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Over the past decade, the high-tech industry has been experiencing an unprecedented acceleration of technology
innovations and rapid product introduction cycles. At the same time, the industry has been moving rapidly away
from regional vertical integration toward a supply chain structure that is fundamentally global. In this paper, we
describe a critical operational problem that arises in this environment. The research stems from a project started in
the fall of 2002 partnering Agere Systems and the Center for Value Chain Research at Lehigh University. The main
focus of the project is to study means of characterizing demands for short-lifecycle technology products. Agere
is particularly interested in using demand characterization tools for capacity planning and capacity negotiation
with their global supply partners. The shortened technological lifecycle poses major challenges to the time series
forecasting methods fundamental to all commercial demand planning systems. As part of this project, we propose
a new demand characterization method based on the notion of demand “leading indicators.” Given a cluster of
products, our method identifies one or more products that provide advanced indication of demand behaviors for
the rest of the cluster. Based on extensive analysis of a data set from Agere that covers twenty-six months from
December 2001 to January 2004 and includes some 3,500 semiconductor products, we have discovered that we
can consistently find leading indicators that predict the cluster demand pattern two to eight months ahead of
time with correlation values ranging from 0.51 to 0.95. These findings have significant implications to capacity
management in an increasingly global high-tech supply chain. We discuss opportunities for applying the leading
indicator approach to various planning functions.
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1. An Overview of Short-Lifecycle Technology Markets In the mid to late 1990’s, high-
tech industries such as consumer electronics, telecommunications equipment, and semiconductors were
experiencing unprecedented growth and expansion. During that time, many firms developed and deployed
supply chain management systems to integrate and optimize their operations. With goals of reducing
costs and cycle times, companies focused on internal integration but continued to rely on a traditional
model of demand planning in which marketing adjusts the projections of customers to produce a unit
forecast against which operations executes. Against the backdrop of rapid demand growth fueled by
the dot com boom, planning to customer-driven marketing forecasts was adequate, because companies
were more concerned with keeping pace with demand and ensuring availability of products than with the
accuracy of the data being provided by customers. However, this approach to planning prohibited many
companies from reacting more quickly to the industry decline when it began in 2001. With the decline
initially predicted to be short-lived, many customers were reluctant or slow to revise their forecasts. Many
suppliers were reluctant or unable to enforce penalties for order cancellations and were left in the difficult
position of trying to reconcile optimistic forecasts with increasingly negative economic indicators. By the
time the industry acknowledged the depth and potential duration of the decline, many companies were
left to assume financial responsibility for large buffers of inventory and underutilized capital equipment,
further depleting already limited cash reserves.

Even in good economic times, the demand for high-tech products is volatile and challenging to man-
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age; the rapid rate of innovation causes short product lifecycles, while long production lead times hamper
a firm’s ability to respond. Uncertain economic times, however, increase the challenge significantly.
Whereas in an environment of sustained demand growth, supply chain partners might build inventory or
hold excess capacity to buffer against demand variability, many are reluctant or unable to assume such
financial risk in a slowing market. Firms recognize, however, that they must provide both innovative
products and exceptional service in order to retain their customer base and to gain new revenue oppor-
tunities. To do so, they must structure their supply chains to respond to upside demand and to absorb
downside risks without creating excessive inventory or capacity. It is for this reason that the high-tech
industry as a whole has gone through a profound transformation during the past decade, starting with
growth and expansion in the mid 1990’s and continuing through contraction in the early 2000’s.

As part of this transformation, major corporations are focusing on those aspects of the product re-
alization process where they hold the strongest value proposition instead of owning and operating the
entire process. Many are moving aggressively away from vertically integrated operations to horizontally
integrated operations that involve multiple contract manufacturers. In such a restructured supply chain,
a customer (e.g., Cisco) may subcontract its manufacturing to multiple contract manufacturers with each
subcontractor placing orders on the component suppliers (e.g., Agere). By consolidating demands across
multiple customers and developing and investing in highly flexible processes, contract manufacturers are
able to achieve high utilization on their equipment, thereby reducing unit costs. In addition, by con-
solidating the component procurement for multiple customers, contract manufacturers are able to take
advantage of economies of scale from their suppliers. Thus, contract manufacturers can offer their cus-
tomers a greater variety of products at significantly lower cost. Contract manufacturing has grown from
a few billion dollar industry in the early 1990’s to over $180 billion in 2001 (Kador, 2001). This rate is
expected to accelerate in the next few years with the share of manufacturing done on a contract basis
expected to be well over 50% (Gartner, 2003). In the semiconductor industry, contract manufacturing
is expanding beyond fabless companies as even fully integrated component suppliers are beginning to
contract their back-end (packaging) operations to assembly and test facilities or contract their front-end
(wafer fabrication) operations through partnerships with major foundries.

The shortening product lifecycle and the emergence of contract manufacturing reflect broader trends in
the global economy toward rapid product innovation cycles and increasingly complex manufacturing and
supply chain partnerships. High-tech contract manufacturers in particular have a significant presence in
the Asia-Pacific region. They represent a dominating force and a significant economic driver for China,
Taiwan, Korea, and Malaysia. In addition, major ports such as Hong Kong and Singapore have become
logistics consolidation points for many of these operations as well as a major sources of investment capital.

This paper addresses a critical operational dimension of the supply chain transformation described
above. Specifically, we study a new approach for characterizing the demand of short-lifecycle technology
products with the specific purpose of facilitating capacity management in a contract manufacturing
environment. The research is part of a project started in September 2002 that partners Agere Systems
and the Center for Value Chain Research at Lehigh University. Specifically, Agere seeks recommendations
for a comprehensive decision tool that would characterize short-lifecycle product demands in the context
of supply-demand planning. Agere is particularly interested in using the demand characterization tools
for capacity planning and capacity negotiation with their global supply partners.

2. Agere’s Products and Business Environment Originally the Microelectronics Division of
Lucent Technologies, Agere Systems was spun off from Lucent in March 2001 in what was the fifth largest
initial public offering in Wall Street history at the time. Agere specializes in providing semiconductor
products for wireless data, high-density storage, and multiservice networking markets. Its wireless data
products include GPRS (general packet radio service) chips that offer Internet connectivity for cellular
phones and wireless voice over IP (Internet Protocol). In the high-density disk drive market, the company
is the leading provider of chips for hard disk drives, including read channel, preamplifiers, and “systems-
on-a chip” that integrate several functions into a single device. Agere remains a strong presence in the
telecommunications infrastructure market; the company provides custom and standard integrated circuits
(ICs) for multiservice networking equipment that moves information across wired, wireless, and enterprise
networks.

Agere’s business is organized by key product lines into four business units: Enterprise and Networking,
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Mobility, Storage, and Telecommunications. Each business unit is subdivided into business entities based
on key product technologies. Each business entity serves different technology markets, each of which tends
to follow a particular pattern and rate of technological evolution. For instance, the technology lifecycle
for custom ICs on cellular phones is quite different from that for the motor controller ICs for hard drives.
New technologies are accepted more readily in the former market and replaced more frequently, driving
significantly shorter product lifecycles.

As is typical in semiconductor manufacturing, Agere’s operations consist of two main stages. In the
“front-end” operation, silicon wafers are fabricated in clean room facilities (fabs), and in the “back-end”
operation, wafers are cut, packaged into IC chips, and tested. The front-end operation involves a manu-
facturing lead time of six to twelve weeks and typically is the bottleneck, while the back-end operation
requires two to four days. Many semiconductor manufacturers outsource the front-end operation and
become “fabless” because the wafer fabs are capital intensive and require significant lead time to build.
A typical fab costs $1 billion to $4 billion and 12 to 18 months to build. Although Agere retains a
portion of its fab capabilities in house, a substantial portion of the front-end operation is now handled by
foundry partners such as Chartered Semiconductor and TSMC (Taiwan Semiconductor Manufacturing
Company). The back-end operations typically are performed at Agere’s facilities in Asia.

For manufacturers like Agere who have a significant portion of their capacity owned by outside
foundries, advanced indication of market conditions is critical to ensuring that capacity will be avail-
able when it is needed. Characterizing product demands, however, is difficult for a company like Agere
that is part of a truly global and increasingly complex high-tech supply chain. Agere’s key customers
include large personal computer (PC) manufacturers (e.g., Apple Computer), wireless handset providers
(e.g., Samsung Electronics), network equipment suppliers (e.g., Lucent, Cisco Systems), and high-density
storage device manufacturers (e.g., Maxtor). During the past decade, many of these firms have restruc-
tured their operations to include multiple contract manufacturers. As a result of the restructuring, instead
of receiving a single demand feed from each customer, Agere now receives a demand feed from each of
the customer’s manufacturing facilities and each of their contract manufacturers. The multiple feeds
arise because each customer splits its demands across multiple subcontractors, who in turn pull demand
separately from the component suppliers (Armbruster, 2002). For suppliers like Agere, the multiple de-
mand feeds lead to more complex demand characteristics and require multiple inventory buffer locations.
Clearly this structure has an impact on supply-demand planning and new approaches to characterizing
demands are needed. Note that in a separate research project, the Lehigh-Agere team studied with a key
customer inventory strategies to consolidate multiple demand feeds, to increase overall inventory turns
and to increase transparency.

The increasingly complex high-tech demand structure due to the compressed technology evolution
cycles and the emergence of contract manufacturing motivate this research. One operations manager at
Agere summarizes his perspectives as follows:

The planning and coordination environment for our industry is extremely complex and
difficult to manage due to the exceptionally volatile nature of product demands and
the complex manufacturing processes. In addition, the semiconductor supply chain has
to constantly battle with short product lifecycles and capital intensive capacity that
requires long lead time for expansion. . . . Our objective is to more accurately anticipate
our market conditions, better estimate production capacity needs in order to procure
the appropriate manufacturing capability and make optimum use of our capital assets.
Improving how we plan and make decisions in this industry will also contribute to the
success of our customers. For example, achieving early production ramp for custom
logic IC for our customers in the multimedia computing or communications equipment
markets will help them to strengthen their competitive advantage . . .

3. Exploring the Research Questions The high-tech manufacturing environment is primarily
driven by time-based competition, where a manufacturer’s ability to provide responsive and flexible
supply to a customer defines its competitive advantage. To this end, our project focuses on demand
characterization tools that will allow Agere to handle demand signals proactively such that capacity can
be aligned for the right time at the right level. This is known in the industry as supply-demand planning.
The project addresses the following specific research questions.
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1. Are there discernable patterns that can be derived from historical or current demand data that
would enhance our understanding of high-tech demands? Is it possible to identify “leading
indicators” that provide advanced warning of demand changes? Are there effective ways to
identify and monitor these leading indicators?

2. If leading indicators do exist, are they capable of producing reliable demand forecasts? Is it
possible to develop general-purpose analysis tools building on the concept of leading indicators?
Is it possible to test whether a particular product of interest is a strong leading indicator for
some set of products?

We address these research questions in the remainder of the paper. In the remainder of Section 3, we
summarize the findings of a exploratory study of Agere’s demand data covering a 14-month time period
during the early 2000’s. This study helps us to understand the volatile nature of high-tech demands.
In Section 4, we describe an innovative demand analysis process, which we developed into a “leading
indicator engine” that can be used to identify a subset of products that predicts the demand trends for a
larger product group. In Section 5, we illustrate the use of the leading indicator analysis on data provided
to us by Agere. In Section 6, we discuss the implications of the leading indicator approach to capacity
planning and capacity negotiation. In Section 7, we conclude with some future directions.

Understanding High-Tech Demand Volatility Agere and other high-tech manufacturing firms are
cognizant that the compressed technology lifecycle and the increasingly complex supply structure (due
to contract manufacturing) have stretched existing supply-demand planning systems to the limit. To
understand the extent of this phenomenon as experienced by planners and decision makers alike, we
initiated our study with a close examination of the demand information available to the decision makers
via a sophisticated order management system. For each product, the order management system tracks
the orders placed by a customer for a shipment in an upcoming week; these orders are referred to as the
backlog or the order board. Because customers may make adjustments to the order quantity between the
time the order is placed and the time the order is shipped, the snapshot as of February 28 of the order
board for shipments anticipated in the week of March 14 to 18 may differ from the snapshot as of March
7. To understand the volatility of the demand, we reconstructured from historical data weekly views of
the order board over a 14-month period between 2001 and 2002 for a representative sample of Agere’s
products in telecommunications, personal computing and storage.

For each shipment that occurred for each product, we reconstructed the sequence of weekly views of
the order quantities associated with that shipment and computed the mean value of the order quantities.
Then we compared the mean value to the actual shipment quantity and computed the percentage of
deviation, defined as the difference in the mean value and the actual quantity divided by the actual
quantity.

The histogram in Figure 1 summarizes the results of the analysis for 560 products over the 14-month
period. For each percentage range, the histogram shows the number of products whose percentage of
deviation falls in the range. The line plots the cumulative percentage of products whose percentage of
deviation falls below a particular value. The left half of the histogram represents the case of a “negative”
deviation where the actual shipment is lower than the mean backlog quantity. The right half of the
histogram represents “positive” deviation where the actual shipment is higher than the mean backlog
quantity. Positive bias arises when the shipment during a particular week includes new orders that arrived
in the time between the last snapshot of the order board and the shipment date; some of the new orders
may actually be orders that were originally booked for a later shipment date.

As many demand managers might expect, both the percentage of deviation and the number of occur-
rences are alarmingly high; the results suggest a highly volatile market for which even order board data
is a poor indicator of actual shipments. The order management system also stores the demand forecast,
which is generated by the marketing department and is updated monthly. If we reconstruct the sequence
of monthly views of the forecasted order quantities and compare the mean forecasted value to the actual
shipment quantity, it is not surprising that the deviation is significantly greater (than that of the order
board data).

In many high-tech manufacturing environments, operations managers have resigned themselves to the
fact that demand is too volatile to forecast. A common belief is that timely information updates, reduced
lead times, and well-controlled operations would enable production to be driven completely by orders from
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Figure 1: Deviation (%) between Average Order Board Quantity and Actual Shipment Quantity (2001-
2002)

the order board. However, as illustrated in Figure 1, even the order board data may be highly unreliable.
For the purpose of long-term planning, we need a comprehensive and in-depth characterization of demand,
despite the inherit difficulty in constructing one. For specialized semiconductors, there are significant
technological barriers to reducing production lead time, and there is no meaningful way to build finished
goods inventory, since most IC chips are customized for special functionality. Therefore, capacity planning
plays a crucial role in combating demand uncertainty both for in-house capacity expansion and outsourced
capacity negotiation and capacity reservation. Many high-tech firms including Agere are interested in
investigating forecasting methods for the purpose of capacity planning.

We know from the literature that time series forecasting methods generally are not appropriate for high-
tech products such as semiconductor and telecommunications (c.f., Skiadas 1986; Mahajan et al. 1990;
Sharma et al. 1993; Islam and Meade, 1997). Technology products tend to have short product lifecycles
as a result of continued innovations, and the data available early in the lifecycle typically are insufficient
for time series analysis. Operations researchers have recognized the needs for special methodologies when
dealing with short life-cycle products (Fisher and Raman 1996; Kurawarwala and Hirofumi 1996). After
analyzing the shipment data described above using nine frequently used time series forecasting methods
(Wu et al. 2003), we were able to confirm that Agere’s demands corroborate the thesis.

Traditional time series forecasting methods are designed for situations where the demand trend is
stable or cyclic. This is not characteristic of high-tech products, whose demand can vary tremendously
going through the different stages of its lifecycle. As predicted by the technology forecasting literature,
time series forecasting methods that rely on a product’s historical demands do not yield satisfactory
results. These results motivated us to investigate and develop a fundamentally different approach.

4. The Leading Indicator Analysis In this section, we address the first group of research ques-
tions posed in Section 3. We are interested in determining if any discernable patterns can be derived
from historical or current demand data that would enhance our understanding of Agere’s demands. More
specifically, we are interested in determining if there exist certain demand “leading indicators” that pro-
vide advanced warning of major demand changes. These questions were motivated by our experience
from 1997 to 1999 of analyzing demand data of what was Lucent Technologies at the time and is now
Agere. As documented in Meixell and Wu (2001), after analyzing demand data for some 3,500 products,
we found that the products followed approximately six lifecycle patterns and that the products could be
grouped according to these patterns using statistical cluster analysis. More importantly, after performing
correlation analysis on historical shipment data, we found that in each cluster there exists a subset of
“leading indicator” products that provide advanced indication of changes in demand trends.
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Figure 2: Examples of Demand Leading Indicators

A leading indicator of a product group can be characterized by the correlation of its demand pattern in
relation to the group and the time lag by which the demand pattern leads the rest of the group. Clearly,
there is a trade-off between the two. For example, the first chart in Figure 2 shows a leading indicator
that predicts the demand pattern of a larger group three months ahead of time with a correlation of 0.95;
the second chart shows a six-month time lag with a correlation of 0.82. In both examples, the leading
indicator’s demand is less than 2% of the total demand of the products in the cluster and is excluded
from the cluster demand calculation. The exclusion prevents a product from been identified as a leading
indicator simply because of its large volume.

The Lifecycle Effect Technology lifecycles for high-tech products are known to follow a general
demand cycle that starts with an initial growth (ramp up) followed by a period of stability and then a
decline in sales when a new generation of products is introduced. The lifecycle of a product is driven
in part by technological innovation as well as market competition. As discussed previously and in the
technology forecasting literature, one reason that the traditional time series forecasting approach is inef-
fective for high-tech products is due to the short technological lifecycle demonstrated by these products;
there is no reason to believe that the demand trend demonstrated in historical data is going to continue
in the future. The basic hypothesis behind the leading indicator analysis is that there exists a subset of
products (the leading indicators) that captures the lifecycle effect of a larger product group.

To test this hypothesis, we developed a spreadsheet-based “leading indicator engine” and used it
to analyze a recent Agere data set that covers a time period of 26 months and includes some 3,500
semiconductor products. In Appendix A, we describe the core analysis procedure of the leading indicator
engine but omit details of the complex data management functions. An important result from our
analysis is that given a product group of interest, the leading indicator engine can often find one or more
indicator(s) that predicts the group demand pattern two to eight months ahead of time with a correlation
ranging from 0.51 to 0.95. More importantly, these leading indicators are capable of producing reliable
forecasts for the larger product group.

5. Empirical analysis The leading indicator engine analyzes the data associated with a specified
group of products, systematically searches for a set of leading indicator products for the group and
generates demand forecasts based on the leading indicator identified. The tool also can be used in a
scenario analysis mode to test whether a particular product is a strong leading indicator for some group
of products, which is a question of great managerial interest. In this section, we provide several examples
to illustrate different aspects of the leading indicator analysis. Our experiments were conducted using
monthly demand data from Agere that covered the 26-month period from December 2001 to January
2004. The data set included 3,500 semiconductor (IC) products across eight business entities. For testing
purposes, we use an estimation-validation procedure as follows: we designate, say, the first 15 months in
the data set as the estimation period (EP), which represents the historical demand data visible to the
forecasting system. We reserve the remaining 11 months as the validation period (VP), which represents
the “actual” demand after a forecast is generated. The VP allows us to measure the forecast error by
comparing the forecast against the actual. In all cases, we calculate forecast error using mean absolute
percentage error or MAPE. For details of the experimental procedure, see Appendix B.

5.1 Identifying Leading Indicators The first step in the process of identifying leading indicators
is to specify a set of products. In this section, we restrict our attention to a group of 643 products within
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one particular business entity.

Correlation Value and Forecasting Performance

To begin, we are interested in finding leading indicators for the one cluster of 643 products, and we
allow any product within the cluster to be a candidate leading indicator. We perform the leading indicator
analysis over three different time horizons in order to gain insight into how the length of the time horizon
and the age of the historical data affect which leading indicators are selected.

For the first time horizon, we consider an EP covering months 1 through 15 and a VP covering months
16 through 26. Using the leading indicator analysis, we evaluate each of the 643 products for different
time lag values from one to seven months. We calculate the correlation between the product’s demand
series (offset by the time lag) and the cluster’s demand (excluding the product under consideration). We
then rank all of the product-time lag pairs by their absolute correlation over the EP. For the top 100
product-time lag pairs (leading indicators), we produce a leading indicator-based forecast for months
16 through 26 using the procedure described in Appendix B, and we compute the forecasting error (in
MAPE) using the actual shipment data from the VP.

Table 1 summarizes the one-month and the 11-month forecasting performance of the top 100 leading
indicators, all of which have a correlation value above 0.6. In the table, we show the distribution of
indicators according to MAPE value and time lag. For example, the entry with value 26 in the row
labeled “0− 20%” and the column with time lag “6 or 7” indicates that of the 61 leading indicators with
time lags of 6 or 7 months, 26 of them have a one-month forecast MAPE in the range of 0% to 20%.
The results in Table 1 suggest that there exists a strong pool of leading indicators for products in this
business entity. From Table 1, we see that there are 34 products with MAPE values of at most 20% for
the one-month forecast and 28 products with MAPE values of at most 40% for the 11-month forecast.

Time Lag 1-Month Time Lag 11-Month
MAPE 1, 2 or 3 4 or 5 6 or 7 Total 1 ,2 or 3 4 or 5 6 or 7 Total
0-20% 5 3 26 34 0 0 0 0
20-40% 6 2 2 10 4 2 22 28
40-60% 1 9 9 19 4 5 8 17
60-80% 1 2 7 10 3 7 3 13
80-100% 0 1 9 10 2 5 11 18
> 100% 1 8 8 17 1 6 17 24
Total: 14 25 61 100 14 25 61 100

Table 1: Distribution of Top 100 Leading Indicators by Time Lag and by 1-Month and 11-Month Forecast
Error (MAPE)

As an alternative view of the pool of leading indicators, Figure 3 plots the 11-month forecasting
performance of the top 100 leading indicators against time lag and absolute value of correlation. Figure 3
reveals that a large number of leading indicators have time lags longer than four months, suggesting that
they are capable of providing warnings for demand changes sufficiently far in advance. Notice however
that some of the products with the longer time lags perform well in forecasting whereas others perform
poorly. One reason why products with the longer time lags may perform poorly is that fewer data points
are available for the correlation analysis after the data has been shifted to account for the time lag.
Figure 3 also reveals that a strong correlation value alone is not a sufficient measure in determining a
leading indicator; there are several instances in which products with relatively low absolute correlation
values have relatively good forecasting performance.

Incorporating New Information

As new information becomes available over time, the correlation value and the forecasting performance
of a leading indicator are likely to change. Therefore, we need mechanisms by which we update a
previously selected leading indicator product and determine the amount of historical data to be used.
To gain insight into the issue of updating, we performed the leading indicator analysis for a second time
horizon; we consider an EP covering months 1 through 20 and a VP covering months 21 through 26.
Then, we compared the set of leading indicator products identified using this EP to those identified for
the EP of months 1 through 15. Of the top 100 leading indicators previously identified, 40 of them
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Figure 3: 11-Month Forecasting Performance of Top 100 Demand Leading Indicators Plotted by Time
Lag and Absolute Value of Correlation

appear on the list of the top 50 leading indicators for the new EP. This result indicates that the set
of 100 candidate leading indicators includes both leading indicators that remain strong with the new
information and leading indicators that are misleading and should be disregarded.

To gain insight into the issue of the amount of historical data to use, we performed the leading indicator
analysis for a third time horizon using an EP of months 6 through 20 and a VP of months 21 through
26. We compared the set of leading indicators identified to those for the second EP. Of the top 50
leading indicators that were identified for the second EP (months 1 through 20), 25 of them appear on
the list of the top 50 leading indicator products for the third EP (months 6 through 20). Therefore, we
cannot conclude that more recent data leads to better performance of the leading indicator. Using the
longer estimation period (months 1 through 20) requires more data but identifies leading indicators that
perform well over a longer time horizon. Using the shorter estimation period allows for the possibility
that products with an initial period of poor performance but with a high predictive value with respect
to the more recent data are likely to be identified as candidate leading indicators.

Developing Leading Indicator Forecasts

Once we have identified leading indicators, we would like to use them to develop demand forecasts
for the product group. Figure 4 illustrates the forecast performance of three leading indicators, each
one corresponds to one of the three cases of EP and VP specified earlier in this section. Each chart on
the left shows the actual data of the selected leading indicator product with the data of the rest of the
cluster over the given EP. In the figure, the dashed line shows the time series data of the leading indicator
product as measured by the scale given on the left axis. The solid line shows the time series data of the
cluster as measured by the scale given on the right axis. Note that the time series of the cluster is shifted
ahead by the appropriate time lag so that the chart shows the mapping between the demand pattern of
the indicator product and the cluster. Each chart on the right shows the actual demand of the cluster
(solid line) plotted against the forecast (dashed line) generated from the leading indicator product. The
vertical line separates the EP from the VP.

The first pair of charts illustrates the performance of a leading indicator for an EP from months 1
through 15. This leading indicator provides a signal for the demand pattern of the cluster seven months
ahead of time with a correlation of 0.625. The forecast that was generated from a regression model fit
within the EP (see Appendix B) results in a 20.11% MAPE over the 11-month VP. The second pair of
charts show a leading indicator for an EP of months 1 through 20. This leading indicator predicts the
demand pattern of the cluster six months ahead of time with a correlation of 0.696. The leading indicator
forecast results in a 20.18% MAPE over a six-month VP. Similarly, the third pair of charts illustrates a
leading indicator generated from an EP from months 6 through 20, which predicts the cluster demand
pattern five months ahead of time with a correlation of 0.575. The leading indicator forecast results in a
30.72% MAPE over an VP of six months.

For the remainder of this subsection, we restrict our attention to a subset of the 643 products that use
a particular wafer fab process. Because future demands for this particular subset of products will have
direct implications on the capacity required of this wafer fab, we would like to know how demand will
evolve. We allow any of the 120 products within the subset to be a candidate leading indicator, and we
perform the leading indicator analysis for an EP of months 1 through 20 and a VP of months 21 through
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Figure 4: Forecasting Performance of Leading Indicators Identified for 3 Different Estimation and Vali-
dation Periods for Cluster of 643 Products
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26.

For this smaller cluster, the leading indicator analysis yields ten candidate leading indicators with
absolute correlation values above 0.5. The average MAPE value for these candidates is 25% for the one-
month forecast horizon and 40% for the six-month forecast horizon. In Figure 5, the top pair of charts
shows the results for the product with the highest absolution correlation value (0.668), which provides a
signal for the demand pattern of the cluster two months ahead of time. This candidate leading indicator
predicts the demand pattern of the cluster during the six-month VP with a small MAPE of 13.76%.
The bottom pair of charts shows the results for another product that exhibits similar performance to the
first with respect to the subcluster. However, while the first leading indicator also appears among the
top 50 indicators with respect to the entire cluster, the second indicator does not. This result seems to
contradict the belief of some managers that there are only a small number of leading indicator products
that drive the demand for all product groups of similar characteristics. There is no reason to believe that
a strong leading indicator for a subgroup is necessarily going to be a good indicator for the wider group.

 

 
Estimation Period: Month 1 to 20, Validation Period: Month 21 to 26 
a) Leading Indicator: Time Lag= 2, Correlation=0.668, 6-Month Forecast: MAPE=13.76% 
 
 
 
 
 
 
 
 
 
 
 
 
b) Leading Indicator: Time Lag= 5, Correlation=0.651, 6-Month Forecast: MAPE=19.50% 
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Figure 5: Forecasting Performance of 2 Leading Indicators Identified for Subcluster of 120 Products

Testing for Seasonality

We are interested to find out if seasonality plays a role in the leading indicator analysis. We first verify
the presence of seasonality in the above data set using Fisher’s Kappa test and Barlett’s Kolmogorov-
Smirnov test as described by Fuller (1996). The latter compares the normalized cumulative periodogram
with the cumulative distribution function of the uniform (0,1) to test the null hypothesis that the series
is white noise (Miller, 1956). The test also allows for small sample sizes (< 100). With 95% confidence,
we could not reject the null hypothesis, i.e., the data set does not demonstrate seasonality. The issue of
seasonality will be further explored in an experiment toward the end of the next section where we detect
seasonality using the same test in a different data set.

5.2 Evaluating Candidate Leading Indicators During the process of implementing the leading
indicator engine, we maintained close interactions with the supply-demand planning group at Agere.
Most planners believe that there are “intuitive leading indicators,” i.e., products with characteristics
that suggest they might naturally be strong leading indicators. Such an idea is also relevant from a
business perspective. Managers may want to keep track of a high-volume, revenue-driving product of an
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Figure 6: Monthly Shipment Quantities of a Product Over Multiple Generations and Overlapping Life-
cycles

important customer and know if this product is in fact a leading indicator for a group of related products.
For this purpose, we designed the leading indicator engine to be able to test whether a particular product
is in fact a strong leading indicator for a specified set of products. Because of the generally short product
lifecycles, we would like to be able to consider composites of successive generations of one particular
technology as possible candidates for a leading indicator. To handle this situation, we create a composite
product to represent the progression of the technology over time.

In this subsection, we consider a composite product made up of 12 products that belong to a business
entity that includes short lifecycle products. The 12 products account for about 15% of the total volume
of the products within the business entity over the 26-month time horizon. Figure 6 shows the time series
data associated with these products. The dotted line shows the total volume of the 12 products, while
the individual curves show a rather complex pattern of technology migration over the 26-month period.

In the remainder of this section, we present the results of two analyses. First, we analyze whether
the composite of the 12 products (consisting of multiple technology generations and modifications) is
a strong leading indicator for other products in the same business entity. Second, we determine if the
composite product can serve as an indicator for other products (in the same business entity) that also
share the same fab capacity. Note that since the composite product accounts for a large portion of the
overall volume of the cluster, we perform the analysis in two ways – both including and excluding the
leading indicator products from the cluster.

To determine whether the 12-product composite is a leading indicator for the other products in the
business entity, we perform the leading indicator analysis over two different time horizons, both of which
start after the initial transient phase of the progression. The first time horizon has an EP of months
9 through 24 and the second has an EP of months 14 through 24. In both cases, we use the last two
months, 25 and 26, as the VP.

Figure 7 shows the actual shipment data for the composite product (CP) and for the cluster both
excluding the CP and including the CP. Table 2 shows the forecasting performance of the composite
product as a leading indicator for the two time horizons. Here a time lag of zero has been considered
to compare the concurrent similarity of the demand pattern of the composite leading indicator to the
demand pattern of the cluster. The similarity in the two patterns can be seen both in Figure 7 and in
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Figure 7: Monthly Shipment Quantities of the Composite Product (CP) vs. the Cluster

results in Table 2. Note that we show the MAPE for both the EP and the VP; the former represents fitting
errors between the time series of the leading indicator (CP) and the cluster and the latter represents
forecast errors. For time lags greater than zero, the results indicate that the forecast errors for the VP
are generally low. In other words, the composite product is indeed a strong leading indicator for the
cluster.

MAPE MAPE MAPE MAPE MAPE MAPE
Time lag EP:9-24 VP:25 VP:25,26 EP:14-24 VP:25 VP:25,26

(%) (%) (%) (%) (%) (%)
0 8.25 7.39 2.42 7.42 3.83 2.20
1 11.51 9.25 6.01 9.44 14.99 11.87
2 11.33 20.19 12.31 7.29 31.79 22.33
3 9.78 13.01 7.70 6.99 16.68 13.70
4 10.62 12.20 8.46 8.23 15.11 11.37
5 9.75 15.11 9.59 10.43 16.52 12.16
6 8.88 15.73 11.17 6.96 17.69 10.88
7 8.92 16.26 12.68 10.32 10.66 8.72

Table 2: Forecasting Performance (MAPE %) of Composite Product as a Leading Indicator

Next, we are interested in determining whether the CP is a leading indicator for just the products in
the business entity that share the same fab capacity as the CP. Seven of the 12 products in the CP require
the same fab process and thus share the capacity. To keep the example simple, we restrict our attention
to these seven and create a modified CP, which we call CP2. Within the business entity, there are 74
products that share the same fab capacity with CP2 and the products in CP2 constitute approximately
22% of the total volume. The shipment data corresponding to the composite CP2 appear only in months
14 through 26. Therefore, we perform the leading indicator analysis over a 13-month time horizon with
an EP of months 14 to 24 and an VP of months 25 and 26. Since large time lag values result in a small
number of data points for the correlation calculations, we restrict the time lags to values from one through
four to avoid misleading correlation values. Table 3 shows the forecasting performance of the composites
CP2 and CP as leading indicators. The results shown for CP2 correspond to the analysis when the time
series data of the cluster excludes CP2. We obtain similar results when the time series data of the cluster
includes the leading indicator products.

As shown in the table, CP2 performs very well as an leading indicator for the subcluster with respect
to the correlation values and the MAPE values. We are able only to examine time lags up to four months
though due to data availability. This example suggests that if we select a correct leading indicator, we will
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be able to use this leading indicator to provide the advanced demand signal needed for capacity planning.
We should point out, however, that identifying a leading indicator does not happen by accident. For
instance, as shown in Table 3, the original composite product CP performs rather poorly as the leading
indicator for this cluster.

CP2 MAPE MAPE MAPE CP MAPE MAPE MAPE
Time lag Correlation EP:14-24 VP:25 VP:25,26 Correlation EP:14-24 VP:25 VP:25,26

(%) (%) (%) (%) (%) (%)
0 0.9192 9.51 11.42 10.93 0.5721 20.80 26.91 25.53
1 0.7023 16.57 22.65 13.92 0.0338 25.54 37.93 34.25
2 0.8882 10.20 20.74 14.68 -0.3582 21.08 57.32 45.73
3 0.9186 7.21 15.46 24.83 0.0253 18.52 32.42 28.00
4 0.5434 12.85 19.19 14.43 -0.5053 13.94 28.42 24.03

Table 3: Forecasting Performance (MAPE %) of CP2 and CP as Leading Indicators for Cluster of 74
Products Sharing Same Fab Process

The Effect of Seasonality

The data set used in the above experiments belongs to a family of mass storage devices that have a
relatively more stable and potentially cyclic market demand. We are interested to find out if seasonality
plays a role in the leading indicator analysis. Using Barlett’s Kolmogorov-Smirnov test as described earlier
and with 95% confidence, the presence of seasonality is detected. Upon inspection, we have determined
that the seasonality repeats in a quarterly fashion. To study the effect of seasonality on the leading
indicator analysis, we deseasonalize the data (using Winter’s method and assuming a 3-month cycle),
follow the leading indicator analysis as before, and then compare the forecast performance (MAPE) of
the leading indicator identified this way. Table 4 shows the results of the comparison in reference to
Table 2. The table list the difference in MAPE between the original and the deseasonalized results;
negative numbers signify that the leading indicator identified after deseasonalization outperforms the
original method.

MAPE MAPE MAPE MAPE MAPE MAPE
Time lag EP:9-24 VP:25 VP:25,26 EP:14-24 VP:25 VP:25,26

(%) (%) (%) (%) (%) (%)
0 -1.32 -1.45 3.87 -2.08 10.67 6.78
1 -1.70 6.77 6.96 -2.61 9.42 4.56
2 -2.80 -6.04 -0.22 -2.02 -1.99 -6.73
3 -1.30 5.90 1.76 -1.68 11.57 4.48
4 -2.34 8.78 4.44 -2.81 9.50 3.29
5 -2.61 5.63 1.38 -4.22 9.43 3.15
6 -2.16 5.64 0.62 -2.45 11.15 5.35
7 -4.12 6.56 -1.07 -5.72 12.70 3.79

Table 4: Comparing the Forecast Performance before and after Deseasonalization (A negative number
signifies that an improvement is achieved by deseasonalization.)

The results suggest that while deseasonalization results in better fit during the EP (as indicated
by the negative numbers in the EP columns), it produces overall worse forecasting performance (as
indicated by the mostly positive numbers in the VP columns). Interestingly, several other studies show
similar intuitive results for economic leading indicators (e.g., Neftci 1979; Wells 1999). One possible
reason is shown to be the difficulty in adjusting away the seasonal fluctuations without distorting the
rest of information contained in the data. That is, seasonality adjustment might unintentionally remove
important characteristics in the demand information that we are trying to capture with the leading
indicator.

6. Implications to Capacity Planning and Capacity Negotiation Agere recognizes that the
leading indicator engine not only provides a new perspective on demand forecasting, but that it also
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provides a tool to support capacity planning and capacity negotiation with supply partners. More specif-
ically, the leading indicators provide a time-lagged model that predicts the demand pattern of a broader
demand group. Suppose that the broader demand group is about to experience a shortage in the following
quarter. If the capacity planners have this information ahead of time, then they can renegotiate capacity
levels with the partner foundries. In this context, clustering products by technology or by manufacturing
resources may make sense, since the predicted aggregate demand corresponds directly to future capacity
requirements. Consider that a leading indicator for a certain technology group might suggest a demand
surge a few months from now. While this prediction may be highly variable and unreliable at the in-
dividual product level, the prediction for the group as a whole tends to be more robust. Moreover, the
strength of the prediction by the leading indicator is quantified by the coefficient of correlation and the
fitting error (in MAPE), both of which provide a measure for the quality of the information.

While capacity configuration and allocation are important decisions for any manufacturing firm, a few
factors make this problem especially crucial to semiconductor firms such as Agere. The first factor is
that there are high costs and long lead times associated with equipment procurement and clean room
construction. Although a significant portion of the capacity is owned by outside foundries, state-of-the-
art manufacturing equipment often costs millions of dollars and must be ordered months in advance. The
clean rooms cost several hundred million dollars to a few billion dollars and take one to two years to
construct. During a market upside, there may be a shortage of capacity, which means that the foundry
will not be able to react to a sudden surge in demand. In this environment, an advanced signal of demand
changes (e.g., from the leading indicator) is a significant advantage at the negotiation table. Specifically,
if reliable demand information is available on aggregated technology groups, more favorable terms on
capacity level may be negotiated a few months ahead of the competition. This could result in major
savings in capacity costs, while avoiding detrimental capacity shortages during market upside.

A second factor that complicates capacity planning is the rapid advancement of fab technologies and
the pace of transition from old technologies to new. Typically, fab technologies are defined by line
width (the space between features on a semiconductor die) and wafer size. With each improvement in
photolithography technology, new and more expensive equipment must be purchased so that features
with smaller line widths can be produced. At the same time, wafer sizes are increasing, which increases
the number of chips to be made at once and produces higher yields. This in turn reduces the unit cost
of manufacturing. As semiconductor technologies improve, foundries must migrate their manufacturing
capability to the newer technologies. However, they are cautious with decisions on technology transition;
transitions take time, and they must be anticipated correctly. A premature transition could lead to costly
underutilization of equipment or necessary production of older technologies on newer, more expensive
equipment. A delayed transition could lead to missed market opportunities and a lower ROI for the
capital investment. The leading indicator approach could play an important role here. For instance,
a leading indicator for a particular technology group could provide advance notice on demand changes
and thus signal the need for a technology migration. Since the technology migration is likely to involve
contract negotiation with outside foundries, the advance notice provided by the leading indicator may
shorten the lead time for a major technology migration, enabling more favorable terms with the foundry
suppliers.

A third factor that complicates capacity planning is that actual execution of the capacity plan is sub-
ject to much uncertainty, requiring frequent adjustments and reconfigurations. The “effective capacity”
required to manufacture the same technology may be different in each location, depending upon the
technology mix (capacity configuration), the wafer sizes made at a facility, the skill level of the labor and
myriad other factors. The leading indicator approach may play a significant role in capacity reconfigura-
tion during execution. For instance, a certain number of wafer-starts (production units) are allocated for
a particular product that requires a certain technology; suppose the leading indicator projects that the
demand for this product will be postponed for a few months. In this case, an operations manager may
decide to act on the leading indicator information and reallocate this capacity to a mature product requir-
ing an older technology. This can be done since newer equipment typically can be used to manufacture
older technologies, albeit at a lower cost efficiency. Nonetheless, it may be cost effective to reconfigure
the capacity proactively rather than reacting to the demand changes later on. Similar to the previous
situations, the leading indicator could provide significant advantage by providing earlier warnings of an
undesirable situation.
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7. Conclusions and Future Directions We have described a project at Agere Systems in which
we studied demand characterization methods for short-lifecycle technology products. We have developed
and implemented a spreadsheet based “leading indicator engine” that systematically searches among a
specified group of products for leading indicator(s). The leading indicator engine provides a multi-purpose
decision support tool that has significant implications to capacity planners, supply-demand planners and
others. In addition to capacity planning and capacity negotiation, the leading indicator analysis has
important implications to other planning functions such as financial forecasting and inventory forecasting.

Financial Forecasting Although financial forecasting was not the motivation for this research, the
leading indicator approach could be a useful tool for projecting revenue and inventory for a fiscal period.
In this context, a leading indicator could be used to drive and adjust revenue projections based on
the trends of main revenue streams in the near future. For financially critical product groups, leading
indicators could be developed to provide advanced notice of potential revenue short falls or new business
opportunities. One major difference between capacity planning and revenue forecasting is the form of
the data that drives the planning process. Capacity planning is concerned with expected unit volume
requirements of specific resources, whereas revenue forecasting is concerned with estimated sales for a
specific market segment, business entity or customer. To reflect this difference in the leading indicator
approach, demand could be characterized in terms of sales rather than unit volume.

Inventory Forecasting The goal of inventory forecasting is to project inventory cost and/or inventory
velocity for a given future period. Inventory is perhaps one of the most difficult phenomena to project in
the high-tech industry, because it is a product of many highly volatile factors, including sales, product mix,
product cost, manufacturing yield, cycle time variation and supply volatility. As such, a methodology that
can simplify the process of forecasting inventory would be very valuable. The leading indicators studied
in this research are based on a characterization of “demand”. Since inventory is a phenomenon driven
by more than just demand, the specific analysis in this research has limited applicability for predicting
inventory. However, one might ask whether a similar leading indicator analysis based on identifying
leading indicators for inventory cost rather than demand could be developed and applied as a useable
inventory model. Another approach that warrants consideration is to develop leading indicators for each
of the factors that significantly influences inventory and combine these leading indicators to derive a
leading indicator for inventory.

Predicting Demand Growth An important realization concerning semiconductor products is that
a particular product only goes through one lifecycle of growth, stability, and decline, i.e., a single modal
lifecycle curve. Therefore, the cumulative demand of a product over its lifecycle can be expressed as
an S-shaped function. The shape of this function specifies the precise pattern of demand growth over
time. More specifically, the demand growth pattern can be characterized by the point of inflection of
the S-shaped function, which represents the most drastic change. We are currently examining statistical
methods that use the leading indicator as a means to streamline the projection of demand growth patterns
for a product group of interest. The main idea is illustrated in Figure 8.

For a product group of interest, it is possible to project probabilistically a number of different demand
growth patterns from the current point in time to the end of the demand lifecycle (see Figure 8(a)).
However, the variance associated with such projections could be too high to be useful. Using the leading
indicator, it is possible to reduce the variance of the projected demand growth patterns. This can be
accomplished by monitoring the demand of the leading indicator product and using its advanced demand
signal to (Bayesian) update the initial demand projection, thereby reducing its variance. As illustrated
in Figure 8(b), the reduction in variance can be significant; this is due to the fact that a small movement
on the time axis might correspond to a drastic change on the demand curve, especially when the point
of inflection is included in the movement.

Technology Substitutions In the context of technology forecasting and demand characterization, an
additional complication is the replacement effect demonstrated by subsequent generations of a technology.
For example, at some time during the lifecycle of a particular chip designed for a cell phone model, a next-
generation chip is in the process of being designed and developed, perhaps for a new cell phone model. The
demands for the new product will begin to replace the demands for the old product during its lifecycle. As
illustrated in Figure 6, in reality, the migration of technology innovation over multiple generations may not
be “clean-cut” and could include significant overlaps, driven by a complex replacement relationship (e.g.,
several existing chips maybe replaced by one new chip). Researchers (c.f., Kumar and Kumar, 1992; Islam
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and Meade, 1997; Sharif and Kabir, 1976) have proposed simplified technological substitution models as
a means to capture the successive generations of technology products. We are currently working on
extensions to the leading indicator analysis that examine the implications of technology substitution.
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Appendix A. The Leading Indicator Search Procedure

1. The user identifies a product group of interest and sets a threshold specifying the minimum time
lag and correlation required. To initialize the procedure, we put all products in the group into
one common cluster.

2. Finding Leading Indicators. Within each cluster, we find all of the leading indicators above the
required threshold as follows:

(a) Initialization. Given a cluster C of products, select a product i from the cluster, set time
lag k = 1.

(b) Main Step. Compute the correlation between (i) the demand time series associated with
product i where the time series is offset by (t−k) and (ii) the demand time series associated
with the cluster excluding i (set C \ {i})

(c) Set k = k + 1. Repeat the Main Step and record the correlation number ρik computed for
each product i with time lag k.

(d) Repeat steps (b) and (c) for each product i ∈ C.

3. Examine all the correlation numbers ρik computed. If at least one of the correlation ρik and
its corresponding time lag k satisfy the specified threshold, go to Step 4. Otherwise, perform
re-clustering as follows:

(a) Re-clustering. Using statistical cluster analysis, subdivide the product group into clusters
based on statistical patterns demonstrated by each product’s historical demand; a variety
of attributes may be used for clustering, e.g., mean shipment quantity, shipment frequency,
volatility, skewness, etc.

(b) Repeat Steps 2 and 3 for each cluster.

4. Return the leading indicator(s) and the corresponding product cluster(s).
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Appendix B. Experimental Settings and Procedures In the following, we describe the general
settings and the procedures used for the experiments reported in Section 5.

The Estimation-Validation Procedure

In the experiments, the 26-month data set is split into an estimation period (EP) and a validation
period (VP). Let [1, T ] be the time period (in months) for which the shipment data is available, and
let the subperiod [t0, t1] be the EP in which the leading indicators are identified and the parameters for
the forecast are determined. The remaining time period [t1 + 1, T ] is used as the VP over which the
forecasting performance of a candidate leading indicator is tested. As such, any h-month forecast can be
validated by the data set by comparing the forecast to actual shipment and h ∈ [1, T − t1].

Measuring Forecast Error using Available Shipment Data

Throughout the experiments, the mean absolute percentage error (MAPE) is calculated as follows:

MAPE(ξ) =
1
ξ

ξ∑

i=1

| yi − ŷi |
yi

(1)

where yi is the actual shipment quantity during period i and ŷi is the shipment quantity estimated by
the trend line during period i. During the estimation period (EP), a trend line is first generated to fit the
data, and MAPE measures how well a particular trend line fits the data. During the validation period
(VP), MAPE measures how well the trend line predicts the demand, i.e., MAPE measures forecast error
as a percentage of the actual (shipment) quantity.

The Coefficient of Correlation

Over the estimation period [t0, t1], the degree of the linear relationship between the time series of
cluster C and product i at time lag k is quantified by using the following correlation coefficient:

ρik =

∑t1
t=t0+k(xi,t−k − x̄)(yt − ȳ)√∑t1

t=t0+k(xi,t−k − x̄)2
∑t1

t=t0+k(yt − ȳ)2
(2)

where xi,t and yt denote the actual shipment quantities of a candidate leading indicator i and the rest
of the cluster in month t, and x̄i and ȳ are the average shipment quantities over the corresponding time
horizons in which correlation is calculated. Thus, the correlation coefficient ρik measures how well the
demand of item i over time period [t0, t1 − k] predicts the demand of the cluster over [t0 + k, t1].

Note that the correlation coefficient is determined by comparing the time series of the item against
that of the rest of the cluster. The total shipment quantity of the cluster is adjusted by removing the
item’s quantity from each month’s shipment quantity. In this way, the bias that might be introduced
from a (high-volume) dominating item is eliminated.

The Leading Indicator Based Forecast

After a leading indicator i is identified from a cluster C based on time lag k and coefficient of correlation
ρik, we construct a forecast for cluster C based on the time series of the leading indicator using the
following procedure.

1. Regress the time series of cluster C over the EP [t0 + k, t1] against the time series of the leading
indicator over [t0, t1 − k]. Determine the corresponding regression parameters β̂0 and β̂1.

2. For a given month t, generate the forecast for the cluster, ỹt, using k-month earlier time series
data of leading indicator i as follows:

ỹt = β̂0 + β̂1xi,t−k (3)

3. Calculate the forecast error for leading indicator i over the VP [t1+1, T ]: for an h-month forecast
during the VP, calculate MAPE(h) based on (1) above.

4. Calculate the overall fitting error over the estimation period [t0, t1 +h]: calculate MAPE(m) for
m = t1+h − t0.
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