, we summarize related work in the literature,
which is followed by an introduction of the base model in Section 3. In Section 4, we analyze the
capacity reservation contract with deductible fees, and we examine the effects of market size and demand
variability to contract conditions. In Section 5 we introduce two mechanisms for channel coordination. In
Section 6 we discuss the issue of voluntary compliance. Section 7 generalizes our contract framework to
the case where the demand is only partially updated before the buyer decides on the final order amounts.
We then summarize the managerial insights and discuss our results in Section 8. Proofs of the main
Theorems are in the Appendix.

2. Related Work in the Literature
Earlier work on capacity reservation focuses on strategies from the buyer's perspective while the terms
specified in the reservation are exogenous. Silver and Jan (1994) and later Jan and Silver (1995) consider
the case where the buyer pays a nonrefundable premium and is guaranteed a certain level of supplies in
an environment where the availability of capacity is highly uncertain. They propose methods for the
buyer to determine the level of dedicated capacity to reserve and the size of each periodic replenishment.
Brown and Lee (1998) also study capacity reservations in the context of semiconductor manufacturing. In
particular, they discuss "pay-to-delay" capacity reservation contracts. The authors focus their analysis
from the buyer's perspective and derive optimal policies for the buyer. A comprehensive review of recent
literature on capacity procurement games is provided by Cachon (2003).

The research on capacity reservation contracts can be broadly categorized into two groups based on
the buyer's incentive to reserve. Specifically, buyers are motivated to reserve capacity so as to 1) achieve
potential cost reduction through early commitments, or 2) avoid future supply disruption through risk
sharing with the supplier. Papers in the first category consider multiple ordering opportunities where the
buyer has the option of committing to an order quantity in advance with the option of purchasing
additional quantities at a higher cost, or through the spot market, after demand information is updated.
Gurnani and Tang (1999) and Huang (2003) study the general problem from the buyer'set. al. 
perspective under different settings with demand information update. Donohue (2000) and Serel et. al.
(2001) investigate the equilibrium strategies based on (payment for the)  The formerfull commitment.
considers forecast update in a two-stage setting where the costs of both the early and delayed
commitments are decided by the supplier. The author proposes a supplier-initiated contract that utilizes
buy-backs to coordinate the channel. The latter extends the capacity reservation problem to a multi-
period setting with stationary demand. In their model, the buyer contracts a certain amount of products
from the supplier for each period by paying a reduced rate. As such, the supplier guarantees the delivery
of the buyer's order up to the contracted amount. Bonser and Wu (2001) proposes a similar multi-period
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setting, where future supplies are secured by long-term contract and spot market purchases. To minimize
procurement costs, the buyer must fulfill long-term contract commitments to avoid "underlift" penalty
while at the same time taking advantage of spot price fluctuations.  Wu  (2002), Glovachkina andet. al.
Bradley (2002), Spinler  (2002), and Araman  (2003) consider  thatet. al. et. al. partial commitments
employ options contracts under various assumptions regarding demands and spot market prices.

In this paper, we also use options and buy-back as part of the contract mechanism, however the paper
makes very different assumptions about the availability of supply. While earlier work assumes that the
buyer could buy from a selection of suppliers (or the spot market) and they always have the ability to fill
the buyer's orders, we assume that the buyer is restricted to buy from a particular supplier who has
limited capacity. While the former assumption is appropriate for commodity products, our assumption is
in general true for high-margin products in the high-tech industry. For instance, each telecommunication
IC device is custom designed for a specific family of products with low substitution opportunities. In this
respect, our work is more in line with papers in the second category that are summarized in the following.

Papers in this group investigate capacity reservation motivated by ensuring future supply availability.
Cachon and Lariviere (2001) and Tomlin (2003) focus on buyer-lead models and investigate forced and
voluntary compliance regimes. The former examines capacity contracting in the context of supplier-buyer
forecast coordination. Buyer provides an initial forecast and a contract consisting of firm commitments
and capacity options. After supplier builds capacity, the buyer places an order based on the up-to-date
forecast. They show that although supply chain coordination can be achieved through options contracts in
the full information case, it is only possible under . They conclude that in the absenceforced compliance
of , higher supplier capacity can not be induced (thus fails to coordinate the channel).forced compliance
Tomlin (2003) enhances this approach by introducing partial compliance. He shows that under nonlinear,
price-only contracts, options do induce higher supplier capacity, but not necessarily sufficient to achieve
coordination. In this paper, we show that in a supplier-lead channel the supplier has incentive to signal
the buyer her willingness to comply by offering a noncompliance penalty that would be agreeable to the
buyer. Thus, channel coordination can be achieved as in the forced compliance case. Also in the second
group of papers is Eppen and Iyer (1997), who model capacity reservation through  agreements:backup
the buyer makes firm commitments at the beginning, but has the option to cancel the order with penalty.
Barnes-Shuster (2002) study a generalized case where the buyer places firm orders whileet. al. 
purchasing options at the same time, under a two-period setting. Li and Atkins (2002) study capacity
coordination problems between the marketing and production divisions of a firm where the demand for
the finished product is stochastic yet price sensitive. In their setting,  chooses the inventoryproduction
(capacity) level while  decides on the product pricing. The transfer price between the divisionsmarketing
is set by the central management. To coordinate the system, the central management sets a transfer price
and a penalty for unused inventory paid by the marketing to the production.
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Most papers above focus on the procurement problem from the buyer's perspective, assumes either
endogenous wholesale prices, or that the supplier builds nothing without a buyer commitment. This paper
focuses on the context for high-tech products that differs from earlier work in all three aspects. We
investigate capacity reservation contracts where the wholesale price is determined by theexogenously 
market or by earlier negotiations, while the supplier acts as a strategic player who makes decisions on the 
capacity reservation (options) fee as well as capacity expansions. As discussed in Section 1, this
wholesale price assumption better captures the high-tech manufacturing setting where pricing and
capacity reservation are fundamentally separate. This subtle difference in assumption has important
implications; under the wholesale price assumption, options contracts can always produceendogenous 
win-win solutions for the players, but this is not necessarily the case under  pricing. Thus, theexogenous
players' incentive to participate becomes an issue. We investigate the viability of capacity reservation
contracts under various cost/margin scenarios and market conditions. Moreover, with knowledge of
market demand, the supplier has incentive to build capacity even without buyer commitment. We
examine the impact of capacity cost (i.e., linear vs.. convex) on the supplier's capacity expansion
decisions.

Jin and Wu (2001) also study capacity coordination under exogenous wholesale price by utilizing
take-or-pay contracts. In their setting, a per unit penalty for unused capacity is charged to the buyer only
if the utilized portion of the reserved capacity falls below a certain threshold. The contract specifies both
the penalty and the threshold. Although the proposed contracts lead to channel coordination, oftentimes,
they are not Pareto improving and as such the supplier may not have incentive to participate. The
coordination mechanisms proposed in this paper provide higher efficiency for the supplier in that they are
individually rational and could generate higher payoffs for the supplier. Ferguson  (2003) examineset. al.
two commitment strategies for the buyer: 1) place all orders in advance before any demand update, or 2)
delay orders until a portion of the demand uncertainty is resolved. In both cases the buyer's orders are 
firm. Their analysis explains the trade-offs between early and delayed commitments from the buyer and
the supplier's perspectives. However, the authors do not consider channel coordination. In this paper, we
consider the effect of commitments to supply chain coordination in the context of capacitypartial 
reservation.

By incorporating exogenous wholesale prices, partial commitments, partial information update, and
the compliance regime into the capacity reservation framework, we offer an options contract structure
that captures the business environment unique to the high-tech industries.

3. Model Setting
As a basic building block for the analysis of capacity reservation, we consider a one-supplier, one-buyer
system in a single-period setting where the supplier faces stochastic demand. The supplier and the buyer
are manufacturing partners (e.g., OEM manufacturer and their key component supplier) in the supply
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chain who operate in a make-to-order fashion. Before placing a firm order to the supplier, the buyer has
the option to reserve future capacity in advance so as to assure availability. In the case of insufficient
capacity, there will be no backorder and the unmet demand will be lost. This setting is realistic in the
high-tech manufacturing environment where the product life-cycle is short while the manufacturing lead-
time is long. The buyer pays a  to the supplier,  "wholesale price" w and incurs a revenue of  for each unit:

of product. Unique to this environment is that pre-negotiates the wholesale pricing early on the buyer ( ) w
during the design-win phase, and does not consider pricing a subject of further negotiation. However, it is
not uncommon for the suppliers to impose other forms of price adjustments in the forms of one-time
charge ("engineering fees"), or variable service charges. We assume that the supplier produces with
marginal cost  and .c, : { A { -

At the beginning of the period, the supplier has the option to expand her capacity. We use a convex
function  to characterize the capacity cost, where  is increasing in capacity  and .Z Ð5Ñ Z Ð5Ñ 5 Z Ð!Ñ œ !w

We assume that the residual value of capacity is concave in the capacity amount, while the cost of
building capacity increases in a convex fashion. Thus, it is possible to incorporate the residual value of
capacity as part of the capacity cost. For example consider  where  and .Z Ð5Ñ œ 5 ^ 5 { D z "- " - "D

The total cost of capacity is the procurement cost minus the residual value of the capacity. The residual
value is generally represented by a concave function as each additional unit capacity returns a future
value with a diminished rate. Without loss of generality, we assume that the initial capacity is zero.
Product demand  follows a continuous distribution when  with density , both areB JÐBÑ B   ! 0ÐBÑ

differentiable for . We also assume that  is invertible and . Furthermore, weB   ! JÐBÑ JÐBÑ œ " ^ JÐBÑ

assume complete information in that the supplier has full information regarding the buyer's demand
distribution and revenue function, and vice versa.

First consider a centralized supply chain where the capacity decisions are made to optimize channel
efficiency. In this case, the optimal capacity is defined by the classical newsvendor solution. Let  beWÐ5Ñ

the expected sale of the channel given capacity . Given the demand distribution can be written as5 WÐ5Ñ

WÐ5Ñ œ 5 ^ JÐBÑ.B'
!
5 .

For any given capacity  the integrated channel profit can be written as follows:5

CM Ð5Ñ œ Ð: ^ -Ñ ^ Z Ð5ÑWÐ5Ñ (1)
It is straightforward to verify that  is concave in capacity  and the optimal capacity solves theCM Ð5Ñ k
following equality:

5 œ J Ð Ñ
: ^ - ^ @

: ^ -
9 ^"

9

,

where  is the derivative of the capacity cost evaluated at . We know that the channel efficiency is@ 59 9

maximized when the capacity is built up to . However, the supplier may not have the incentive to59

expand her capacity to . Specifically, for any given  the supplier's profit function is as follows:5 59

C0
SÐ5Ñ œ ÐA ^ -Ñ ^ Z Ð5ÑWÐ5Ñ                (2) 
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Thus, the optimal capacity  for the supplier is her own newsvendor solution:5‡

5 œ J Ð Ñ
A ^ - ^ @

A ^ -
‡ ^"

‡

,

where  is the derivative of the capacity cost evaluated at . @ 5‡ ‡ Since , we know that , i.e.,: { A 5 z 5‡ 9

the supplier will not expand her capacity to the channel optimum. If not the buyer does  take part in the
capacity expansion decision, her profit is a function of the supplier's capacity choice , i.e.,5‡

C0
F

‡Ð5 Ñ œ Ð: ^ AÑWÐ5 Ñ‡ . (3)
In summary, since the supplier's profit margin is less than that of the integrated channel and the buyer

does not share liability for the capacity, the supplier will build less capacity than what is optimal for the
channel due to . This leads to revenue loss in the channel. In general, double marginalization if the
buyer's marginal revenue and the cost of capacity are both sufficiently high, or the wholesale price is
sufficiently low, the buyer will choose to make a  commitment and complete her purchase by payingfull
the full price prior to the realization of her demand. Since full commitment is but a special case of the
reservation contracts discussed in the next section, we exclude this consideration from the base model.
We use the base model as a conceptual benchmark, and to analyze the players' incentives (or
disincentive) to participate in capacity reservations. In the following sections, we explore various
extensions to the base model that enhance the coordination between the supplier and the buyer.

4. Capacity Reservation with Fully Deductible Payments
We consider capacity reservation with the following sequence of events: (1) the supplier announces a
unit reservation fee ; for the guaranteed use of future capacity (2) given the buyer places< Ÿ A r, 
reservation of quantity , paying ,  (3) the supplier;Ð<Ñ ;Ð<Ñr † after observing the reservation amount, 
determines her capacity,  ( )5 5   ;Ð<Ñ , (4) the buyer's demand  is realized, and the buyer orders  units;B B

(5) the supplier produces min  units with marginal cost . The supplier deducts the amountÐBß 5Ñ -

< † Bß ; < † !ß ; ^ Bmin( ) from the buyer's purchasing cost, but keeps the amount max( ).
As described above, if the buyer's realized demand , is less than the quantity reserved , the supplierB ;

keeps the difference , i.e., the reservation fee for unused capacity is not refundable. <Ð; ^ BÑ Here, we
assume that the supplier always builds sufficient capacity to cover the reservation amount (known as
forced compliance voluntary compliance). We will discuss the  case in Section 6. Note that the buyer has
the option of not placing a reservation, knowing that the supplier will expand capacity to her newsvendor
optimum . Thus, in order to convince the buyer to place a reservation, the supplier must offer a5‡

contract where the buyer's expected profit is no worse than .CF
‡Ð5 Ñ

The buyer does not order more than the realized demand since we assume that the items have no
value if not sold in the current period, and no inventory can be carried to the next period. This is in
general true in the high-tech environment where product specifications change frequently, and there is a
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high risk of carrying inventory as the product will  be obsolete by the following period. Under thislikely
setting we can write the supplier's profit function as follows:

CSÐ5ß <Ñ œ ÐA ^ -Ñ ^ Z Ð5Ñ ] <IÒ7+B Ð!ß ; ^ BÑÓ œ ÐA ^ -Ñ ^ Z Ð5Ñ ] < JÐBÑ.BWÐ5Ñ WÐ5Ñ (
!

;

(4)

There are three basic decision stages in our model. In the first stage, the supplier chooses the
reservation fee , which is followed by the buyer's reservation decision . Then, the supplier chooses her< ;

capacity level . We will start from the thrid-stage decision problem by the supplier.k

4.1. The Supplier's Capacity Decision
Given  and , the supplier solves the following decision problem to determine her capacity level < ; 5 À

Q+B Ð5ß <Ñ
5 ;

CS

The profit function consists of the expected revenue from sales, the capacity cost, and the  expected
revenue from the buyer's "over" reservation (the portion of reservation that exceeds the realized demand).
It is straightforward to see that if the buyer's reservation quantity , the supplier's capacity level; Ÿ 5‡

should be set at her newsvendor optimum  isk . ‡ Otherwise, the optimal capacity level is  since ; CSÐ5ß <Ñ

concave in , and thus each additional unit of capacity beyond  will return a negative margin, i.e., the5 ;

supplier has no incentive to expand her capacity beyond the reserved amount.

4.2. The Buyer's When to and How to Reserve Strategy
In the second decision stage, he buyer's decision problem is as follows:t

Q+B Ð;Ñ œ Ð: ^ AÑ ^ < JÐBÑ.BCF
!

;

WÐ;Ñ ( (5)

The first term is the buyer's expected profit through sales, and the second term is the expected loss for
unused reserved capacity. As  is concave in , the optimal reservation quantity isCFÐ;Ñ ;

;Ð<Ñ œ J
: ^ A

: ^ A ] <
^"Œ 9 (6)

Note that both the reservation quantity and the buyer's expected profit decrease in reservation fee .<
Given the buyer's best response in (6), a basic question is "under what condition is the buyer better off
making a reservation?" Clearly, if her optimal reservation quantity  is less than or equal to theq(r)
supplier's newsvendor capacity , the buyer will not reserve, knowing that the supplier will build a5‡

capacity of at least  units anyway. Hence, the following inequality is necessary to hold:5‡

< Ÿ Ð: ^ AÑ
@

A ^ - ^ @

‡

‡
(7)

If the supplier announces a reservation fee greater than the right-hand-side in (7), the buyer's bestr 
response is not to reserve at all (comparing (5) and (3), it is clear that the buyer is worse off if she
reserves an amount ). Hence, (7) establishes an upper bound for the  reservation fee.; Ÿ 5‡ acceptable
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Moreover, the reservation fee must be less than the wholesale price ; clearly, if  the buyer wouldA < { A

have no incentive to reserve. Note that  implies full commitment.< œ A

In general, the buyer's expected profit under early commitment must exceed her profit under no-
commitment. To tighten the bound on  we can define a  < threshold reservation quantity   (where;>

; { 5> ‡) such that  canC CF
> ‡

FÐ; Ñ   Ð50 ). This  is useful for the buyer in that shethreshold quantity
negotiate a reservation fee that is lower than the   which corresponds to .threshold reservation fee < ;> >

This is stated in the following Theorem.

Theorem 1. It is individually rational for the buyer to reserve capacity if her optimal reservation
quantity is no less than the threshold , where  is the unique non-negative value satisfying; ;> >

   WÐ5 Ñ œ‡
'
!
;

>

>

B0ÐBÑ.B

JÐ; Ñ
(8)

The threshold reservation quantity has the following properties:;>

(1)  it provides a tight lower bound for the reservation quantity , i.e., ,; { 5> ‡

(2) it defines the threshold reservation fee r  (under which the buyer shall be willing to pay):>

     < œ Ð: ^ AÑ> JÐ; Ñ
JÐ; Ñ

>

> (9)

(3)  provides a tight upper bound for the reservation fee, i.e.,  < < z> > Ð: ^ AÑ @
A^-^@

‡

‡  .

A formal proof for the Theorem is given in the Appendix. The Theorem defines a tighter condition
under which the buyer would have incentive to place capacity reservation. The Theorem stipulates that
the expected increase in buyer's sales revenue must offset the expected liability from capacity
reservation. Unfortunately, there is no closed form expression we can derive for the threshold value .;>

Nonetheless, since the right-hand-side of (8) is strictly increasing in , for a given ,  can be found by; 5 ;‡ >

a simple line search. Interestingly,  is independent of the buyer's selling price, .; :>

4.3. The Supplier's Individual Rationality Condition and the Optimal Reservation Fee
We now consider the  perspective. We would like to know if the supplier is better off bysupplier's
choosing a reservation fee below the buyer's , or not offering reservation at all. As shownthreshold <>

above, the buyer would only reserve if doing so improves her profit. However, unless the reservation
induces additional surplus in the , the buyer's added profit would be the supplier's loss. Thischannel
means that for the contract to be acceptable for both parties, it must generate more surplus in the channel
compared to the no-commitment case. The following Theorem states this condition in terms of the
channel profit .CM

Theorem 2.    Given the buyer's threshold reservation quantity , the following are true: ;>

(1) the supplier will offer an acceptable contract (i.e. ) iff< Ÿ <>
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C CM M
> ‡Ð; Ñ   Ð5 Ñ (10)

(2) there exists a capacity level k such that .5 { 5 Ð5 Ñ œ Ð5Ñ9 ‡
M M and C C

The first part of the Theorem is a straightforward statement from the previous observation, and the
second part can be concluded from the fact that  is strictly concave in . CM Ð5Ñ 5 Observe that Theorem 2
implies that the supplier will choose to offer a reservation contract only if  Using ; Ÿ 5> . we; ´ q(r), 
can first stage write the supplier's  decision problem as follows:

Q+B Ð <Ñ œ ÐA ^ -Ñ ^ Z Ð;Ð<ÑÑ ] < JÐBÑ.B  . (11)
<Ÿ ÐAß< Ñ !

;Ð<Ñ

min S>
C WÐ;Ð<ÑÑ (

For mathematical convenience, we rewrite the supplier's model by substituting the reservation fee,  with r
the reservation amount,  according to (6); :

Q+B Ð ;Ñ œ ÐA ^ -Ñ ^ Ð;Ñ ] Ð: ^ AÑ JÐBÑ.B  , (12)
;  ; ;

W
!

;

max ( , )> A
C WÐ;Ñ V

JÐ;Ñ

JÐ;Ñ
(

where that ; ´ ;ÐAÑA  is the quantity the buyer is willing to reserve when the reservation fee is set at the
wholesale price  (i.e., full commitment). A In this representation of the supplier's expected profit function
we are assuming that the supplier chooses the capacity level for which he will receive the highest
reservation price that the buyer would be willing to pay. It is straightforward to see that the outcome will
be the similar to that in (11). We may interpret the supplier's decision as follows: knowing the highest
reservation fee that the buyer is willing to pay, the supplier is to choose a   that wouldcapacity level ;r

maximize her profit. Thus, it is individually rational for the supplier to offer a reservation contract if the
profit resulting from the optimal capacity level (reservation)  is no worse than her newsvendor profit;r

(i.e., .C CW W
‡Ð Ñ   Ð5 ÑÑ;r 0

Recall that in the environment we consider, the wholesale price w and the buyer's revenue margin :
are both exogenous. Nonetheless, it is useful to know that given the pre-negotiated , the (supplier's)w
individual rationality condition in (10) suggests a   only when the buyer'sthreshold revenue margin p ;>

margin is at or above this threshold would it make sense for the two parties to enter the reservation
contract. This is stated in the following Theorem:

Theorem 3. It is individually rational for the supplier and the buyer to enter the  reservation contract
provided that the buyer revenue margin p is no less than the threshold p  as follows:> which is defined 

   (13): œ - ]
Z Ð; Ñ ^ Z Ð5 Ñ

WÐ; Ñ ^ WÐ5 Ñ
>

> ‡

> ‡

From Theorem 1 we know that the buyer will reserve if and only if the reservation fee is less than <>

and her minimum reservation amount will be  and . Theorem 2 implies that the supplier will; ; { 5> > ‡

announce a reservation fee that is less than or equal to  if and only if . Observe from< Ð; Ñ   Ð5 Ñ> > ‡
M MC C

(13) that  is the value at which  and from (8), its value is independent of . It is: Ð; Ñ ^ Ð5 Ñ œ ! :> > ‡
M MC C

straightforward to see that  is strictly increasing in . Therefore, when the revenueC CM M
> ‡Ð; Ñ ^ Ð5 Ñ :

margin  would there be sufficient surplus generated in the channel to benefit both players. Inp   :>
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essence,  is the :> effective marginal cost of a sold product: marginal production cost plus the cost of
capacity expansion for each product sold beyond .5‡  To answer the earlier question whether "the supplier
is better off accepting the buyer's  , or not offering reservation at all", wethreshold reservation fee <>

conclude that the supplier's decision should be based on the potential surplus that could be generated
from a coordinated channel, i.e., . Only when the buyer's profit margin is sufficientlyC CM M

> ‡Ð; Ñ ^ Ð5 Ñ

high would she be able to (adequately) offset the supplier's risk of expanding beyond her newsvendor
capacity. In reality, the buyer may not have a sufficiently lucrative margin to support such a win-win
outcome, in which case the supplier should reject the reservation  and stick with her newsvendorstrategy
model for capacity expansion. From the above results, we may conclude that entering capacity
reservation is not necessarily desirable for both players at all times. As discussed earlier, this produces an
outcome different from the  wholesale price analysis in the literature, where capacityendogenous
reservations can always improve on "no-commitment" cases. With  wholesale price, exogenous capacity
reservation is only justified under the conditions given in Theorems 1 to 3. With this understanding, we
continue our analysis on the supplier's optimal strategy.

A closer inspection of (12) reveals that the supplier's profit function may have multiple local
maximum, that is, if one exists at all. The shape of the profit function  is primarily driven by theCW Ð;Ñ

demand distribution. To derive some insights, we focus our analysis on increasing failure rate (IFR)
distributions, in which case the first order condition for  has a unique solution. For any IFRCW Ð;Ñ

distribution, the ratio  (known as the ) increases in . IFR distributions represent a0ÐBÑÎJÐBÑ Bfailure rate
rather general class of which many widely used distributions (e.g., Uniform, Weibull, Gamma, and
Normal) belong. The following theorem shows that the supplier's profit function  is well behavedCW Ð;Ñ

if the demand follows any IFR distributions.  For notation convenience, we denote ; ´7 Max ( , ); ; Þ> A

Theorem 4. The supplier's decision problem specified in (12) has the following properties:
(1) The profit function is strictly decreasing in [ ,CW Ð;Ñ 5 ß_Ñ9

(2) If the demand distribution is IFR, then  is either  or  on , i.e., the CW Ð;Ñ decreasing unimodal Ò; ß 5 Ñ7 9

decision problem has unique optimal solution.
(3) To find the unique optimal reservation quantity, , we have;<

(i) If  is  in , then , andCW Ð ;Ñ decreasing Ò; ß 5 Ñ ; œ ;7 9 < 7

(ii) if  is  in , then is the unique point in  that satisfies the firstCW Ð ;Ñ unimodal Ò; ß 5 Ñ ; Ò; ß 5 Ñ7 9 < 7 9

order optimality condition for CW Ð ;Ñ.
As pointed out in the theorem, should both the supplier and the buyer choose to initiate a reservation

(i.e., ) the supplier's best action is to set the reservation price at , and the buyer will respond; z 5 <Ð; Ñ> <

by reserving . Recall that for technical convenience, we rewrote the supplier's profit as a function of ; ;<

(by substituting the reservation fee . To provide some practical insights from the Theorem, we convert r)
the supplier's decision back as a function of the reservation fee . r Figures 1a-1d depict a sequence of four
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scenarios faced by the supplier as the buyer's revenue margin decreases: (1) the supplier's optimalp 
reservation fee is equal to the wholesale price, implying full commitment, (2) the optimal reservation fee
is strictly less than the wholesale price and the threshold reservation fee; (3) the supplier's optimal
reservation fee  coincide with , indicating that the buyer is indifferent between reserving or not< <‡ >

reserving; (4) the supplier's optimal strategy is not to offer capacity reservation.
<< >>Insert Figure 1 here 

4.4. The Effects of Market Size and Demand Variability
The above results only require that the demand distribution is IFR. If additional information is known
about the market that drives the demand, we may be able to derive additional insights. In this section we
examine the impact of market size and demand variability on the player incentives. To facilitate our
analysis, we consider a demand distribution that is in the  A distribution is said to be fromshifted family.
shifted family if  holds. In this representation,  is the scale parameter whichJÐBl Ñ œ JÐB ^ l!Ñ) ) )

encapsulates the market size information. An example to shifted family distribution is the Normal
distribution which is widely used to capture uncertainty in real life practice.

Theorem 5.  If the demand distribution  is IFR and is in the shifted family, thenJÐBl Ñ)

(1) The supplier's optimal reservation price is r .‡ >œ 738Ð< ß AÑ

(2) If the capacity cost  is linear then neither the optimal reservation fee,  nor the supplier's surplus@ <‡

(  are dependent on the market size  however  the threshold reservation quantity C CW W
‡Ð ; Ñ ^ Ð 5 ÑÑr 0 )ß ß ;>

does increase in .)
(3) If the capacity cost  is strictly convex, then the threshold reservation fee  is increasing inZ Ð5Ñ <>

market size . Furthermore, there exists a unique market size threshold, , above which the capacity) )>

reservation is no longer favorable for the channel.
The first part of the Theorem states that if the demand distribution is in the  theshifted family,

supplier's optimal reservation price should be set as This follows the same intuition as the738Ð< ß AÑ> . 
first part of Theorem 4. In the second part of the Theorem, we see that if the cost for capacity expansion
is linear, the supplier has incentive to increase her capacity to match the growing market size, resulting in
a higher threshold reservation quantity. Interesting, in this case the increase in market size neither affects
the optimal reservation fee, nor the supplier's surplus (for accepting reservation). This is because for any
demand distribution of  the coefficient of variation decreases as the market size (the mean)shifted family
increases, which in turn reduces the supplier's risk exposure. In essence, the increase in the capacity cost
due to market size is balanced with the reduction in risk. However, this does not suggest that the profits
are independent of the market size. In fact, the supplier and the buyer's profits increase with a factor of
( ) and  with the market size, respectively. As a result while theA ^ - ^ @ Ð: ^ AÑÐA ^ - ^ @ÑÎÐA ^ -Ñ

profits increase with the market size  the value of reservation remain the same. One may thus concludeß
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that if the capacity cost is linear, as the market size increases, the merit of reservations does not change in
an absolute sense, but its relative benefit diminishes. Contrary to this observation, last part of the
Theorem shows that if the capacity cost is , an increased market size indeed affects the reservationconvex
fee and the supplier's surplus. This is rather intuitive since the supplier needs more assurance from the
buyer when the capacity cost demonstrates diseconomy of scale. In this case, the decrease in the
coefficient of variation due to market size is not sufficient to offset the risk of expansion.

There is an interesting implication of Theorem 5 that is noteworthy. One should observe that when
the capacity cost is strictly convex the supplier may not have incentive to build sufficient capacity to
satisfy all demands when is large. This is due to the fact that the marginal profit is linear in sales while) 
the cost is convex in capacity. We note that this is not true for any convex cost function. An example is
Z Ð5Ñ œ 5 ^ 5 A ^ - { { D z "- " - "D  where  and .

We explore the effect of capacity cost further in the following Theorem.

Theorem 6.  If the demand is Normally distributed, then the threshold reservation fee  increases in<>

standard deviation. If the capacity is costly, i.e., , then the value of capacityZ Ð5 Ñ   ÐA ^ -Ñw ‡ "
#

reservation (the channel's surplus) increases in standard deviation as well.
The above two Theorems reveal that and the  are twodemand variability cost structure of capacity

main factors determine the value of capacity reservation. Clearly, as the variability increases the supplier
is exposed to more risk, and would be reluctant to build more capacity unless the buyer raises her
threshold reservation fee. When the capacity cost is high relative to the supplier's profit margin, it is
better for her (and for the channel) to take reservation. This is consistent with the intuition that the higher
the demand variability, the more appealing it is to take capacity reservation. The result shows that when
the availability of capacity is at stake (volatile market environments accompanied with high capacity
costs) the supplier and the buyer are compelled to enter in a reservation contract. In summary, the
foregoing observations point out that (1) it is the demand variability (standard deviation) that affects the
reservation fee (Theorem 6), (2) the reservation  (thus the total profit) does increase with marketquantity
size, and (3) when the capacity cost is , the reservation fee should indeed increase with marketconvex
size.

5. The Coordination Mechanisms
Our analysis so far reveals that capacity reservation could provide real benefit for the buyer, the supplier,
and the supply channel. This is especially the case when the capacity is costly and market is volatile; both
are characteristics of high-tech manufacturing. The contract we have considered allows the buyer to fully
deduct the reservation fee from the final payment. Under this setting, the channel profit generated from
capacity reservation may not be optimal. In fact, in a capacity reservation contract with fully deductible
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reservation fee, the channel profit is suboptimal unless the threshold reservation quantity . ; œ 5> 9 Thus,
with  reservation fee, channel coordination is only achievable under a very restrictivefully deductible
case. In the following, we propose two variants of the base contract that will coordinate the channel.

5.1. Capacity Reservation with Partially Deductible Payments
We first propose a contract where only a portion of thepartially deductible reservation (PARD) 
reservation fee is deductible from the final payment, where the deductible portion is predefined as ar <# 
contract parameter. The sequence of events is as follows:

(1) the supplier announces the reservation fee  for each unit of capacity reserved, and the refund rate<

<# for each unit of capacity actually utilized, such that
< œ < ^ Ð: ^ AÑ

: ^ -

@
# 9

(15) 

(2) given the buyer places reservation of quantity , paying ,r  rand , <# ; † ;

(3) the supplier expands her capacity to ,q
(4) the buyer's demand  is realized, and the buyer orders  units;B B

(5) the supplier produces min  units with marginal cost . The supplier deducts the amountÐBß 5Ñ -

<# † Bß ;min( ) from the buyer's purchasing cost.
With the added dimension ( ) in PARD contract, the supplier has more flexibility in setting the<#

reservation fee ( ). r We do not assume any restriction on  except that , which implies that< < Ÿ A ^ -# #

0 (16)z < Ÿ @9

Theorem 7. Under partially deductible (PARD) contract specified by (15) and (16), the buyer will
reserve and the supplier will build the channel optimal capacity, i.e., (r) . Moreover,5 œ ; œ 59

(1) The buyer's profit is increasing in  and her expected profit can be no more than < <
@

9
M9C

(2) The supplier's profit is decreasing in  and her expected profit will be no less than .< @ ^<
@

9
M

9

9 C

While the PARD contract allows for a range of possible reservation fees, the actual fee corresponds
to a specific split of the channel surplus between the supplier and buyer. The Theorem shows that as the
reservation fee decreases the supplier's share rises. This may seem counter intuitive at first, but a quick
reflection would reveal that this is exactly to be expected: each unit of increase in the reservation fee r
corresponds to a higher rate of increase in the refund  as / 1 since .< `< Î`< œ Ð: ^ -Ñ @ { : { @ ] -# #

9 9

Thus, the penalty charged for the buyer's unused reservation, , actually decreases in .< ^ < <#

Note that the above discussion is only relevant when the capacity cost is strictly convex. A majority
of the work in the literature assumes linear capacity cost. With linear cost, , the supplier only stays@

profitable if  is greater than . A @ ] - In such case it is straightforward to see that the proposed contract
implies that buyer and supplier's split of channel surplus will be  and exactly  ,<Î@ † †C C9 9

M MÐ@ ^ <ÑÎ@

respectively. Clearly, the supplier will not make a positive profit if . On the other hand, with the<   @
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capacity cost being strictly convex, the supplier can still make positive profit when the reservation fee is
equal to the marginal capacity cost at . An advantage of the linear capacity cost is that it allows for the59

design of coordination contracts independent of the buyer's demand distribution. Thus the contract
designed for one buyer can be used for any other buyer with a similar cost structure (but possibly with a
different demand pattern). However, with convex capacity cost, computing  independent of the demand@9

distribution . would not be possible
Conditions (15) and (16) define a continuum of contracts that correspond to varying degree of profit

realizations for both parties. On one extreme the supplier collects all of the buyer profits. On the other
extreme the buyer takes on all the capacity procurement cost however enjoys all the supplier profits from
sales In selecting the ( ) pair the supplier could make the contract as favorable to the buyer (orÞ <ß <#

herself) as their relative bargaining power dictates. While we do not model the bargaining outcome of the
channel surplus (see Wu, 2004), one may think of the reservation fee a lever that the supplier uses to
share channel surplus with the buyer, possibly based on the buyer's other capacity options, or the general
market conditions. Note that by increasing the reservation fee, it is possible for the supplier to offer not
only a full deduction of the fee upon use but also an additional discount (i.e., ). It may be desirable< { <#

for the supplier to offer a discount  when there is a capacity surplus in the industry sector and the< ^ <#

capacity (reserved for the buyer) is difficult to convert for other usage. Conversely, when there is a
general capacity shortage in the industry, the supplier may wish to decrease  below ,< Ð: ^ AÑ@ ÎÐ: ^ -Ñ9

resulting in a no-deduction policy with an additional charge linear to the expected sales amount, i.e.,
< z ! < ^ <# #. The surcharge, , can be interpreted as the "engineering fee" used in the semiconductor
industry that are paid upfront by the buyer in return for a lower reservation fee. Thus, the partial
deduction contracts can be viewed as a generalization, of which the no-reservation and reservation-with-
full-deduction are both special cases.

If we exclude the consideration of exogenous factors such as market conditions, we may use the
insights derived for the fully deductible contract (see Figure 1) on the PARD contract. Specifically, if the
buyer's margin is sufficiently high, the supplier should choose  and  in a way that  (e.g., the< < < { ! { <# #

case illustrated in Figure 1.a) or Figures 1.b and c). Otherwise, she may have to select a< { <   ! Ð#

deduction  that is greater than the reservation fee (e.g., the case Figure 1.d).<#

5.2. Coordination via Cost-Sharing Contracts
We now consider a  where the buyer pays for a portion of the cost-sharing (COSH) contract capacity cost
associated with her reservation. Depending on her demand realization, the buyer either receives a refund
or makes an additional payment for the utilized capacity. The  defined here is aCOSH contract
generalization of profit sharing contracts of Cachon and Lariviere (2000) and Li and Atkins (2002). We
propose an extension that the wholesale price cannot be treated as a contract variable (i.e., is exogenous).
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We employ an additional modification where the supplier awards the buyer for utilizing the reserved
capacity with deductions.

In the following we will describe how the contract coordinates the channel in the particular setting of
high-tech capacity reservation. The contracts has the following sequence of events: (1) the supplier
announces a reservation fee, , specified by parameter  ( ), and the refund rate  for! ! !Z Ð;Ñ ! Ÿ Ÿ " <#

each unit of capacity actually utilized; (2) given the buyer places her reservation , paying!  and , <# ;

!Z Ð;Ñ; (3) the supplier expands her capacity to ; (4) the buyer's demand  is realized, and the buyerq B

orders  units; and (5) the supplier produces min  units with marginal cost . The supplier deductsB ÐBß Ñ -q
the amount min( ) from the buyer's purchasing cost. Under this contract setting the buyer and<# † Bß ;

supplier profits are respectively:
C ! !G

F # #Ð ß < Ñ œ Ð: ^ A ] < ÑWÐ;Ñ ^ Z Ð;Ñ,
C !G

W #Ð;Ñ œ ÐA ^ - ^ < ÑWÐ;Ñ ^ Ð" ^ ÑZ Ð;Ñ.

Theorem 8.  Suppose the supplier offers a cost-sharing contract ( ,r  where! #Ñ

< œ Ð: ^ -Ñ ^ Ð: ^ AÑß ! Ÿ Ÿ "# ! ! . (17)
Then, the buyer will reserve the channel optimal capacity, i.e., .and the supplier will build ; œ 59

Furthermore, the buyer's profit is increasing and the supplier's profit is decreasing in .!
To prove the above theorem, first observe that under the  the critical fractile of theCOSH contract

buyer is equal to that of the integrated channel. Hence, the buyer would indeed reserve the system-
optimal capacity. Further, the derivative of the buyer's profit with respect to is which is strictly! C9

M  
positive, implying that buyer's profit is increasing in . Thus, the supplier's profit is decreasing in .! !

This theorem depicts a continuum of contracts where both the buyer's profit,  and the supplier's!CM
9 ,

profit, are determined by Note that depending on (i.e., for ) may assumeÐ" ^ Ñ! C ! ! !M
9 :^A

:^- #, .   ,  z <

negative values, implying that the buyer has the option of  taking less upfront responsibility in capacity
investment (smaller ), but shares her revenue with the supplier (instead of receiving a refund). Observe!

that this coordination contract is independent of the demand distribution and can be employed for
different buyers. As this is true for convex capacity cost in general, the COSH is more robust then the
PARD. Comparing to the no-reservation case, we note that must be greater than the ratio! 
C CF

‡ 9
M

0 Ð5 ÑÎ Ð5 Ñ so that the buyer does not opt out by not reserving. If the buyer has an outside option, !
should be increased to counter the competition.

Both PARD and COSH contracts specify a continuum of contracts that allow different allocations of
the system surplus between the two players. In fact, a closer examination will reveal that the two contract
types can be reduced to each other when the capacity cost is . Consider a linear capacity costlinear
function with a margin of . In this case, a COSH contract is identical to a PARD contract where@

! œ <Î@. However, this is not the case with strictly convex capacity cost. First, as noted earlier, since a
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COSH contract keys off the capacity cost function, it is independent of the demand distribution, while in
a PARD contract, the supplier needs to compute the marginal cost at  each time she prepares a contract59

for the buyer. In this regard, COSH might be more straightforward to implement. On the other hand, the
convex capacity cost brings about disparity in cash flows that would make PARD more appealing for the
supplier. This is summarized as follows:
Remark. For any given PARD and COSH contract pair that generate the same split of integrated
channel profits between the players, the supplier receives a higher upfront payment from the buyer under
a PARD contract if the capacity cost is strictly convex.

Proof of this observation is given in the appendix. This result indicates that when both contracts
provide the same profits in expectation, the supplier receives more cash under the PARD contract before
uncertainty is resolved. Thus, when the capacity cost is increasing in a strictly convex fashion, the
supplier may prefer to offer a PARD contract for a more favorable cash flow position.

6. Voluntary Compliance
There are situations in practice where the supplier may have incentive not to comply to the reservation
contract. For instance, the supplier may choose to "overbook" (i.e., under-expand) so as to ensure high
utilization of her capacity. It is also possible that due to short-term market demand surge and/or
manufacturing problems, the supplier is unable to provide the committed capacity at the right time. As is
often the case in reality, the buyer only finds out that the supplier can not provide the reserved capacity
when the realized demand (i.e., the buyer's firm order) exceeds the supplier's on-hand capacity. In the
following, we consider "voluntary compliance" capacity reservation contracts, where the supplier may
choose to expand her capacity below the committed level, but is subject to noncompliance penalties. We
are interested to know if the PARD and COSH contracts above continue to coordinate the channel under
voluntary compliance. Below, we show that in a supplier-lead channel, the supplier has incentives to
tailor these contracts to assure compliance and thus coordination.

Suppose the supplier has to pay a noncompliance penalty  for each reserved capacity unit that she?

fails to provide when requested by the buyer. In this case, given the buyer's reservation quantity, the
supplier's profit functions will be

CT
W

9

9
5

;

œ Ð: ^ -Ñ WÐ5Ñ ^ Z Ð5Ñ ] <; ^ ? Ð; ^ 5ÑJÐ;Ñ ] ÐB ^ 5Ñ0ÐBÑ.B
@ ^ <

@
Œ 9(  and,

CG
W œ Ð" ^ ÑÐ: ^ -ÑWÐ5Ñ ^ Z Ð5Ñ ] Z Ð;Ñ ^ ? Ð; ^ 5ÑJÐ;Ñ ] ÐB ^ 5Ñ0ÐBÑ.B! ! Œ 9(

5

;

under a PARD and a COSH contract, respectively. Since the supplier's noncompliance will not be
revealed unless the buyer orders exceed the available capacity, the supplier may have incentive to "take a
chance" and build her capacity below the reserved amount if  is sufficiently small. This phenomenon is?

addressed in the following Theorem:
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Theorem 9. For any given reservation amount, the supplier's capacity choice under a PARD contract
will always be strictly below  if . Same is true for the COSH contracts when .5 ? z ? z Ð: ^ -Ñ9 :^-

@9
< !

Theorem 9 underscores the fact that channel coordination cannot be attained under voluntary
compliance if the noncompliance penalty is "small." Even if the buyer's reservation amount equals to the
system optimal, the supplier's best response is not to deliver all the capacity reserved. However, under
complete information the buyer would anticipate this behavior and alter her reservation policy, as stated
in the following theorem.

Theorem 10. The optimal buyer reservation amount in a PARD contract is strictly less than  if and59

only if . Same is true for the COSH contract  when .? z < ? z Ð: ^ -Ñ:^-
@9

!

Consider the supplier's profit function and the results of Theorems 9 and 10 suggest that the supplier
is actually worse-off by offering a small noncompliance penalty (i.e., the buyer will reserve less, leading
to smaller system surplus and smaller supplier profit). In order to encourage the buyer to reserve at a
sufficient level (as in the forced compliance case), the supplier must assure the buyer that she will
comply by offering sufficiently large noncompliance penalties.

Corollary. It is optimal for the supplier to offer a noncompliance penalty, , such that ? ? œ :^-
@9

< and

? œ !Ð: ^ -Ñ in the PARD and the COSH contracts respectively. Then, both the reservation amount and
the capacity level match the system optimal.

The proof of the corollary follows directly from the proofs of Theorems 9 and 10.

7. Coordination under Partial Information Update
Up to this point, an implicit assumption of our model is that when the buyer place a firm order, the
demand uncertainties are fully resolved. Although this is a common assumption, it may not be true for
some high-tech operations such as the semiconductors; here, the production lead-time can be substantial,
while the product life-cycle may be relatively short, creating tremendous pressure for the buyer (e.g., an
OEM manufacturer) to place her order early. Thus, it is often the case that some level of uncertainty still
remains at the time a firm order is placed. In this section, we investigate how the PARD and COSH
contracts perform when the demand information is only partially updated. To model partial information
update we employ the simple framework introduced by Ferguson  (2003), where random variable et. al. \

representing the final demand is composed of two components, , . It is assumed that i.e. \ œ ] ] ^ ]

and are independent with continuous distributions  and  respectively. At the time when capacityZ J J] ^

reservation is committed both values are unknown; after the capacity expansion and right before the
buyer places a firm order, the uncertainty represented by  is resolved. The remaining component, , is] ^
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resolved after the order is completed. We consider a two-stage setting as follows: in the first stage, the
supplier chooses her contract parameters, the buyer makes reservation, and the supplier decides on the
capacity level. In the second stage (after the capacity is built), the buyer decides how much to order
subject to the capacity available. Note that our model differs from Ferguson  (2003) in that theyet. al.
focus on the  of (full) capacity commitments in an uncoordinated channel, whereas we aretiming
interested in  commitments (reservations) and channel coordination.partial

We first analyze the problem from the perspective of the integrated channel. Let  denote the orderU

quantity to be determined in the second-stage for the integrated channel. Given the available capacity, the
objective at this stage is

Q+B œ :IÒ ÐUß C ] ^ÑÓ ^ -U ^ Z Ð5Ñ œ :IÒ ÐU ^ Cß ^ÑÓ ] :C ^ -U ^ Z Ð5Ñ  min min
UŸ5

MC

where  is the observed value of . Using the first-order optimality conditions we getC ]

U œ 5ß C ] J Ð Ñ
: ^ -

:
9 ^"

^min (18)Œ 9
For brevity, let = . Thus, we may write the first-stage decision problem as follows:? J Ð Ñ

: ^ -

:
^"
^

Q+B œ :IÒ Ð5ß ] ] ^ß ] ] ÑÓ ^ -IÒ Ð5 ^ ß ] ÑÓ ^ - ^ Z Ð5Ñ min min
5

MC ? ? ?

Let  be the expected value of . Then,.] ]

IÒ Ð5ß ] ] ^ß ] ] ÑÓ œ IÒ Ð5 ^ ] ß ^ß ÑÓmin + min? . ?]

= +. ? ? ? ?] ] ^ ] ^ ^ ]
! 5^

_

J Ð5 ^ ÑJ Ð Ñ ] >J Ð5 ^ >Ñ0 Ð>Ñ.> ] J Ð Ñ Ð5 ^ >Ñ0 Ð>Ñ.>( (?

?
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_
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Using (19) and taking the first derivative of we getCM  with respect to  5
`

`5
œ Ð: ^ -Ñ ^ : J Ð5 ^ >Ñ0 Ð>Ñ.> ^ Z Ð5Ñ

CM (
!

] ^
w

?

(20)

From (20), it is clear that the profit function is concave and thus, there exists a unique optimal
capacity, .59

Next we investigate how the contracts introduced in Section 5 can be tailored for coordination under
this setting. First consider the PARD contracts. Given the reservation amount , the buyer's objective;

when placing a firm order can be written as follows:
Q+B œ :IÒ ÐUß C ] ^ÑÓ ^ AU^ <; ] < U  min (21)

UŸ;
F #C

For the reserving stage we get
Q+B œ :IÒ Ð;ß ] ] ^ß ] ] ÑÓ ^ ÐA ^ < ÑIÒ Ð; ^ ß ] ÑÓ ^ ÐA ^ < Ñ ^ <; min min (22)

; F # #C ? ? ?

In a similar way we can write down the buyer objectives in the COSH contract simply by substituting
<; Z Ð;ÑÞ in (21) and (22) with  A straightforward analysis of the first-order conditions of both objectives
will show that neither contract forms could achieve coordination. The only exception is the trivial case
when the supplier sells the product for free and the reservation fee is set at the marginal capacity cost at
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59 . Next, we show that channel coordination  be achieved if the proposed mechanisms are coupledcan
with a buy-back agreement. Suppose under a PARD (COSH) contract, in addition to  ( ) and , the< <! #

supplier introduces a new term specifying a buy-back price, , to be paid by the supplier to the buyer for,

each ordered yet  products. Thus, the contract specifies that the buyer reserves capacity  byunsold ;

paying  (  in COSH . Once the capacity is built and the demand information updated, the buyer<; Z Ð;Ñ Ñ!

places a firm order and pays  for each unit. After the order is filled and delivered to the buyer,A ^ <#

actual demand is realized. Finally, the supplier pays  to the buyer for each unsold unit. The timeline of,

these events are depicted in Figure 2. Under this arrangement, the buyer mitigates the supplier's downside
capacity risk, while the supplier shares the buyer's overstocking risk. The following theorem shows that
such synthesis between PARD or COSH contracts and buy-back agreements will coordinate the channel.

Theorem 11. Suppose the supplier specifies a buy back price, , to the capacity reservation contract .,

Then, the coordination mechanisms defined by (15) and (17) coordinate the channel if and only if

, œ :
@ ^ <

@

9

9
. (23)

In both types of contracts (PARD and COSH) the supplier (buyer) profits decrease (increase) in .<
<<Insert Figure 2 here>>

The Theorem concludes that the coordination mechanisms introduced in Section 5 can be indeed
generalized to the partial information update case. Observe that for a fixed reservation fee, while the
deductible fee is decreasing in the capacity cost, the buy-back price is increasing. However the rate of
increase in  (  is less than the rate of decrease in  (  ) implying that when the, @ Ñ < Ð: ^ -ÑÎ@i.e., i.e.,<Î 9 9# #

#

capacity becomes more expensive the buyer's risk share must increase. In summary, a complete PARD
contract composed of (  and/or COSH contract of ( ) specified by (15), (17), and (23)<ß < ß ,Ñ ß < ß ,# #!

achieve coordination under the generalized settings. We submit that this family of contracts uniquely
satisfy the business environments of high-tech manufacturing, providing coordination mechanisms that
are efficient, flexible, and versatile.

7. Conclusions
This paper examines capacity reservation contracts in the context of high-tech manufacturing. We
propose thereservation contracts with deductible reservation fees : under exogenous wholesale price
supplier announces a  for capacity to be reserved for a certain time in the future, tfee he fee is later
deducted from the wholesale price for each unit of reserved capacity that is utilized by the buyer, the
buyer places her reservation for capacity based on this reservation fee, and later, the supplier determines
how much capacity to build. After some or all uncertainty around demand is resolved, the buyer utilizes
the reserved capacity.



22

With the capacity reservation contracts, the buyer mitigates the supplier's capacity expansion risk by
partially committing to utilize it. The commitment is partial in the sense that it only require a portion of
the wholesale price as the reservation fee. The main motivation for the buyer to place reservation is to
create incentives for the supplier to expand capacity more aggressively. We examine various implications
of the contract concerning individual rationality and channel coordination, and we consider different
compliance regimes and partial information update. Our analysis seeks to answer the following
managerial questions:

1. Is it always profitable for the supply chain partners to enter a capacity reservation agreement? If
not, what are the conditions that make capacity reservation appealing for both parties? What do the profit
margins and the market conditions affect the players' incentives?

2. How can the capacity reservation contracts be tailored to coordinate the supply channel when the
wholesale price is exogenously determined? How does the cost structure of capacity expansion influence
the supplier's contract selection?

3. How does the compliance regime impact the supplier's and buyer's incentives? Can the channel
coordination be achieved under voluntary compliance?

4. How can one adjust the contracts for coordination when the demand information is partially ^

instead of fully  updated at the time the buyer places a firm order? How do the players' incentives^

change under partial information update?
In the following, we summarize key managerial insights under each of the above questions.
When is Capacity Reservation Beneficial? Without the presence of buyer commitment, the

supplier would simply determine her capacity based on her knowledge of the demand, i.e., she would
find the optimal capacity level based on a newsvendor-type decision model. We show that the supplier
and the buyer could benefit from early commitment contracts under a specific set of conditions. First of
all, the buyer's expected order size should be larger than the supplier's newsvendor capacity. Second, the
buyer should be able to negotiate a threshold reservation fee (Theorem 1) below which her expected
profit justifies her added liability. We also identify the conditions when it is beneficial for the supplier to
accept the buyer's threshold requirement (Theorem 2). The basic insight here is that reservation is
beneficial when the buyer's revenue margin is sufficiently high (beyond a certain threshold value, as
specified in Theorem 3). We show that as the buyer's revenue margin decreases, the supplier will face a
sequence of four scenarios with decreasing level of attractiveness (Figure 1 and Theorem 4). We observe
that if the capacity cost is linear (e.g., outsourcing) neither the reservation fee nor the supplier's surplus
are dependent on the market size. Intuitively, the increase in the capacity cost due to market size is
balanced with the reduction in risk. However, if the capacity cost  is convex (e.g., physical expansions),
the reduction in risk is not sufficient to justify the increase in capacity cost (Theorem 5). Thus, the
threshold reservation fee is increasing in market size. It should not be surprising that there exists a
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market-size threshold, above which capacity reservation (as defined in this context) is no longer
favorable. Our results reveal that it is the demand variability that affects the reservation fee (Theorem 6).

Channel Coordination. The next research question is the design of contract mechanisms that would
capture the potential benefits of capacity reservation. We first observe that, except for a special case,
contracts with  or  fees both generate surplus that is suboptimal (for thefully deductible non-deductible
channel). We propose two coordination contracts: first, the  where a pre-partially deductible reservation
specified portion of the reservation fee is deductible from the final payment. The deductible fee (refund)
is a derived function of the reservation fee to achieve channel coordination (Theorem 7). We show that
partially deductible (PARD) contract allows a range of possible reservation fees, each corresponding to a
different split of the channel surplus between the supplier and buyer. An interesting finding here is that
the supplier's share actually  in the reservation fee. This is due to fact that each unit of increasedecreases
in the reservation fee corresponds to a higher rate of increase in the refund, thus, the penalty charged for
the buyer's unused reservation decreases in the reservation fee. The second coordination mechanism is
the contractcost-sharing (COSH) , capacity cost where the buyer pays for a portion of the  associated with
her reservation (Theorem 8). Depending on her demand realization, the buyer either receives a refund, or
makes additional payment for the capacity utilized. We show that while the two contract schemes
generate the same expected profits for the supplier, she is in a better cash flow position under the PARD
contract if the capacity cost is strictly convex. However, the COSH contracts are less complex as the
buyer's reservation fee is proportional to the capacity cost and the contract parameters are independent
from the demand distribution.

Voluntary Compliance. Under voluntary compliance, the supplier can choose not to comply with
the contract and pay a noncompliance penalty. We show that if the penalty is set too low, the buyer will
not be able to trust the supplier to come through with the reserved capacity (Theorems 9 and 10) and will
reserve less than optimal. It is shown that the supplier has incentives to set the noncompliance penalty
sufficiently large so as to induce the buyer to behave optimally as in the forced compliance case. We
derive the noncompliance penalty level that will coordinate the supply channel.

Partial Information Update on Demand. We consider a generalized case on demand information
update, where the buyer has to place a firm order before the demand uncertainty is completely resolved.
In this case, the buyer must take into account the partial information (forecast) update and decides on her
order quantity subject to available capacity. It is shown that the contractual schemes proposed under the
full information update case can no longer coordinate the channel. Nonetheless, by adding a buy-back
agreements (Theorem 11), both the PARD and the COSH contracts will achieve channel coordination.

In conclusion, we submit that the various capacity reservation contracts along with their extensions
concerning channel coordination, compliance regime, and information update are uniquely suited for the
high-tech business environments. Our treatment of the wholesale price is particularly relevant in this
environment where the wholesale price negotiation is independent from the capacity reservation
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decisions. An interesting extension would be to develop a three-stage decision model where the
wholesale price negotiation, capacity reservation, and demand realization form the main decision stages.

APPENDIX
Proof of Theorem 1:  It is individually rational for the buyer to make a reservation if C CF F

‡Ð;Ñ   Ð5 Ñ0 .
The buyer's optimal reservation quantity  given reservation fee  is given in (6). Thus,  expressed inq r <

terms of the reservation quantity  is:;

< œ Ð: ^ AÑ
JÐ;Ñ

JÐ;Ñ
(A1)

From (5) and (A1), we may express the buyer's profit after reserving  as follows:;

CF
!

;

Ð;Ñ œ Ð: ^ AÑ ^ Ð: ^ AÑ JÐBÑ.B œ Ð: ^ AÑWÐ;Ñ
JÐ;Ñ

JÐ;Ñ JÐ;Ñ

B0ÐBÑ.B( '
!
;

(A2) 

First consider the definitions of  (3) and (A2), respectively. We know thatC C0
F

‡
FÐ5 Ñ Ð;Ñ and  in

C CF F
‡Ð;Ñ Ð5 Ñ =  when the equality in (8) holds. Thus, if the buyer's optimal reservation quantity is at the0

threshold , she is indifferent between reserving and not reserving. ;> Observe from (A1) and (A2) both ;
and  are strictly decreasing in suggesting that the buyer indeed has incentive to reserve whenCFÐ;Ñ <

< z < < z < ; { ; Þ> > >. Clearly for any , 
To prove property (1), observe that when  the right- hand-side of equality (8),; œ 5> ‡

CF
>Ð; ÑÎÐ: ^ AÑ, is less than the left-hand-side S(k . ‡Ñ Again, since  is strictly increasingCFÐ;Ñ

(decreasing) in ( ), must be strictly greater than . ; < ; 5> ‡ Property (2) follows directly from (A1).
Now consider Property (3). Recall that we derived the upper bound for the reservation fee (7) from

the observation that the buyer would reserve no less than the supplier's newsvendor quantity . Since5‡

property (1) states that , and the fact that (A1) is decreasing in ,  must be a tighter upper; { 5 ; <> ‡ >

bound, i.e.,    .  < z Ð: ^ AÑ> @
A^-^@

‡

‡

Proof of Theorem 4.  Let's first show that The first derivative of C CW W
9Ð ;Ñ Ò5 ß Ð ;Ñ is decreasing in _Ñ. 

with respect to  can be written as follows:;

 
` Ð ;Ñ 0Ð;Ñ

`; J Ð;Ñ
œ Ð ;Ñ œ Ð: ^ -ÑJÐ;Ñ ^ Z Ð;Ñ ^ Ð: ^ AÑ JÐBÑ.B

C
C

W w w
W #

!

;(
Note that the foregoing function is equivalent to:

C Cw w
W M #

!

;

Ð ;Ñ œ Ð;Ñ ^ Ð: ^ AÑ JÐBÑ.B
0Ð;Ñ

J Ð;Ñ
( (A3)

Since  is concave in  and  is the unique maximum,  if , and the second term isC CM M
9 w 9Ð;Ñ ; 5 Ð;Ñ Ÿ ! ;   5

positive, thus for any  in , the right hand side returns a negative value, i.e., ; Ò5 ß_Ñ Ð9
WC ;Ñ is strictly

decreasing in  in .; Ò5 ß_Ñ9

From the supplier's decision problem (12), we know that . If  then; ´ ; ;   5< 7 7 9  ; ;Max ( , )> A

; œ ; ; z 5 Ò; ß 5 Ñ< 7 7 9 7 9. If , the maximizing point is in . Since CW Ð;Ñ is compact and continuous within
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this interval, from Weierstrass' Theorem we know there exists a maximum solution. If there is no
stationary point . Otherwise, there is a stationary point,  that would be thein , then Ò; ß 5 Ñ7 9 ; œ ; ;< 7 ‡

unique maximizer for Moreover, . First note that,  must satisfy the first orderCW . ; Ÿ ; z 5 ;7 ‡ 9 ‡

optimality condition:

Ð: ^ -ÑJÐ; Ñ ^ Z Ð; Ñ œ Ð: ^ AÑ JÐBÑ.B
0Ð; Ñ

J Ð; Ñ
‡ w ‡

‡

# ‡
!

;( ‡

(A4)

The second derivative for  is as follows:CW Ð ;Ñ

` Ð ;Ñ " 0 Ð;Ñ

`; JÐ;Ñ JÐ;Ñ J Ð;Ñ
œ Ð;Ñ ^ Ð: ^ AÑ 0Ð;Ñ ] 0 Ð;Ñ ^ #

JÐBÑ.B# #
W

#
ww w
M

!
;

C
C : ;' Œ 9 (A5)

Since  is an IFR distribution, we haveJÐBÑ

0 ÐBÑ   ^
0 ÐBÑ

JÐBÑ
w

#

(A6)

Define a new function  by replacing  in (A5) with . After some manipulationL Ð;Ñ 0 Ð;Ñ ^ 0 Ð;ÑÎJÐ;Ñ"
w #

L Ð;Ñ" can be written as follows:

L Ð;Ñ œ Ð;Ñ ^ Ð: ^ AÑ " ^ JÐBÑ.B
0Ð;Ñ " ] JÐ;Ñ 0Ð;Ñ

JÐ;Ñ J Ð;ÑJÐ;Ñ
"

ww
M #

!

;

C : ;: ; (
From (A6) we notice that and thus if  at , the second derivative of  isL Ð;Ñ   Ð ;Ñ L Ð;Ñ z ! ; Ð ;Ñ" " W

ww
WC C

negative Using (A4) we can write  asÞ L Ð; Ñ"
‡

L Ð; Ñ œ Ð; Ñ ^ Ð: ^ AÑ ^ Ð; Ñ
0Ð; Ñ " ] JÐ; Ñ

JÐ; Ñ JÐ; Ñ
"

‡ ww ‡ w ‡
M M

‡ ‡

‡ ‡
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The foregoing function can be reduced to
 + (A7)L Ð; Ñ œ Ð; Ñ Ð: ^ -ÑJÐ; Ñ ^ ^ Ð: ^ AÑ ^ Z Ð; Ñ"

‡ w ‡ ‡ ww ‡0Ð; Ñ Z Ð; Ñ
J Ð; Ñ M JÐ; Ñ

‡ w ‡

‡ ‡Š ‹C

Let  denote the term inside the parenthesis in (A7). It is sufficient to show that  is a localL Ð; Ñ ;#
‡ ‡

maximum (i.e., ) if  is non-positive. Since , from (2),Cww ‡ ‡ ‡ 7 ‡
W #Ð ; Ñ z ! L Ð; Ñ ;   ; { 5

Z Ð; ÑÎJÐ; Ñ { ÐA ^ -Ñ L Ð; Ñ Z Ð; ÑÎJÐ; Ñ A ^ - L Ð; Ñw ‡ ‡ ‡ w ‡ ‡ ‡
$ #. Define , by replacing  with  in , thus

L Ð; Ñ œ Ð: ^ AÑJÐ; Ñ ^ Ð: ^ -ÑJÐ; Ñ$
‡ ‡ ‡ .

Note that . Obviously ifL Ð; Ñ { L Ð; Ñ$ #
‡ ‡

Ð: ^ -Ñ   Ð: ^ AÑ
JÐ; Ñ

JÐ; Ñ

‡

‡
, (A8)

then 0 implying that  is negative, and  is a local maximum. Note that the right handL Ð; Ñ Ÿ L Ð; Ñ ;$ "
‡ ‡ ‡

side of the foregoing inequality is .  Since the capacity reservation price decreases in , if (A8)<Ð; Ñ ;‡

holds, any  has to be a local maximum, i.e., there exists at most one local maximum in ( .;   ; ; ß_Ñ‡ 7 7

Suppose that inequality in (A8) does not hold, i.e., , observe from (A4) thatÐ: ^ -Ñ z <Ð; Ñ*

Ð: ^ -Ñ <Ð; Ñ { Z Ð; Ñ ;JÐ; Ñ { Z Ð; Ñ‡ w ‡  implying that * w ‡ ‡ as well. In other words at  the reservation price
should be strictly greater than the marginal cost of capacity. Define  by replacing the last term inL Ð; Ñ%

‡

L Ð; Ñ Z Ð; Ñ Z Ð; Ñ#
‡ w ‡ w ‡ with  and then /JÐ; Ñ

JÐ; Ñ
‡

‡

‡ J Ð; Ñ ÐA ^ -Ñ with . Thus,

L Ð; Ñ œ # Ð: ^ -Ñ <Ð; Ñ { Z Ð; Ñ A ^ - z Z Ð; Ñ%
‡ w ‡ w ‡ˆ ‰JÐ; Ñ ^ ÐA ^ -Ñ JÐ; Ñ‡ ‡.  and /Since ,*
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L Ð; Ñ { L Ð; Ñ A   <Ð; Ñ AÎ:  % "
‡ ‡ ‡. The constraints in (12) enforce that  implying that JÐ; Ñ‡ . Thus,

obviously  as well. Therefore if ÐA ^ -ÑÎÐ: ^ -Ñ   JÐ; Ñ‡ Ð: ^ -Ñ z <Ð; Ñ L Ð; Ñ Ÿ !Þ*  then  Since%
‡

L Ð; Ñ { L Ð; Ñ ;% "
‡ ‡ ‡, the second derivative at  must be negative. This shows that the second derivative of

CW
7 9Ð ;Ñ Ò; ß 5 Ñ in at any stationary point is negative, i.e., there exists at most one stationary point in Ò; ß7

5 Ñ9 , and if one exist it is the only local maximum.

Proof of Theorem 5.  To prove Part (1) we need to show that . To do this we will use theC
w

W
>Ð Ñ zq 0

relationship between  and  defined in (8). Define  as follows:; 5 PÐ; ß 5 Ñ> ‡ > ‡

PÐ; ß 5 Ñ œ WÐ5 Ñ ^> ‡ ‡
'
!
;

>

>

B0ÐBÑ.B

JÐ; Ñ

From (8) we know that . Thus, the derivative of this function with respect to must be PÐ; ß 5 Ñ œ ! 5 !> ‡ ‡

as well. Hence, from the chain rule
`PÐ; ß 5 Ñ `;

`5 `5
œ

> ‡ >

‡ ‡
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0Ð; Ñ

J Ð; Ñ
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# >
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Note also that derivative with respect to  should be 0. That is,)

`PÐ; ß 5 Ñ `5 `; `5

` ` `5 `
œ
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JÐ5 Ñ " ^ ^ JÐBÑ.B † " ^ œ !
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J Ð; Ñ
‡
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# >
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;Œ 9 Œ 9( >

(A9)

A straightforward analysis of (A9) will show that
JÐ5 Ñ œ JÐBÑ.B‡ 0Ð; Ñ

J Ð; Ñ 9

;>

# >

>' (A10)

and  for any distribution that is from a shifted family. Thus,`; Î`5 œ "> ‡

JÐ; Ñ z JÐBÑ.B> 0Ð; Ñ
J Ð; Ñ 9

;>

# >

>' (A11)

since . We may write the first derivative of the supplier's profit function evaluated at :5 z ; ;‡ > >

C
w

W
>Ð Ñ œ ÐA ^ -Ñ ] Ð: ^ AÑq ˆ ‰ : ;JÐ; Ñ ^ Z Ð; Ñ JÐ; Ñ ^ JÐBÑ.B

0Ð; Ñ

J Ð; Ñ
> w > >
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9
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Note that the term inside the first parenthesis is negative since . From (A11), the second; { 5> ‡

parenthesis is negative as well, thus  q 0. Since  is unimodular in  (from Theorem 4), it isC C
w

W W
>Ð Ñ z ;

decreasing in . Thus, the optimal quantity  should be at the boundaries of the feasible region,Ò; ß 5 Ñ7 9 <q
i.e.,  as shown in Theorem 4, q Max ( , ), Part (3)-(i). < > Aœ ; ; From (9), we may conclude that
r .‡ >œ 738Ð< ß AÑ

To prove Part (2), first consider the threshold reservation fee with respect to  :), we have
`< `; `5

` `5 `

> > ‡

‡) )
œ Ð: ^ AÑ " ^

0Ð; Ñ

JÐ; Ñ

>

> Œ 9 (A12)

When the capacity cost is , it can be verified using (2) that /  for any distribution inlinear `5 ` œ "‡ )

the   From Part (1), we have . Thus,  Thus, we can conclude that  isshifted family. =0.`; Î`5 œ " <> ‡ ‡`
`

r>
)

independent of the market size. However, from (9) we can derive that
JÐ; ^ l!Ñ œ Ð: ^ AÑÎ: ^ A ] < <> > >) ). Since  and thus the foregoing ratio does not change in , clearly
the quantity  must be increasing in market size .;> )
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To show that the supplier's surplus is not influenced by the market size, look at the first derivative of
( with respect to . Let  denote this derivative for given  and .C CW W

‡Ð; Ñ ^ Ð 5 Ñr 0 ) ) G)Ð; Ð5 Ñß 5 Ñ ; 5> ‡ ‡ > ‡

Then,  from the envelop theorem and the chain rule we can write the following;
G)œ œÐA^-Ñ

`

` `5 `
`

‡
`5

Š ‹C CWÐ; Ñ^ Ð5 Ñ< ‡
W w >

W
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0

) )JÐ5 Ñ^Ð:^-ÑJÐ; Ñ]Ð:^AÑ JÐBÑ.B]‡ > 0Ð; Ñ>

J Ð; Ñ> 9
;>' C Ð; Ñ .

Observe that since both  and  are equal to 1, thus =0, i.e., the supplier's`; Î`5 `5 Î` Ð; Ð5 Ñß 5 Ñ> ‡ ‡ > ‡ ‡) G)

surplus does not change with market size .)
Now consider Part (3). From (2), it is easy to see that if the capacity cost is strictly convex

`5 Î` z `; Î`5 œ‡ > ‡) )1, but 1. From (A12), it follows that the reservation fee is increasing in . Further,
from the envelop theorem, we can write the marginal change in surplus (as induced by the reservation) as
G)Ð; ß 5 Ñ œ ÐA ^ -ÑJÐ5 Ñ ^ Z Ð; ÑA ‡ ‡ w A . From the first order optimality condition we know that if
; { 5 z 5A ‡ ‡, then 0, i.e., the value of reservations decreases in . Since the increment in  is less thanG ))

the increment in  when  increases,  will exceed  eventually, i.e., there is a market size threshold,; ; 5A A ‡)

above which the surplus generated by reservation decreases.

Proof of Theorem 6.  From (2) we know that  J Ð5 Ñ ^ œ !
Z Ð5 Ñ

A ^ -
‡

w ‡

Differentiate the foregoing equality with respect to the standard deviation, , we have: 5

0Ð5 Ñ ^‡ 5 ^ `5 `5
` A^- `

Z Ð5 ÑŠ ‹‡ ww ‡.
5 5 5

‡ ‡

œ

This implies that  increases (decreases) in  when  ( ). Thus, (A13)5 5 { 5 z
`5 5 ^

`
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5 . .
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Using the chain rule, we have 
`< ; ^ `; `5

` `5 `
^

> >

‡5 5 5

.
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>
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As Normal distribution is from the , from Theorem 5, we have =1. Thus, fromshifted family `; `5>/ ‡

(A13) and the fact that the term within the parenthesis in the above expression returns a positive; { 5 ß> ‡

value, i.e., the threshold reservation fee  increases in .<> 5

Now consider the channel surplus at , which can be written as follows using (8);>

 C CM M
> ‡Ð; Ñ ^ Ð5 Ñ œ Ð: ^ -Ñ

JÐ; Ñ

JÐ; Ñ
JÐBÑ.B ^ Z Ð; Ñ ] Z Ð5 Ñ

>

>

;
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Using (A10), the partial derivative of  with respect to  can be written as:C C 5M M
> ‡Ð; Ñ ^ Ð5 Ñ

^ Ð: ^ -Ñ 0ÐBÑ.B ] Ð: ^ -Ñ' Š ‹Š ‹5 B^ `5
`

‡ .
5 5

JÐ; Ñ ^ JÐBÑ.B ^ Z Ð; Ñ ] Z Ð5 Ñ> w > w ‡0Ð; Ñ
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The first term is positive. Since  is negative. Thus, from (A11) and Z Ð5 Ñ   ÐA ^ -Ñw ‡ "
# , `5 ` ; { 5‡Î 5 > ‡

the second term is positive. In other words, the surplus created through reservations increases in the
standard deviation. 

Proof of Theorem 7.  Since the deductible reservation fee is , for all  the critical< œ < ^ Ð: ^ AÑ <#
:^-
@9

fractile faced by the buyer is equivalent to that of the integrated channel. Thus, the buyer reservation
equals the channel optimum capacity. From the results of section 4.1, the supplier's best response is to
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expand capacity to 59 . Now consider the buyer and the supplier's profit as a function of the reservation
fee as follows: 
 C CF # #

9 9 9 9 9
9 9 MÐ<ß < Ñ œ Ð: ^ A ] < ÑWÐ5 Ñ ^ <5 œ < WÐ5 Ñ ^ 5 Ÿ Þ

: ^ - <

@ @
Š ‹

 C CW #

9 9

9 9
9 9 9 9

MÐ<ß < Ñ œ Ð: ^ -Ñ WÐ5 Ñ ^ Z Ð5 Ñ ] <5   Þ
@ ^ < @ ^ <

@ @

The derivative with respect to is positive for and negative for indicating that the buyer's profit< C CF, , S

increases in  whereas the supplier's profit decreases in  (Parts (1) and (2)). < < The inequalities are from
the fact that for a convex increasing function.@ 5   Z Ð5 Ñ9 9 9  

Proof of Theorem 9.  First consider the PARD contracts. Given the reservation amount , the supplier's;

last stage capacity decision problem is

Q+B Ð: ^ -Ñ WÐ5Ñ ^ Z Ð5Ñ ] <; ^ ? Ð; ^ 5ÑJÐ;Ñ ] ÐB ^ 5Ñ0ÐBÑ.B
@ ^ <

@5

9

9
5

;Œ 9(
Taking the first derivative of the profit function we getˆ ‰Ð: ^ -Ñ ] ? JÐ5Ñ ^ Z Ð5Ñ@ ^<

@
w9

9

It is straightforward to see that the foregoing function returns a negative value at  when 5 ? z <9 :^-
@9

implying (from concavity) that the supplier's optimal capacity choice is strictly less than system optimal.
Observe from (17) that the supplier's profit function in the COSH contract is

CW œ Ð" ^ ÑÐ: ^ -ÑWÐ5Ñ ^ Z Ð5Ñ ] Z Ð;Ñ ^ ? Ð; ^ 5ÑJÐ;Ñ ] ÐB ^ 5Ñ0ÐBÑ.B! ! Œ 9(
5

;

,

and the first derivative with respect to  is5

a bÐ" ^ ÑÐ: ^ -Ñ ] ? JÐ5Ñ ^ Z Ð5Ñ! w

Observe that the first derivative is negative at  if .5 ? z Ð: ^ -Ñ9 !

Proof of Theorem 10. Under full information, the buyer will be able to predict the supplier's best
response to her reservation decision. Under voluntary case she will expect that if the noncompliance
penalty is sufficiently small, the supplier will not completely build her reservations. Considering this, her
profit function in the PARD will be

CF œ Ð: ^ -Ñ WÐ5Ñ ^ <; ] ? Ð; ^ 5ÑJÐ;Ñ ] ÐB ^ 5Ñ0ÐBÑ.B
<

@9 5

;Œ 9( ,

and the derivative with respect to  at  will be , which is clearly negative when .; 5 ?JÐ5 Ñ ^ < ? z <9 9 :^-
@9

Under the COSH,
CF œ ! !Ð: ^ -ÑWÐ5Ñ ^ Z Ð;Ñ ] ? Ð; ^ 5ÑJÐ;Ñ ] ÐB ^ 5Ñ0ÐBÑ.Bˆ ‰'

5
; ,

and the first derivative is  which is also negative if . Consequently the?JÐ5 Ñ ^ @ ? z Ð: ^ -Ñ9 9! !

optimal reservation amount for the buyer is strictly less than 5 Þ9

Proof of Theorem 11. Consider the PARD. The buyer's last stage objective with (15) and (23) is
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Q+B œ :IÒ ÐUß C ] ^ÑÓ ^ <; ^ : ^ U] ÐU ^ C ^ ^Ñ  min
UŸ;

F
]C Š ‹Ð: ^ -Ñ

<

@9
:
@ ^ <

@

9

9

It is easy to verify concavity. Observe that the first order optimality condition is identical to that of the
integrated channel. Now, we write the buyer's objective for the reserving stage:

 min minC ? ?F œ :IÒ Ð;ß ] ] ^ß ] ] ÑÓ ^ <; ^ : ^ IÒ Ð;ß ] ] ÑÓŠ ‹Ð: ^ -Ñ
<

@9

 min . (A14)] Ð Ð; ^ ] ß Ñ ^ ^Ñ:
@ ^ <

@

9

9
? ]

Then the first derivative with respect to  is;

Cw
F œ Ð: ^ -Ñ ^ : J Ð; ^ >Ñ0 Ð>Ñ.> ^ @(

!
] ^

9
?

Notice from (20) that the foregoing function returns zero at the channel optimal capacity level, . From59

the derivative of (A14) with respective to  and the Envelop Theorem, optimal buyer profits increase in < <

implying the opposite for the supplier. The proof for the COSH can be completed by using the same
analogy followed above.

Cash Flow Comparison Between PARD and COSH Contracts
Consider any ( ) pair that generate the same expected profits for the buyer under both the partially-<ßs s!

deductible and the cost sharing contracts. Then, we get
<s

@
: ^ - WÐ5 Ñ ^ @ 5 œ : ^ - WÐ5 Ñ ^ Z Ð5 Ñ

9
9 9 9 9 9a b a ba b a b!s .

Observe that for  since  is a strictly increasing convex function in [ .@ 5 { Z Ð5 Ñ9 9 9  5 { ! Z Ð5Ñ !ß_Ñ9

Hence, the above equality implies that . The total reservation fee to be paid to the supplier< { @s s! 9

upfront is  and  under the PARD and the COSH contracts respectively. From the foregoing<5 Z Ð5 Ñs s9 9!

observation  implying that the reservation payment is higher under the PARD<5 { @ 5 { Z Ð5 Ñs s s9 9 9 9! !

contract.
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Figure 1. Possible outcomes of supplier's expected profit function
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Figure 1.a.  Supplier's reservation contract implies full commitment (r=w ) 
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Figure 1.b. Supplier offers a reservation contract w ith r*<w  
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Figure 1.c. Supplier offers a reservation contract w ith r = r t
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Figure 1.d. No reservation contract is offered.
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Figure 2. Timeline for the coordination contracts with buy-backs


