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Forecasting demand for new products is increasingly difficult as the technology treadmill drives product
lifecycles shorter and shorter. The task is even more challenging for electronic goods, where product lifecycles
are measured in quarters, manufacturing processes in months, while the market volatility takes place on a
day-to-day basis. We present a model that perpetually reduces forecast variance as new market information
is acquired over time. Our model extends Bass’s original idea of product diffusion to a more comprehensive
theoretical setting. We first describe how forecast variances can be reduced when combining predictive
information from multiple diffusion models. We then introduce the notion of demand-leading indicators in
a Bayesian framework that reduces forecast variance by incorporating a wide variety of information that
emerges during the product lifecycle. We describe a successful implementation of this model at Intel, where
one-third of the microprocessor products were tested. When compared to the current forecasting method,
our model reduces forecasting time/effort from 3 days to 2 hours while decreasing forecast errors by 33%,
which leads to $11.8M in cost savings over four months of demand realization.

In today’s fast moving, ultra competitive markets, companies are introducing new prod-
ucts at a higher frequency with shorter and shorter product lifecycles. Electronic products
such as personal computers, mobile phones, and video games are familiar examples. In
these dynamic market environments, a company’s competitive advantage and capability to
achieve and sustain profitability come from its ability to manage frequent product entries
and market exits. To hone this competency, the company must develop capabilities to
utilize diverse and fast-changing market information so that their demand views sharpen
perpetually, and their demand forecasts improve over time.

Upstream, in the supply chain, the challenges only intensify. A component manufacturer
may need to introduce a growing variety of new products for multiple main market seg-
ments, all at a fast pace. For example, at Intel, the Microprocessor Units (MPUs) have a
prominent presence at three major vertical markets (server, desktop, and mobile devices).
This leads to the introduction of more distinct products with shorter lifespans, generating
multiple product releases/transitions per year. To stay competitive, it is critical to release
each new product to the right market(s), at the right time, with the right volume, paced
over its entire lifecycle. There is a diffusion process for any new product introduced into
the market; thus, appropriate timing and volume are critical to its acceptance, adoption,
and ultimate financial success. As such, an in-depth understanding of the demand process
over a product’s lifecycle and the ability to forecast lifecycle demand diffusion are vital to
a company’s ability to manage product transitions and to maintain its competitive edge.
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Lifecycle forecasting is critical not only for demand management, but also for operations
management. After its introduction into the market, production shortage of a new product
can seriously retard its adoption and negatively impact revenue. Excess inventory erodes
profits and uses capacity that could have been better employed for other products. Produc-
tion capacity can be extremely expensive; re-allocating the right amount of capacity at the
right time (e.g., from old to new products) is critical to avoid both stock-out and inventory
build-up. As there are many products sharing a common capacity across multiple market
segments, the ability to quickly generate a more accurate forecast that can be mapped
onto appropriate capacity will lead to significant operational savings.

Fortunately, during the lifecycle of a new product, a wealth of information can be poten-
tially utilized for demand forecasting. The product lifecycle typically involves stages start-
ing with pre-launch/introduction, continuing with ramp-up, maturity/saturation, ramp-
down, and followed by the end-of-life when the product is being replaced by a new gener-
ation. During each stage, different sources of information become available, which can be
utilized to provide projections, advanced indications, or status updates for future demands.
With this massive amount of information, the challenge is how to systematically extract
relevant information that will help the planners to comprehend future demands in the
context of operations.

In this paper, we will address two prevailing business problems during new product
introduction. These problems are:

1. The need to capture complex product diffusion patterns across diverse and multi-
faceted vertical markets.

2. The need to utilize dynamically evolving market information and business intelligence
during the product diffusion process.

The ultimate goal is to develop a new approach to lifecycle-demand forecasting that per-
petually enhances forecast accuracy as more and different information becomes available,
leading to significantly enhanced performance and consistency. The motivation of the work
described here has been to generalize Bass’s original idea (Bass 1969) of product-lifecycle
diffusion to a more comprehensive theoretical setting and then to apply the theory to
realize the potential benefits. Significant progress has been made toward this end. We have
tested our model at a handful of technology companies (Wu et al. 2006) and successfully
implemented the model at Intel, which has provided significant improvement in forecasting
accuracy with corresponding savings in operational costs.

Previous Work in Technological Forecasting
Technological forecasting literature uses diffusion models to characterize product demand
lifecycles. To predict patterns of future demand realization, researchers have proposed a
variety of models that mainly differ in their cumulative diffusion profiles throughout the
product lifecycle. Meade and Islam (1998) and Kumar and Kumar (1992) provide extended
surveys of the various diffusion models used in technological forecasting. The most well-
known and widely-used diffusion model was introduced by Bass (1969). When initially
tested on consumer durable goods, the Bass model was shown to provide accurate pre-
dictions on both timing and magnitude of sales throughout the product lifecycle. Since
then, the Bass model has been extended to incorporate additional features of technology
diffusion and widely used to forecast diffusion in markets such as retail, education, phar-
maceuticals, and agriculture (Mahajan et al. 2001). However, demand characteristics for
technology products are different from most traditional markets due to the rapid innova-
tion cycle that leads to significantly shorter lifecycles and higher volatility. Studies that
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consider technology product diffusion include Norton and Bass (1987), who built upon the
Bass model to forecast successive generations of products in the semiconductor industry.
Kurawarwala and Matsuo (1996) incorporated a seasonal influence parameter to the Bass
model to predict demands for a personal computer manufacturer. Modis and Debecker
(1988) also analyzed the demand for computer manufacturers using an S-shaped logistic
diffusion curve. More recently, Wu et al. (2006) used diffusion models to generate forecasts
while reducing forecast variation in a custom semiconductor manufacturing setting. Aytac
and Wu (2008) are the first to introduce a demand characterization framework based on
multiple diffusion models and a Bayesian updating procedure that uses advanced demand
signals (leading indicators) to systematically reduce forecast variation. This latter paper
provides the theoretical underpinnings of the work described here.

Demand Characterization and Forecast Analysis
Technology products typically have a single-modal demand lifecycle that goes through
(once) the phases of pre-launch, ramp-up, ramp-down, and end-of-life. This lifecycle
demand can be expressed as a bell-shaped time-series curve (e.g., billings over time) or as
a cumulative curve, in which each point on the curve represents the percentage of lifecycle
demand satisfied up to that time. Note that the cumulative curve is S-shaped; since it is in
second order, some of the short-term fluctuations in the time series are ignored. Researchers
(Meade and Islam 1998) have proposed various S-shaped diffusion models (including the
well-known Bass model) to forecast cumulative demand during a product’s lifecycle. Each
of these models differs in the rate of adoption achieved and the peak diffusion rate reached,
as well as the steepness of growth or decline of the diffusion rate. In other words, each
diffusion model projects, in a unique way, how a particular product’s lifecycle unfolds over
time.

Given up-to-date information about realized demand (e.g., early sales) and an estimation
of total market volume, lifecycle forecasting (1) finds a diffusion model and determines its
parameter values that provide a strong goodness-of-fit, and (2) generates demand forecast
by projecting the fitted diffusion model over the entire product lifecycle.

Characterizing Demand Diffusion Across Multiple Markets
A company may need to introduce a variety of new products for multiple vertical markets.
Each of these verticals has its own market drivers and dynamics, which overlap and interact.
Demands in different verticals are likely to demonstrate a distinctly different goodness-of-
fit for particular diffusion models. Moreover, many of the products share the same capacity
during the manufacturing process, thus a cohesive understanding of their diffusion in the
markets is critical. The goal of our model is to capture demand characteristics across diverse
and multi-faceted market environments by systematically combining the projections from
multiple diffusion models.

While it has been suggested that combining multiple forecasts outperforms forecasts
generated from any single model (Bates and Granger 1969), and a variety of techniques
were suggested to combine the forecasts of individual models and to estimate model param-
eters (Mahajan and Muller 1979, Sultan et al. 1990, Timmermann 2005), it is less clear if
combining diffusion models derived from different vertical markets would necessarily help
in characterizing the overall, multi-faceted market demand. More importantly, when com-
bining multiple diffusion models, does one risk introducing additional variances and biases
into the forecast? Is it better to find a particular diffusion model that performs the best
across all markets? In the following, we will summarize some of the key theoretical insights
that form the basis for our forecasting model.
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In forecasting lifecycle product demand, it is important to find the cumulative percentage
of total market demand that has been observed by time T +τ , denoted by X (T + τ), given
that actual demand observations up to time T , Θ(T ) = X (1) ,X (2) , ..,X (T ), are available.
Let X̂k (T + τ |Θ(T )) denote an estimate of cumulative demand percentage observed by
time T + τ , projected by diffusion model k. Then,

X (T + τ) = X̂k (T + τ |Θ(T ))+ ε (T + τ |Θ(T ))

where the estimate X̂k (T + τ |Θ(T )) is provided by Fk(T + τ), which is the cumulative
percentage of total demand observed by time T + τ , according to diffusion model k, and
ε (T + τ |Θ(T )) is the estimation error.

Suppose the forecast generated from a diffusion model represents an unbiased estimation
for the actual demand and the estimation error is normally distributed with mean zero and
a known, fixed variance σ2

ε ; then, the actual cumulative demand at T +τ can be represented
by a normal random variable:

X̃k (T + τ)∼N(X̂k (T + τ |Θ(T )) , σ2
k)

Note that the mean of the random variable is defined by diffusion model k (Fk(T + τ))
while the variance σ2

k is the sum of variances of the forecast and the estimation error (σ2
ε ),

assuming that they are independent. Although point estimates are used widely in practice,
there is an uncertainty inherent in forecasts obtained by diffusion models. This uncertainty
originates from the nonlinearity of model fitting and the errors in parameter estimation.
The uncertainty in the estimate of a future realization of the random variable is described
by a prediction interval. The prediction intervals for the forecast obtained by a diffusion
model are illustrated in Figure 1.

Figure 1 Prediction Intervals for Lifecycle Forecast by a Diffusion Model

We are interested to know if combining diffusion models derived from different verti-
cal markets would help in improving the overall market forecast. Specifically, does one
introduce additional variances and biases into the forecast, and how does this compare to
finding a diffusion model (e.g., Bass) that performs well across all markets? Some of these
questions can be answered using the setting above. Given a particular diffusion model,
the actual cumulative demand at T + τ , X̃k (T + τ), can be represented as a normally
distributed random variable (assuming normally distibuted fitting errors). With the com-
bination of multiple diffusion models to forecast demands τ -period ahead, X̃ (T + τ), the
combined forecast is also normally distributed. Thus, as long as the combination of the
diffusion models using weights inversely proportional to each model’s forecast variances
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occurs, the variance of the combined forecast is always smaller than the variance of any
individual diffusion model (see Proposition 1 in Appendix A). Note that the prediction
intervals for the lifecycle forecast will shrink with the decrease in the forecast variance (see
Figure 2).

Figure 2 Prediction Intervals after Combining Multiple Diffusion Models

Incorporating Dynamically-Evolving Information
The intent of our model is to effectively utilize diverse and fast-changing market informa-
tion to improve forecast accuracy. The goal is to perpetually reduce forecast variance as
new market information is acquired over time. Given the inherent diversity and complexity
of market information, we propose a unifying view that considers market information as
a leading indicator for product demands. We adopt the Bayesian statistical framework, as
described in (Aytac and Wu 2008), and extend it to process information provided by a
wide variety of demand-leading indicators.

We define a leading indicator as a demand series, typically in the form of a time-series,
that predicts the pattern of one or more new demand series before they materialize. The
idea of demand-leading indicators was first proposed by Meixell and Wu (2001) and later
verified and tested in an industry setting by Wu et al. (2006). Multiple leading indicators
can be used at the same time or over time. We generalize the notion of leading indicators
to include any information indicative of future demand patterns so long as verifiable con-
nections can be drawn in a consistent manner. For instance, a leading indicator can be
the historic demand series from an older generation product, with a sales pattern demon-
strating high correlation with that of the new product; it can be derived from pre-horizon
market research results or particular market or business cycle indexes that show strong
connections to future demands of interest.

As shown in the first part of Figure 3, at time T one can fit a diffusion model to
the observed demand data, Θ(T ), and then project the adopted model over the product
lifecycle, which provides a prior distribution, i.e., X̂k (T + τ). Now, suppose that time series
data is available from a group of m leading indicators that provide unbiased estimates for
the actual demand from T + 1 through T + L. The data corresponding to each leading
indicator is then projected over the entire product lifecycle (using a diffusion model). The
collection of m leading indicator projections form the sampling distribution, as illustrated
in the second part of Figure 3. The sampling distribution can be summarized as:

X̃k(T + τ)∼N

(
1
m

m∑
j=1

X̂kj

(
T + τ |Θj(T +L)

)
,
σ̂2

k

m

)
,
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where the mean is provided by the diffusion curve k’s projection, using the data extended
by m leading indicators for L time periods.

Using a Bayesian-update procedure, we combine the prior and sampling distributions
to generate a posterior distribution, which provides a distribution of lifecycle forecasts
taking into consideration the new information provided by the leading indicator. An impor-
tant theoretical insight provided by Aytac and Wu (2008) is that so long as each leading
indicator represents an unbiased estimate of the actual demands, and this information is
incorporated using the Bayesian procedure outlined above, then the variance of the lifecy-
cle forecast will always decrease. This is because the variance of the posterior distribution
is smaller than or equal to the variance of the prior distribution (Figure 3). Further, the
variance asymptotically approaches zero as the number of leading indicators (m) increases,
provided that each leading indicator is an unbiased estimate of actual data (see Proposition
2 and the proof in Appendix A).

Note that the Bayesian updates may take place multiple times throughout the unfolding
of the product lifecycle; as new information becomes available, model parameters and
combination weights for each leading-indicator-generated sample path are re-estimated.
Moreover, this procedure can be used at any stage during the product diffusion (pre-launch,
ramp-up, ramp-down, etc.). The only difference in a stage would be the choice of leading
indicators, since the prediction quality of an indicator may vary at different time points
throughout the planning horizon, discussed in detail in the implementation section of this
paper. Leading Ind. dataPrior Distribution Sampling Distribution

T Time T+LT TimeCumulative diffusion Cumulative diffusion
Figure 3 Incorporating Leading Indicators in the Bayesian Update

The Integrated Forecasting Model
We now describe an integrated model for new product forecasting using the theoretical
results developed above. The model is to (1) capture demand diffusion across multiple
vertical markets, and (2) incorporate dynamically evolving market information using lead-
ing indicators. Implemented using a Bayesian statistical framework, the model provides
continuous improvement of forecast accuracy as verifiable new information (leading indi-
cators) is introduced as the lifecycle unfolds. When multiple diffusion models are used, this
procedure is repeated for each diffusion model, and a forecast is generated by combining
them as described earlier. In Appendix B, we outline the specific algorithm in detail.

Our model generalizes the concept of Bass diffusion to broader dimensions, recognizing
the richness of diffusion patterns across multiple markets and the importance of utilizing
dynamically evolving market information using various indicators. The intent of the model
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is to perpetually reduce forecast variance, rather than generating the best possible point
forecast. Note that the forecast variance is guaranteed to reduce if the leading-indicator-
generated sampling distribution represents an unbiased estimate of the means of the actual
data. In practice, it is possible to verify ad hoc through standard hypothesis testing if the
indicators are indeed unbiased estimates. When systematic biases are identified, efforts
should be made to adjust the bias for future uses. In Appendix C, we outline a simple
procedure that helps to un-bias the leading indicator through learning.

Improve Forecasting at Intel
We now describe our experience of implementing the new product forecasting model at
Intel. Intel Corporation is a supplier of microprocessor units (MPUs), boards, systems,
and software for the computing and communications industries. Founded in 1968, Intel has
emerged as the world’s largest semiconductor company over the past 40 years, with 2008
revenues reaching $37.6 billion. The majority of the revenues are generated from three key
market segments known as the server, desktop, and mobile markets.

To improve new product forecasting, a team involving three key groups was assembled
and has been collaborating over the past few years. Researchers in supply-chain manage-
ment and operations research at Lehigh University constitute the first group. The Lehigh
group has been developing and integrating the notion of demand leading indicators and
lifecycle diffusion models as a means to reduce forecast variations (Wu et al. 2006, Wu 2008,
Aytac and Wu 2008). The second group is the Microprocessor Marketing and Business
Planning (MMBP) team at Intel, who has been historically responsible for the MPU fore-
cast. The third group, Decision Technologies (DT) at Intel, has acted as the bi-directional
conduit between the Lehigh and MMBP groups. DT at Intel is chartered to identify critical
business problems and supply effective decision support tools to the appropriate decision
makers.

Collaboration between the three groups led to the development of a new set of decision
support tools. The new tools support demand-lifecycle analysis utilizing extensive Intel
business data sets. The data tested includes some 60 different Intel products with lifecycles
completed by the end of year 2008; the data set spanned three product verticals, including
17 mobile, 17 desktop, and 26 server products. The tools and the extensive data set allow
the team rigorous validation of theoretical insights using real-world data. The decision
support software has been implemented with special attention given to the ease of use
for demand planners, including a graphical interface. The system has been in use for
an extended period of time (10 monthly forecasting cycles) on a large segment (about
one-third) of Intel’s MPU products, which makes possible the in-depth quantitative and
qualitative assessment of its performance. This section documents the implementation
details and provides a summary of the performance assessment. While the improvements
in forecast quality (over existing methods) and the overall impact on streamlining Intel’s
business processes are both overwhelming and positive, evaluation of sustained performance
using Intel’s data-driven continuous improvement process is still ongoing.

Combining Demand Diffusion Models
Based on the analysis described earlier, the team implemented a procedure to combine
a selected number of diffusion models, which collectively characterize the multifaceted
aspects of Intel’s three vertical markets. To begin with, the team selected 10 distinct
diffusion models (i.e., Bass, Cumulative Lognormal, Extended Riccati, Simple Logistics,
Extended Logistics, Gompertz, Skiadas, Mansfield, Floyd, and Weibull). The intent was
to start with a wide variety of models that encompassed a good mix of differing symmetry
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and points of inflection characteristics in the S-Shaped diffusion curves. The 10 diffusion
models were further tested to see which of them best fit Intel’s historical MPU demand
data. These models were fit to demand data described in the previous section. The top five
models that minimized the sum of squares error (SSE) over the lifecycle of the products
were selected. The five models that consistently performed well across the three verticals
were the Skiadas, Extended Logistics, Bass, Weibull, and Simple Logistic.
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Figure 4 Average Forecasting Error across all Mobile Families

The average forecast error across all Mobile families (6 months into the product lifecycle)
are presented in the bar chart in Figure 4. The first five bars represent the average forecast
errors for the five individual models. The sixth bar shows the error for the combined
forecast, while the last bar depicts the error for the diffusion model that demonstrates
the best goodness-of-fit 6 months into the lifecycle. As shown in the figure, the combined
forecast outperforms all individual model forecasts. However, note that the performance
of an individual diffusion model is not known a priori. If one is to select a diffusion model
that demonstrates the best goodness-of-fit 6 months into the lifecycle to project the rest
of the lifecycle demand, the model presented by the last bar will be chosen. Hence, model
combination not only performs better than every individual model on average, but also
avoids the risk of choosing the “wrong” model given limited information.

Incorporating New Information at Different Stages of the Lifecycle
Before the introduction of a new Intel product through its end of life, a wealth of infor-
mation is available from a variety of sources that can serve as demand leading indicators.
To utilize different sources of information during the product lifecycle, we divide the life-
cycle into pre-launch, ramp-up, ramp-down and end-of-life (Figure 5), where these stages
are defined formally based on time (percentage of the estimated life realized) and vol-
ume (total percentage of estimated market size realized). A product is defined to be in
the ramp-up phase from the beginning of production until 40% of the estimated lifecycle
or 40% of the estimated market size for the product is realized. Similarly, a product is
defined to be in end-of-life phase, when at least 90% of its estimated lifecycle or 90% of
its estimated market size is realized. The rest of the active products are classified to be in
ramp-down phase. For each product, the percentage of total life realized is defined as the
ratio (number of months into lifecycle/T ) and the percentage total market size realized
is given by (volume realized till now/M), where T is the estimated total length of the
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product life-cycle and M is the estimated total volume of sales (market size) over the
product lifecycle. For each product, T is a forecast that is published by the Long Range
Planning group at Intel and M is calculated as the sum of past demand realized and the
estimated future sales that is obtained from forecasts by the MMBP and Long-Range-
Planning groups at Intel. Since at least 3 data points are necessary to fit the lifecycle
diffusion models, these models are used once a product is 3 months into its lifecycle.

 
 

                                       40% of estimated Life          90% of estimated Life 
               or 40% of estimated  or 90% of estimated  
               Market size              Market Size 

 

Ramp-up Ramp-down End of Life Pre-launch 

 Design          Field Sales 
 Wins            Data Collection  
                            

     Samples        Chipset 
     Shipment     Shipment 
 

Figure 5 Intel’s Timing of Leading-Indicator-Data Collection and Different Phases of a Product Lifecycle

Depending on the stage of the lifecycle of the product, different forms of leading indi-
cators are used to generate the forecast. Leading indicators serve a dual role. They add
business intelligence to the diffusion models by capturing changing dynamics in the mar-
ket as early as possible. They also help by extending the demand data set needed to fit
the models, which is very valuable early in the product lifecycle. In the following, specific
leading indicators implemented at Intel are described.

Design Wins. Design Wins are early leading indicators that are available from the pre-
launch stage. Designs are declared as Wins when a customer takes pre-production MPU
samples and conducts preliminary evaluations. The customer then produces preliminary
designs for the printed circuit board for a new end-product. The customer supplies an
initial forecast of the expected order quantity in addition to the timing of the entry into
the market. Figure 6 (left chart) shows the Design Wins for the same product collected
prior to its launch. In this case, the correlation between actual demand and the Design
Wins leading indicator is 0.81. This is quite typical for MPU products.
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Figure 6 Design Win (Left) and Forecasts from Field Sales (Right) as Leading Indicators for an Intel Product
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Field Sales Intelligence. Field sales personnel who are in daily contact with major
customers often develop dynamic forecasts at a customer and product granularity level.
This type of field sales intelligence is available from pre-launch, and continues throughout
ramp-up and ramp-down, which has proven to be a good leading indicator. Figure 6 (right
chart) shows examples of “x month ahead” forecasts from field sales for an Intel product
in comparison to the actual demand realized for the product. Each point in the “x month
ahead” curve was collected x months ahead of the realization of the actual demand. For
example, the forecast on the “one month ahead curve” corresponding to time period 10 was
forecasted in time period 9. Notice that, as expected, the quality of the leading indicator
improves as one moves closer to the actual realization of demand, also reflected in the
correlation between the actual demand and the leading indicators.

Chipset Sales. Chipsets are microprocessor chips that cover functionalities ranging from
input/output to memory to graphics and are typically paired with the MPUs in the cus-
tomers’ end products. Chipsets are historically much less expensive than MPUs and are
shipped weeks ahead of the corresponding MPUs to the customer to facilitate circuit board
testing. As such, the Chipset “ship-aheads” serves as strong leading indicators for the
MPUs.

As cautioned above, each type of leading indicator could have some degree of bias due
to a variety of reasons. The bias in Design Wins is primarily because the information is
collected much before product launch and the customers may not have visibility very far
into the future. Compounding this is the situation where the customer’s product design
group (who typically provide the Design Win estimates) may be psychologically inclined to
believe its next product will be a winner; this translates into positive biases. There could
be bias in the field sales intelligence in that the gaming behavior of some customers could
exaggerate field forecasted quantity. Hence, the quality of these leading indicators can be
further improved by correcting for bias. The theoretical results established earlier asserted
that if the projection made by the combined diffusion model and/or the leading indicator
represent an unbiased estimate for the mean of the actual demand, then the forecast vari-
ance will reduce. We have implemented the un-biasing, or “learning” mechanism described
in Appendix C, which allows the forecasting performance to improve over time.

Business Results and Conclusions
The Microprocessor Marketing and Business Planning (MMBP) team at Intel is a strategic
group responsible for supply-demand matching and pricing for all MPU products. One of
the main tasks of the group is to forecast customer demand for MPU products in the desk-
top, mobile, and server markets. Each month MMBP generates a new 12-month demand
forecast for each active product relying on historical data systems, collective mental mod-
els, and the latest news from the market. The forecast is communicated first to the senior
management team for final approval and then to supply chain operations for execution.
The monthly forecast has at least three operational uses: Given Intel’s 3-month production
cycle, the first few months of the forecast serve to re-prioritize work in progress, re-position
existing inventory, and finalize logistics arrangements. The fourth month of the forecast
is the most critical since it is used to release raw materials into the fabrication facilities
at the beginning of the production process, and to trigger the placement of orders for
materials used in assembly factories. The remaining months of the forecast are used by the
operational team as an input for production, materials, inventory, and logistics planning
activities.
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The Integrated Forecast Model has been incorporated into the forecasting process over
10 forecasting cycles, beginning with a trial run in December 2008. It has been used to
generate forecasts for 10 desktop MPU products that form 32% of Intel’s active MPU
products. The team has been tracking the performance of the new forecast model as the
actual demand volumes are realized every month. Since there is a 3-month production
cycle for forecasts generated (and used to release materials into fabrication) in January,
February, March, and April, we collect actual shipment data in April, May, June, and July,
respectively. This provides matching pairs of time-series data that allows us to compare
the forecast and actual demands in detail. Since there is a one-month accounting cycle
at Intel, at the conclusion of this analysis in September 2009, we are able to report four
months of demand realization.
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Figure 7 Comparison of the Mean Absolute Percentage Error of the Forecasting Methods for 9 Products over 4
Demand Cycles

Figure 7 summarizes the overall performance of the Integrated Forecast Model (new
method) compared to the original MMBP methodology (old method) for 9 of the 10 desktop
MPUs. On average the new method shows a 9.7% reduction in the 12-month forecast
error (measured in Mean Absolute Percent Error, or MAPE) per product; however, if we
focus our comparison on the critical fourth month forecast, the new method shows a 33%
improvement in forecast accuracy. One of the 10 desktop products has been excluded due
to the multi-modal nature of its lifecycle: rising to maximum volume in the first 6 months,
falling to 60% in the next 6 months, rising back to 95% in the following half year, and then
sitting at 35% for the following year. The single-modal diffusion models are not appropriate
for such cyclic demand patterns. We are studying models that will allow us to extend the
Integrated Forecast Model to handle products with multi-modal life-cycles. Products 3 and
9 are also under study to determine what information was included in the MMBP forecast
that can used to improve the Integrated Forecast Model.

Impact on Operational Costs
To estimate the financial impact of the Integrated Forecast Model, the fourth month fore-
casts for the old method and the new method were compared to actual shipments realized
for April, May, June, and July of 2009. The analysis proceeded through the following steps:
• It was assumed that there was no inventory on hand at the beginning of April.
• For each forecast, if production in a given period resulted in more product than

actually shipped in that period, then (1) the excess product was held for use in future
periods when production was insufficient to meet actual demand, and (2) an inventory
holding cost was charged for each unit for each time period held.
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• For each forecast, if production in a given period supplied less product than actually
shipped in that period, and there was not enough inventory to cover the shortfall, an
underage cost was charged for each unit for each time period that the shortage would
persist.

The inventory holding costs and the underage cost were both supplied by MMBP based
on financial data. Figure 8 summarizes the financial performance of the Integrated Forecast
Model (new method) compared to the original MMBP methodology (old method). On
average the new method shows over $1.3M revenue enhancement per product, translating
to an $11.8M gain for the 9 products over the 4-month analysis period. In a broader
sense, the underage costs should reflect not only potential loss in revenue but also increase
in costs due to supply-demand mismatch. It has been shown that when Intel misses on-
time shipment, some 7.5% of the time the customer turns to the competitor or the open
market. As such, it may be necessary for Intel to shift (more expensive) capacity from
other products to increase production, so as to avoid losing market share and other long-
term consequences. This could cause significant and compounded increases in operating
cost. Our current financial analysis does not take into account the compounded effect of
under-forecasting, thus the above cost-saving is likely to be understated.

Integrated Forecast Model Impact (for 9 products over 4 months)
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Figure 8 Financial Comparison of the Forecasting Methods for 9 Products over 4 Demand Cycles

Comparison of Figures 7 and 8 shows that the forecast errors and financial metrics
capture related but different assessments of the performance of the methods. Considering
the new method, Products 1, 5, and 7 showed the largest improvement in forecast accuracy
(Figure 7), but Products 2, 6, and 8 showed the largest financial improvement (Figure 8).
The new method performed worst for Product 9 by the MAPE metric, but the impact
on the financial metric was minimal. Part of the reason is that each product has different
inventory holding and underage costs (e.g., Product 9 has among the lowest inventory
holding and underage costs). Moreover, the financial metric captures dynamics of the
system that the MAPE metric does not. For instance, over-forecasting in an earlier period
can build inventory (with a relatively low cost penalty) that covers under-forecasting in
a later period (with a relatively high cost penalty if not covered). Conversely, under-
forecasting followed by over-forecasting results in much more severe financial consequences.

In addition to improvements in forecast accuracy and revenue, the new forecast tools
provide an opportunity to decrease the time and effort required to generate the forecast.
The old process takes roughly 3 days, while the new tools can produce an initial base fore-
cast in 2 hours and facilitates the evaluation of a number of additional business scenarios
with small additional investments of time and energy. The integrated approach also helps
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to standardize the forecasting methodology and make the forecasting process both system-
atic and repeatable compared to the old methodology. Considering the high attrition rate
seen in this profession, this is especially useful during knowledge transfer from forecaster
to forecaster.

Diverse plans have been set for continuously improving forecasting of product transitions.
Realizing and measuring the theoretical predictions for manufacturing cost saving is also
of great interest. Expansion and refinement of the theory as well as the use of the New
Product Forecast Model across broader sets of Intel products will continue to occur to
generate improved forecasts and to streamline the overall business processes.
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Appendix A:

Proposition 1. Combining forecasts of different diffusion models by using weights that are inversely pro-
portional to their forecast variances yields a combined forecast variance that is smaller than forecast variance
of each individual diffusion model.

Proof. Let K be the set of different diffusion models that are used in forecasting (k ∈K). Since the com-
bined forecast is a linear combination of independent normal random variables X̃k (T + τ), it is also normally
distributed with mean

∑
k∈K wk ·X̂k (T + τ |Θ(T )) and variance

∑
k∈K w2

k ·σ2
k , where wk is the weight assigned

to model k’s forecast by the combination method. Note that combined forecast’s variance is:
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σ2
c =

∑
k∈K

(
1/σ2

k∑
i∈K 1/σ2

i

)2

·σ2
k =

∑
k∈K

1

σ2
k
·(∑

i∈K 1/σ2
i )

2 = 1∑
i∈K 1/σ2

i
< σ2

k ,∀k ∈K

¤
Proposition 2. The variance of the (estimates for) posterior distribution is smaller than or equal to the
variance of the (estimates for) prior distribution. Further, the variance (of the estimates) asymptotically
approaches zero as the number of leading indicators (m) increases, provided each leading indicator is an
unbiased estimate of actual data.

Proof. The prior distribution for Xk(T +τ) is N(X̂k(T +τ |Θ(T )), σ2
k); the sampling distribution is obtained

from leading indicator based projections, which can be viewed as observations that are independently and
identically distributed with respect to N(X̂k(T + τ |Θj(T +L)), σ̂2

k). If we simplify X̂kj(T + τ |Θj(T +L)) by
X̂kj , and Xk(T + τ) by Xk, according to the Bayes’ theorem, the posterior probability density function for
Xk(T + τ) can be obtained from the following formula:

p
(
Xk|X̂k1, ..., X̂km

)
=

p
(
X̂k1, ..., X̂km|Xk

)
p (Xk)

∫
p
(
X̂k1, ..., X̂km|Xk

)
p (Xk)dXk

After the probability density functions of prior and sampling distributions are substituted in the above
formula, the variance of the posterior distribution is found as:

σ̃2
k =

σ2
k σ̂2

k

mσ2
k + σ̂2

k

¤
(More detailed proofs are given in Aytac and Wu (2008)).

Appendix B:
algorithm: Integrated New Product Forecasting ;
Input at time T :
• Actual demand observations Θ(T ) = {X(1), ..,X(T )}.
• Leading indicators l1, .., lm.
• Diffusion models k ∈K

begin
For each diffusion model k ∈K, do:
begin {|K| passes}

Estimate parameters for diffusion model k by fitting demand observations Θ(T ).
Project a demand series from (T +1) to (T + τ) using parameters fitted for model k;
add the demand series to the prior distribution.
For each leading indicator li, i∈ {1, ..,m}, do:
begin {|m| passes}

Use leading indicator li to extend Θ(T ) by Li periods;
Estimate parameters for diffusion model k by fitting data Θ(T +Li).
Project a demand series from (T +Li) to (T + τ) using parameters
fitted for model k; add the demand series to the sampling distribution.

end; {|m| passes}
Perform Bayesian updates using the prior distribution and the sampling distribution
from above to obtain the posterior distribution for model k.

end; {|K| passes}
Combine the |K| posterior distributions to obtain final forecast.
end;
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Appendix C:
procedure: Un-bias Leading Indicator ;

1. Regress the time series of past actual demand onto the time series of past leading indicator to obtain
the extent of bias in the leading indicator data. At the beginning of time t+1, let X1,X2, ...,Xt be the time
series of the demand data realized and let I1, I2, ..., It, ..., It+k, ..., It+L be the time series of leading indicators
observed at t + L, where L is the time lag between the realization of product demand and the collection of
leading indicators for each point t. Linearly regress the t actual demand onto the t leading indicators to get
the following relationship: Xt = α + β · It.

2. The relationship established in Step 1 is then used to “un-bias” the leading indicator data for future
time periods. Let I

′
t+k be the unbiased leading indicator for future period t+ k, then I

′
t+k = α + β · It+k.


