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1. Introduction. Since the 1990s, increasing numbers of online auctions have led to a significant
increase in the number of theoretical and experimental studies about auctions in the recent years. Ana-
lyzing different aspects of various auction types, the majority of these studies focus on forward auctions,
where there are many buyers competing to obtain an item provided by a single seller. However, as
procurement has evolved from a secondary function to a strategic tool in today’s competitive industrial
markets, the need for analytical studies of these settings has increased. Suppliers’ competitive bidding
strategies depend on how the mechanism is defined and affect the equilibrium allocation that determines
the buyer’s total procurement cost. Therefore, an analytical study can provide valuable insights to all
decision makers in a procurement setting.

In this paper, we conduct an equilibrium analysis for repeated procurement auctions. We consider
capacitated suppliers, each with a U-shaped cost function that captures the economies (and diseconomies)
of scale. On one hand, they realize economies of scale when the quantity demanded is less than their
capacity, due to setups and other fixed costs, or due to the learning effect and increased productivity in
proportion to the increasing quantity. On the other hand, they face diseconomies of scale as the quantity
demanded exceeds their capacity, either due to the overtime/outsourcing costs, or due to a required
increase in the existing capacity to meet the increased demand. Hence, the quantity demanded might
play a crucial role in determining the equilibrium bidding strategies that might have major impact on
the possible allocation outcomes and total procurement cost for the buyer.

Another important property of the industrial context is that many procurement auctions are recurring
events. Suppliers participating in a sequence of reverse auctions might gain useful information about
their competitors and might also reveal crucial information about themselves. The limit on information
availability is an important design factor affecting the equilibrium bids in sequential (repeated) auctions,
since the suppliers will submit their bids for the next period based on the beliefs that are updated
according to the information feedback. Besides this informational aspect, there is also an economic
aspect in cases in which capacity allocated in the prior stage is not released in the second stage. This
feature allows us to consider capacity constraint in a more realistic way than just putting a hard constraint
that restricts winning to one period at most.

As a benchmark comparison to the repeated setting, we also include the case of a multi-period single-
shot auction. We consider the participating suppliers acting as if they have a constant unit production
cost, which might be approximated from the U-shaped cost function based on the available demand
information. This benchmark will help us to distinguish the differences between our study and the classic
single-period static analysis.
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Motivated by these aspects of industrial procurement, we have two main goals in this paper. First we
will explore the single period procurement game fully for the cases with homogenous and non-homogenous
suppliers in a symmetric incomplete information setting, so that we can discuss the analytical properties
of the suppliers’ competitive bidding strategies under incentive-compatible and individual-rational mech-
anisms. Second, we will expand the single-period game to a two-stage sequential (repeated) game setting,
in which we explore the analytical changes in the equilibrium outcomes, caused by the informational and
economical considerations. In order to reach these two goals, we begin by analyzing a pair of bidders and
deriving the respective results, which we then will generalize to N -supplier settings.

We discuss related literature in section 2 and introduce the single-period procurement model in section
3. In section 4, we analyze repeated procurement auction settings. After providing numerical study in
section 5, we conclude our study in section 6 by stating the main observations and future research
directions.

2. Literature Review. In our review of the broad auction theory literature, we will focus on
the fundamental points of the studies that are directly related to our current paper. In the economic
theory literature, which concentrates mainly on forward auctions, the analysis of auctions as games of
incomplete information originates in the William Vickrey’s [12] seminal work. Vickrey proposes the
second-price sealed-bid auction and proves analytically the incentive compatibility of the mechanism.
Krishna [9] discusses the auction theory in this tradition and gives an account of developments since
Vickrey’s pioneering paper. Klemperer [8] also provides an extensive survey of the economics of auction
theory. Another keystone study in auction theory is Myerson’s study [11], in which he examines the
optimal auction design for forward auctions as a mechanism design problem and develops key concepts,
such as the revelation principle and general revenue equivalence. Although these studies mainly analyze
forward auctions, they are also important for our paper because they provide essentials that can be used
to derive the corresponding results for procurement auctions.

Besides the literature of auction theory in economics, there has been recent research about auctions in
the operations research (OR) and operations management (OM) literature. Kalagnanam and Parkes [7]
provide an overview of the various auction mechanisms commonly encountered both in practice and in
the literature, and also state possible alternative classification schemas for auctions. Although there
are several studies that consider procurement auctions in the OR literature, they focus mostly on the
winner-determination problem, rather than on the analytical derivation of competitive bidding strategies.
The studies that deals with bid derivation focuses on the iterative bidding strategies that use primal-dual
information.

All of these studies provide a static analysis of single-period procurement settings, mainly from the
buyer’s view. Among these studies, Gallien and Wein [4] study the problem of designing multi-item
procurement auctions in capacity-constrained environments. They propose an iterative mechanism in
which the suppliers bid their unit costs strategically and their capacity constraints truthfully. Their key
assumptions are that each supplier has her own fixed unit-production cost for each item and that each
supplier is constrained exogenously by her own capacity level. Even in the single-period procurement
auction model, our current study differs from their study in three major ways. First, we consider pro-
duction cost as a function of the quantity demanded. Second, capacity is not a hard constraint in our
study; suppliers can provide quantities more than their capacity level at an increased cost. Finally, we
focus on the analytical derivation of the equilibrium bidding functions, instead of considering iterative
mechanisms.

There has been a limited number of studies on the dynamic aspects of auctions. The dynamics of
forward auctions are totally different from the dynamics of procurement auctions recurring over time.
As a pioneering paper in this field, Luton and McAfee [10] considers two auctions held in sequence with
the possibility of learning between the auctions. They analyze the case of two independent indivisible
projects for which firms have independent cost draws. They model the possibility of learning by allowing
the second project cost to be the minimum of the two draws. Hence, the link between the costs of two
projects is defined independent of the structure.

There have been recent empirical studies that consider repeated procurement auctions in the highway
construction environment and assume that capacity is the binding constraint throughout the periods, i.e.
winning in one period might prevent the winning supplier from participating in future auctions.
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Jofre-Bonet and Pesendorfer [6] propose an estimation method for a repeated highway construction
procurement auction, and also take into account the capacity constraints. In the first stage, they assume
that the bid distribution in each period is affected by state-defining variables, such as backlog, cost and
contract characteristics, and they implement a Kernel type estimator for each period’s bid distribution.
In the second stage, costs are inferred from the first order condition of the optimal bids. Voicu [13]
analyzes the repeated auction in highway construction by focusing on the properties of Markov perfect
equilibrium. He implements functional forms for the bid functions that depend on the period and analyzes
their properties.

In a generalized setting, Elmaghraby [2] studies the importance of ordering in sequential procurement
auctions when the suppliers have capacity constraints and therefore a single supplier cannot win both
auctions. Their study highlights the influence of ordering on the efficiency and optimality of an auction.

In another recent study, Elmaghraby and Oh [3] focus on the design of the optimal erosion-rate policy
and compare its performance against a second-price sealed-bid auction under the learning effect. They
study mainly the design of the optimal erosion policy and characterize the optimal discount price schedule
as a function of the market structure. They also consider the case when suppliers take into account the
impact of current actions on future periods.

Caillaud and Mezzetti [1] study two sequential ascending-price auctions in which bidders’ valuations
of the items in the auctions are perfectly correlated. Due to this perfect correlation of valuations, their
concern is more on the informational aspect. They show that strategic non-disclosure of information
takes the form of non-participation in the first auction by bidders who have valuations below a threshold.

Grimm [5] compares sequential and bundle auctions in the procurement setting of two complementary
goods, where success in the first period affects future period opportunity positively. She divides the
suppliers into two groups: those who can provide both items and those who can only provide the second
item. She also distinguishes the winner of the first period, by assuming that the incumbent will have a
comparative cost advantage in the second period.

Although each of aforementioned studies provides valuable insights for analyzing repeated auctions,
our study aims to explain the repeated procurement setting in an industrial context more efficiently
by providing theoretical analysis of competitive bidding strategies. First, we consider the production
cost as a function of the quantity in order to capture the (dis)economies of scale that each supplier
might face. Second, we consider capacity in a more realistic way; we allow suppliers to participate in
the auctions even if the quantity demanded exceeds their capacity level. Further, we do not restrict
our analysis by assuming that each supplier can win only one of the two auctions due to hard capacity
constraint. Our sole restriction on capacity is that the winner of the first period cannot utilize the
first-period allocated capacity for the second-period demand. Therefore, depending on the quantities
demanded in both periods and on the cost structure of the winning supplier, the incumbent may or may
not have a comparative cost advantage in the second period. Hence, we believe that our study will provide
valuable insights for evaluating the competitive bidding strategies of capacitated suppliers participating
in repeated procurement auctions. We also discuss possibility of strategic behavior on the suppliers’ side
and illustrate the effects of demand uncertainty on the mechanism, specifically on the payment rule.

3. Single-Period Procurement Model After stating our main assumptions to define the scope
of our study in this section, we will provide an in-depth analysis of several single-period procurement
models. We will follow Myerson’s framework in discussing the mechanism design properties of the defined
games. We will state the results in the main body and will have the derivations and the proofs for these
results in the appendix.

We consider a risk-neutral buyer in need of Qt units of an item in each period. In the main body of our
study, we assume that the demand is deterministic for each period, since it is a realistic assumption to
model real life single-period procurement setting. As an extension of our main study, we will briefly discuss
the stochastic demand scenario and its impact on the equilibrium bids. In a single-period procurement
setting, stochastic demand might be reasonable only if the buyer requests for quotes from the suppliers
without being able to give them an exact demand amount. Another option, in which stochastic demand
might be applicable, is to incorporate demand uncertainty for future periods in cases the suppliers behave
strategically, taking into account the future period demands while bidding in the current period.
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Assuming sole sourcing, the buyer chooses the awarded supplier for each period via a well-defined
procurement mechanism, trying to minimize the total procurement cost. Although in many situations
there might be non-price attributes affecting the procurement decisions, it might still be reasonable to
assume that price is the sole factor used to choose the winning supplier. This can be stated with the loss
of generality if the item to be procured is somehow standardized, or the non-price attributes are fixed
beforehand for all eligible participating suppliers.

Having defined the buyer side of our study, we now state the supplier-related assumptions to complete
the scope definition. We assume that all suppliers are risk-neutral and that each bids to maximize her
own expected profits. We assume that all suppliers are aware of the number of suppliers participating in
the procurement auction and that it is fixed exogenously, i.e. the supplier pool is closed to new entries,
and no supplier goes out of business during the sequence of procurement auctions.

Our study depends on the private value assumption, which means that each supplier’s cost is totally
independent of the other suppliers’ costs. Although it might seem more reasonable to consider interde-
pendent (affiliated) value models due to similarities among the technologies used to produce a certain
product in real life, we assume that there are sufficient differences among the technologies used by each
supplier to support the use of private value models.

Our crucial assumption about suppliers is that they will face both economies and diseconomies of scale
as they are weakly constrained by capacity. We will consider U-shaped cost functions to capture these
issues. We assume all suppliers are symmetric in the parametric form of their cost functions and that
they are aware of this commonality. However, each supplier has her own cost function depending on the
value of the parameter θ, which defines the supplier type, and supplier types are drawn from the same
distribution F (θ), with a normalized finite support of [θmin, θmax]. Each supplier knows her own type
exactly and knows that others’ types are drawn independently from F (θ). Hence, our study will be based
on the symmetric incomplete information setting.

Among various alternatives to represent U-shaped costs, we choose to work with the following form:
C(θ, Q) = α(θ) + γ(θ)Q + δ(θ)Q2 (1)

It will be possible to capture a wide variety of situations by the cost function defined in equation 1. For
each supplier, the above equation will represent economies of scale for quantities less than −γ(θ)/2δ(θ),
that is the capacity of a supplier with type θ, and diseconomies of scale for greater quantities. Figure 1
shows an example view of a θ-typed supplier’s cost function, satisfying the following conditions: α(θ) > 0,
γ(θ) < 0 and δ(θ) > 0.
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Figure 1: A Typical U-Shaped Cost Function

Based on the structural form of the cost function, we distinguish the suppliers as homogenous or non-
homogenous. The above representation allows us to regenerate several different options that might occur
in real life. These options might be listed as follows:

• Homogenous-Scale Suppliers: those having the same U-shaped function shifted by the supplier-
specific capacity.
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• Homogenous-Capacity Suppliers: those having the same capacity level differentiated by supplier-
specific productivity(scale elasticity).

• Non-Homogenous Suppliers: those having both supplier-specific capacity and productivity.

Considering each of these options, we build our study by starting with two suppliers and then gen-
eralizing to N suppliers. Another important issue about the cost characteristics will be the number of
times that suppliers’ cost functions intersect. This property provides additional information about the
suppliers’ cost structures. The following alternatives are captured in our study:

• Pairwise Single Crossing

– Single Crossing in N-Supplier Generalization in the case of non-homogenous suppliers.
– Arbitrary Number of Crossing in N-Supplier Generalization in cases of homogenous-scale or

non-homogenous suppliers.

• Pairwise Double Crossing

– Double Crossing in N-Supplier Generalization in the case of non-homogenous suppliers.
– Arbitrary Number of Crossing in N-Supplier Generalization in cases of homogenous-capacity

or non-homogenous suppliers.

Before studying the above options in detail, we briefly discuss the mechanism design and implementa-
tion issues.

3.1 Mechanism Design and Implementation The mechanism design problem has been well
studied by Myerson. In the mechanism design approach to auction problems, if the set of possible bids is
unrestricted, it will not be possible to analyze the design problem due to the complication caused by the
unlimited number of possible bids for each supplier. Therefore, the common approach is to implement the
revelation principle, which states that for any given mechanism and an equilibrium for that mechanism,
there exists a direct mechanism in which it is an equilibrium for each bidder to report his or her true type,
and the outcomes are the same as in the given equilibrium of the original mechanism. Hence, restricting
the analysis only to direct mechanisms does not cause any loss of generality.

Two important issues that should be considered in the design of auctions are incentive compatibility
(IC) and individual rationality (IR). Under the procurement context, the IC property implies that the
suppliers cannot gain any additional profit by pretending to be someone other than their true types. In
the case of a direct mechanism, IC implies that revealing her true type is the equilibrium strategy for each
supplier. However, this may not be in line with a supplier’s best interest. Therefore, a proper incentive
scheme should be constructed while designing the mechanism. This may be accomplished by defining the
appropriate allocation and payment rules. Besides considering incentives, the payment rule should also
make the mechanism more attractive than any possible outside option. IR implies that each supplier, by
participating in the auction, has a higher expected payoff than she would have from the outside option.

We are currently more interested in the implementation of well-structured auction mechanisms, such
as first-price or second-price auctions. During the implementation of such mechanisms, suppliers actu-
ally consider Bayesian incentive compatibility and individual rationality due to the private information
assumption, and the revenue equivalence holds as long as the participating suppliers are symmetric.

If the second-price auction is chosen as the implementation procedure, the weakly dominant strategy
of each supplier will be to reveal her true type, expecting to receive a payment that will be equal to the
cost of the most competitive opponent, given that she is the least-cost-type supplier. However, if the
first-price auction is chosen as the mechanism, each supplier will inflate her own cost by some amount
that will provide sufficient incentive for her to act according to her true type. We analyze the first price
auction in the following sections.

3.2 Pairwise Single-Crossing Models We start our detailed analysis of the pairwise single-
crossing models with the single crossing in N-supplier generalization and then continue with the arbitrary
number of crossing generalization.

3.2.1 Single Crossing in N-Supplier Generalization We assume that the cost functions of these
suppliers will intersect at a single point, which we will denote by Qc. For any Q < Qc the cost function
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will be an increasing function of θ, and for any Q > Qc it will be a decreasing function of θ. This model
might be realized under the non-homogeneous suppliers option, and the crossing point can be considered
as an item specific threshold value. After stating the required properties for parameters, we represent
such a setting in Figure 2.

• α
′
(θ) > 0 since C

′
(θ,Q) > 0 at Q = 0

• C
′
(θ, Q) = 0 at Q = Qc

– if γ
′
(θ) 6= 0, then δ

′
(θ) = γ

′
(θ)2

4α′ (θ)
> 0, and γ

′
(θ) < 0 since −γ

′
(θ)

2δ′ (θ)
> 0

– if γ
′
(θ) = 0, then δ

′
(θ) < 0 since Qc =

√
−α′ (θ)

δ′ (θ)
> 0

– α
′′
(θ) = γ

′′
(θ) = δ

′′
(θ) = 0

These conditions are required for the existence of a unique critical quantity Qc that is independent of
supplier type θ.
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Figure 2: Single Crossing Point Setting

Actually, this environment can be considered as a variant of the N -suppliers case under the bounded
rationality assumption. It might not be possible to know the exact number of participating suppliers or
detailed individual information about each of them. Hence, each supplier will choose to bid against her
most competitive rival, assuming that her competitor will have the same cost structure. After building
our analysis on the two-suppliers game, as a mathematical extension in the appendix we discuss the
generalization to N -suppliers game, which has the restrictive assumption that all suppliers’ cost functions
intersect at a single point.

The structure of the equilibrium bidding function depends on whether the amount of quantity de-
manded Q is less than or more than Qc as the probability of winning changes depending on the relative
location of quantity demanded.

Case I : Q < Qc

We define the expected profit function of a supplier as follows:

π(θj) = (1− F (φ(bj))) (bj − C(θj , Q))Q (2)

The first term in equation 2 denotes the probability of winning the auction while bidding bj . A
supplier j will win the auction if and only if she submits the lowest bid. Since β is an increasing function
of θ, submitting the lowest bid is equivalent to stating that the supplier j will win whenever she has a
lower type than her opponent. We denote the inverse bidding function by φ(bj) to represent the relation
between the submitted bids and the supplier’s revealed type. The second term shows the profit margin
of supplier j. Therefore, the supplier is actually facing a tradeoff while determining the optimal bid. An
increase in the bid will increase the profit margin, but will also reduce the probability of winning at the
same time. The optimal bid is determined at the point where these effects balance off.
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Due to the symmetric Bayesian-Nash equilibrium result, we can argue that φ(bj) = θj . Making this
substitution in the necessary first-order condition equation for maximization and rearranging the terms
to solve the first-order differential equation, the following equilibrium bidding function is obtained:

β(θj) = C(θj , Q) +
∫ θmax

θj

C
′
(x,Q)

(
1− F (x)
1− F (θj)

)
dx (3)

In equation 3, C
′
(x,Q) represents the partial derivative of C(x,Q) with respect to x. It can be thought

of as the marginal cost of type at the given quantity level.

Although β(θj) is derived from the necessary condition, the following proposition verifies that it is
indeed the optimal strategy:

Proposition 3.1 If Q < Qc, the symmetric equilibrium strategies of suppliers for a single-period pro-
curement auction are given by equation 3.

Proof. See Appendix. ¤
Case II : Q > Qc

We can now consider the case in which the quantity demanded exceeds the critical quantity. In this
case, the winning probability definition changes because the most efficient supplier is now the one with
the highest type. As β is now decreasing function of θ, submitting the lowest bid is equivalent to stating
that supplier j will win whenever she has a higher type than her opponent. The expected profit function
of a supplier will be defined as follows:

π(θj) = (F (φ(bj))) (bj − C(θj , Q))Q (4)

The first order condition yields the following equilibrium bidding function defined by:

β(θj) = C(θj , Q)−
∫ θj

θmin

C
′
(x,Q)

(
F (x)
F (θj)

)
dx (5)

As C
′
(x, Q) will be negative for all x in this case, the equilibrium bid submitted by any supplier will

still be greater than the the corresponding supplier’s average cost. Proposition 3.2 verifies the equilibrium
bidding strategy as the quantity demanded is more than the critical quantity.

Proposition 3.2 If Q > Qc, the symmetric equilibrium strategies of suppliers for a single period pro-
curement auction are given by equation ??.

Proof. A proof similar to the one used for proposition 3.1 can be provided. ¤
We characterize the symmetric equilibrium bidding strategies of a capacity-constrained supplier in the

following proposition:

Proposition 3.3 For Q < Qc, the symmetric equilibrium bid of supplier j is an increasing function of
her type θj, whereas for Q > Qc, it is a decreasing function of her type θj.

Proof. We can prove analytically this proposition by taking the first-order partial derivative of
β(θj) with respect to θj for both cases.

Case I : Q < Qc

∂β(θj)
∂θj

=
∫ θmax

θj

C
′
(x,Q)

(
f(θj)

1− F (θj)

)(
1− F (x)
1− F (θj)

)
dx (6)

∂β(θj)
∂θj

> 0 as C
′
(x,Q) > 0 ∀x when Q < Qc.

Case II : Q > Qc

∂β(θj)
∂θj

=
∫ θj

θmin

C
′
(x,Q)

(
f(θj)
F (θj)

) (
F (x)
F (θj)

)
dx (7)
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∂β(θj)
∂θj

< 0 as C
′
(x,Q) < 0 ∀x when Q > Qc.

These analytical results also validate the intuition. As the cost of providing the item increases, the
supplier will submit a higher bid to cover her costs. The cost is an increasing function of θ for Q < Qc;
therefore, the higher the type, the higher the submitted bid, and oppositely the lower the type, the higher
the submitted bid when Q > Qc due to the change of most efficient supplier from θmin to θmax. ¤

Having derived symmetric equilibrium bidding strategies, we can now comment on the expected pro-
curement cost of the mechanisms for the buyer. The expected procurement cost is defined below:

E[PC] = 2× E[m(θ)]

= 2×
∫ θmax

θmin

C(y, Q)F (y)f1
1 dy

= E[C2
2 (θ,Q)] (8)

C2
2 (θ,Q) represents the higher cost for providing Q units between 2 suppliers. Hence, the total pro-

curement cost to the buyer is just the expectation of this cost. We state the revenue-equivalence result
that holds when the participating suppliers are symmetric in the following proposition:

Proposition 3.4 Whether the auction format chosen is first-price or second-price, the expected total
procurement cost for the buyer is the expectation of the higher cost of providing the required amount
between 2 suppliers.

3.2.2 Arbitrary Number of Crossing in N-Supplier Generalization As an extension to the
previous model, we drop the assumption that there exists a single crossing point and allow that the most
efficient technology type will change as a function of quantity demanded.
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Figure 3: Single Crossing Generalization vs Quantity

Figure 3 represents an example of such generalized cost functions for three different supplier types,
and figure 4 represents an example of such cost functions for three different quantity levels. As can be
seen from these two figures, the cost functions are not only U-shaped in terms of quantity for a given
supplier type, but also U-shaped in terms of supplier type for a given quantity level. Therefore, the most
efficient supplier will be different for each quantity level.
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Figure 4: Single Crossing Generalization vs Supplier Type
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Because all of the suppliers are aware of the common structure of the cost function, they are able to
determine the most efficient technology type θe(Q) for the given deterministic demand Q. Based on the
value of θe(Q), the suppliers are able to define their probability of winning and, hence, their equilibrium
bidding function. Each supplier type θj has a cost equivalent type θ̂j . Supplier type θj will be the winner
if there is no supplier with a type θ ∈ [θj , θ̂j ]. The structure of the bidding function depends on the
relative position of θj with respect to θe(Q).

Case I : θj < θe(Q)

β(θj) = C(θj , Q) +
∫ θmax

θ̂j

C
′
(x,Q)

(
1− F (x)
1− F (θj)

)N−1

dx−
∫ θj

θmin

C
′
(x,Q)

(
F (x)
F (θj)

)N−1

dx (9)

Case II : θj > θe(Q)

β(θj) = C(θj , Q) +
∫ θmax

θj

C
′
(x,Q)

(
1− F (x)
1− F (θj)

)N−1

dx−
∫ θ̂j

θmin

C
′
(x,Q)

(
F (x)
F (θj)

)N−1

dx (10)

Based on the equations 9 and 10, the equilibrium bidding function will be a decreasing function of θ
for θ < θe(Q), and an increasing function of θ thereafter.

3.3 Pairwise Double Crossing Having completed the detailed analysis of pairwise single crossing
models, we continue our study by focusing on pairwise double crossing models.

3.3.1 Double Crossing in N-Supplier Generalization These models can be considered as a
straightforward extension of the single crossing in N-Supplier generalization. In this case, there will be
two critical crossing points, Q1

c and Q2
c , which are item-specific threshold values. An example view of

this model can be found in figure 5.
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Figure 5: Pairwise Double Crossing

The structure of the equilibrium bidding function will depend on whether the quantity demanded Q
is between Q1

c and Q2
c or not, as the probability of winning changes depending on the relative location of

quantity demanded.

The equilibrium bidding functions are defined as follows:

If Q ∈ [Q1
c , Q

2
c ]

β(θj) = C(θj , Q)−
∫ θj

θmin

C
′
(x,Q)

(
F (x)
F (θj)

)
dx (11)

otherwise
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β(θj) = C(θj , Q) +
∫ θmax

θj

C
′
(x,Q)

(
1− F (x)
1− F (θj)

)
dx (12)

4. Repeated Procurement Model Having completed the detailed analysis of the single-period
procurement model in the previous section, we move on to the analysis of the repeated procurement
model. We will first state our additional assumptions to define the scope of the repeated procurement
setting as we move along the analysis. We will first study the short-term contracting setting, in which an
individual auction is being held separately at each period. Next, we will focus on long-term contracting
as a benchmark for the short-term contracting alternative.

4.1 Short-term Contracting We start our analysis by assuming that all suppliers are naive, such
that they only consider the current period while setting their bids and do not take into account future
periods. However, they do evaluate the information gathered from the previous period in updating their
belief functions. We will briefly discuss strategic thinking at the end of our study.

We assume that the suppliers’ types are drawn once and remain the same during both periods. At
the end of the first period, each supplier will update her beliefs according to her private information,
and this will cause informational asymmetry between the suppliers. Due to this assumption, information
feedback provided to the suppliers at the end of the first period will play an important role in updating
their beliefs for the other suppliers’ types. Therefore, in terms of applicability information feedback is a
crucial issue in the mechanism design.

4.1.1 Single Crossing in N-Supplier Generalization Initially, we will focus on the scenario
in which the quantity demanded in each period follows Case I. The other scenarios will follow similar
discussion.

If a supplier is the winner(supplier i) in the first period, she will update beliefs about the loser’s type
as:

Fi(θ) =
F (θ)− F (θi)

1− F (θi)
θ ∈ [θi, θmax] (13)

If she is a loser(supplier j) in the first period;

she will update her belief about the winner’s type as:

Fji(θ) =
F (θ)
F (θj)

θ ∈ [θmin, θj ] (14)

Another crucial assumption is that winning in the first period reduces available capacity for the second
period. Hence, whether winning in the first period brings cost advantage in the second period will depend
on the quantity demanded in the second period and on the cost structure of the winning supplier. As
a result, the winner of the first period will bid, realizing unit cost of C(θi, Q1 + Q2) while the loser is
realizing unit cost of C(θj , Q2).

Because we consider naive suppliers for our current study, the first-period bids will be defined by the
bidding functions stated in the previous section. In this section, we will focus on the second-period bids,
considering the assumptions that define the scope. Before deriving the equilibrium bidding strategies,
we will point out an important problem in this repeated procurement setting. In the second period,
the suppliers become ex-ante asymmetric not only in terms of costs, but also in terms of their beliefs
about others. Due to this informational asymmetry, none of the suppliers will be able to define her own
strategy based on Bayesian belief about others in a game-theoretic setting. An asymptotic behavioral
analysis might be performed to derive the equilibrium strategies asymptotically. However, this is beyond
the scope of our study.

As a design parameter of two-period game, we assume that a common information feedback θf is
provided to both suppliers at the end of the first period in addition to their individual win/loss status.
θf represents for the winner that her opponent has higher types than the announced type, whereas
it represents for the loser that the winner has a lower type than the announced type. This common
information feedback solves the informational asymmetry problem, leaving two groups of suppliers due
to the type asymmetry, one winner (Incumbent) and one loser (Entrant).
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The corresponding expected profit functions for the incumbent and the entrant are defined as:

πI(bI) = (1− Fi(φE(bI)))(bI − C(θi, Q1 + Q2))Q2

πE(bE) = (1− Fji(φI(bE)))(bE − C(θj , Q2))Q2 (15)

If we substitute equation 13 and equation 14 into their respective places in the equation set 15, we will
obtain the following set of equations:

πI(bI) =
(

1− F (φE(bI))
1− F (θf )

)
(bI − C(θi, Q1 + Q2))Q2

πE(bE) =
(

F (θf )− F (φI(bE))
F (θf )

)
(bE − C(θj , Q2))Q2 (16)

The first relation defined by equation 16 shows the expected profit of the incumbent competing with
the entrant for the second period. The second relation defines the expected profit of an entrant competing
against the incumbent.

The first order conditions of the equation set 16 can be rearranged to get:

φ
′
E(b) =

1− F (φE(b))
f(φE(b))

· 1
b− C(φI(b), Q1 + Q2)

φ
′
I(b) =

F (θf )− F (φI(b))
f(φI(b))

1
b− C(φE(b), Q2)

(17)

Using the boundary conditions βI(θmin) = βE(θf ) and βI(θf ) = βE(θmax), differential equations
defined by equation set 17 should be solved to define the equilibrium bidding functions for the incumbent
and the entrants. Even under the two-supplier game, it will be possible to get a nice closed form analytical
solution only for some special cases. Therefore, we focus more on some properties of the equilibrium
strategies indirectly.

Before going into further analysis of equilibrium strategies, we need to define some more concepts.
Due to the capacity allocation assumption, the incumbent has cost equal to C(θi, Q1 + Q2) which can be
equivalent to C(θ̂i, Q2) and bids accordingly. Therefore, we will define θ̂i as the transformed type of the
incumbent.

We further distinguish different scenarios to point out some properties of the equilibrium bidding
strategies:

• Scenario I: θ̂min < θf & θ̂f < θmax

• Scenario II: θ̂min > θf & θ̂f > θmax

• Scenario III: θ̂min > θf & θ̂f < θmax

• Scenario IV: θ̂min < θf & θ̂f > θmax

Proposition 4.1 Under scenario I the incumbent will bid more aggressively compared to the entrant,
while under scenario II the entrant will bid more aggressively.

In scenario I, the entrant’s type is stochastically higher than the incumbent’s type, i.e. FI(θ) > FE(θ).
Therefore, φI(b) ≤ φE(b) ∀ b. This can be proven by using contradiction. Intuitively, when the entrant
knows that she does not have comparative advantage against the incumbent, she will choose to bid more
conservatively. Similarly, in scenario II, just the opposite holds true as the incumbent’s type becomes
stochastically higher than the entrant’s types. In this scenario, because she has lost cost advantage due
to winning in the first period, the incumbent intuitively chooses to submit a more conservative bid.

Proposition 4.2 Under scenario III and scenario IV, there exists a single switching point θs. In sce-
nario III, up to θs the

entrant is more aggressive, after that the incumbent. In scenario IV, the opposite holds.
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In these two scenarios, it is not possible to talk about the stochastic dominance of one group over the
other in the complete possible range of types. There exists a single switching point, where the stochastic
dominance passes from one group to another. Depending on this switch, the aggressiveness also changes
from one group to another. In scenario III, FE(θ) ≥ FI(θ) ∀ θ ≤ θs and FE(θ) < FI(θ) ∀ θ > θs. The
opposite holds true for the last scenario.

An alternative scenario combination will be the setting at which both period demands follow Case II.
The first-order conditions for the equilibrium bids will be defined as:

φ
′
E(b) = −F (φE(b))

f(φE(b))
· 1
b− C(φI(b), Q1 + Q2)

φ
′
I(b) = −F (φI(b))− F (θf )

f(φI(b))
1

b− C(φE(b), Q2)
(18)

the differential equations defined by equation set 18 should be solved to define the equilibrium bidding
functions for the incumbent and the entrants, by using the boundary conditions βE(θmin) = βI(θf ) and
βE(θf ) = βI(θmax). Since these equations can only be solved for only special cases, we comment on the
characteristics of the equilibrium strategies based on the incumbent’s transformed type.

Proposition 4.3 Under the scenario θ̂f < θmin & θ̂max < θf , the entrant will bid more aggressively
compared to the incumbent, while under the scenario θ̂f > θmin & θ̂max > θf , the incumbent will bid more
aggressively.

Proposition 4.4 Under the scenarios θ̂f < θmin & θ̂max > θf and θ̂f > θmin & θ̂max < θf , there exists
a single switching point θs. In the first of these scenarios, up to θs entrant is more aggressive, after that
the incumbent, and the opposite holds for the last scenario.

The intuitions beyond these propositions are exactly the same as those explained for the propositions
given in the case-I demand combination. Proposition 4.3 results from the stochastic dominance of the
entrant over the incumbent for the first scenario, and from just the opposite for the second scenario.
However, under the scenarios defined in proposition 4.4 there is no strict stochastic dominance of one
type over the entire type range, and therefore the switching type exists.

Defining the appropriate belief update and expected profit equations based on the observed demand
pattern, the first-order condition equations required for the optimal bidding strategies can be obtained for
any scenario case combination. The major problem in the equation sets defining the first-order conditions
is that the variables are not separable for all distributions. If the underlying distribution for types allows
the separability, then it is possible to get the closed form analytical solution for the competitive bidding
function.

4.1.2 Arbitrary Number of Crossing in N-Supplier Generalization At the end of the first
period, each supplier will update her beliefs according to her private information, and this will cause
asymmetry between the suppliers.

If she is the winner(supplier i) in the first period, then she will update beliefs about the losers’ types
as follows:

Fi(θ) =
F (θ)− F (θi)

1− F (θi)
θ ∈ [θi, θmax] (19)

If she is a loser(supplier j) in the first period, then she will update for the winner’s type as follows:

Fji(θ) =
F (θ)
F (θj)

θ ∈ [θmin, θj ] (20)

She will update as follows for the other losers’ types:

Fjk(θ | θi) =
F (θ)− F (θi)

1− F (θi)

Fjk(θ) =
∫ min(θ,θj)

θmin

(
F (θ)− F (θi)

1− F (θi)

)
f(θi)
F (θj)

dθi (21)
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An important structural property of the setting is that the winner of the first period will bid realizing
an average cost of C(θi, Q1 + Q2) while the losers are realizing an average cost of C(θj , Q2). In order
for the types of suppliers comparable at the second period quantity level Q2, the winner’s type θi will be
transformed to θ̂i by solving the relation C(θ̂i, Q2) = C(θi, Q1 + Q2). Hence, the losers will also define
their updated belief about the winner’s type in terms of this transformed type as:

Fji(θ̂) =
F (θ)
F (θj)

θ ∈ [θmin, θj ] ⇔ θ̂ ∈ [θ̂min, θ̂j ] (22)

Before going into deriving the equilibrium bidding strategies, we will point out an important problem
in repeated procurement setting defined above. In the second period, not only the suppliers become ex-
ante asymmetric in terms of costs, but their beliefs about others become also asymmetric. This additional
degree of informational asymmetry caused by belief updates complicates the derivation of equilibrium
bidding strategies. Indeed, it is not possible to derive closed form expressions even for simple cases.

2-Supplier Game

In the case of two suppliers, the model is somewhat simplified as there will be only one loser, although
there will still be asymmetry between the bidding strategies of the winner and the loser in the second
period. Denoting the winner by i, and the loser by j, the expected profit functions for them will be
defined as:

πi(bi) = (1− Fi(φj(bi)))(bi − C(θ̂i, Q2))Q2

πj(bj) = (1− Fji(φi(bj)))(bj − C(θj , Q2))Q2 (23)

If we substitute equation 19 and equation 20 into their respective places in the equation set 23, we will
obtain the following set of equations:

πi(bi) =
(

1− F (φj(bi))
1− F (θi)

)
(bi − C(θ̂i, Q2))Q2

πj(bj) =
(

F (θj)− F (φi(bj))
F (θj)

)
(bj − C(θj , Q2))Q2 (24)

The first order conditions of the equation set 24 can be rearranged to get:

φ
′
j(bi) =

1− F (φj(bi))
f(φj(bi))

· 1
bi − C(φi(bi), Q1 + Q2)

φ
′
i(bj) =

F (θj)− F (φi(bj))
f(φi(bj))

· 1
bj − C(φj(bj), Q2)

(25)

Using the boundary conditions βi(θmin) = βj(θi) and βi(θj) = βj(θmax) differential equations defined
by equation set 64 should be solved to define the equilibrium bidding functions for the winner and the
loser. Although we cannot get a nice closed form solution without explicitly defining the distribution, we
can still observe some basic properties of the equilibrium bidding functions. Based on the support range
of the transformed type of the winner the following statements can be derived:

• If θ̂min > θj & θ̂j < θmax, two bidding functions will never intersect, that is φi(b) < φj(b) ∀ b.

• If θ̂min > θj & θ̂j < θmax, then ∃ θs such that the two bidding functions intersect at θs and
∀ θ < θs ⇒ βj(θ) ≥ βi(θ) while ∀ θ > θs ⇒ βj(θ) ≤ βi(θ).

• If θ̂min > θj & θ̂j > θmax, then φj(b) < φi(b) ∀ b.

3-Supplier Game

This form of the game will be more complicated due to the presence of an additional loser. The
expected profit functions will be defined by:

πi(bi) = (1− Fi(φj(bi)))(1− Fi(φk(bi)))(bi − C(θ̂i, Q2))Q2

πj(bj) = (1− Fji(φi(bj)))(1− Fjk(φk(bj)))(bj − C(θj , Q2))Q2

πk(bk) = (1− Fki(φi(bk)))(1− Fkj(φj(bk)))(bk − C(θk, Q2))Q2 (26)
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Substituting the probability belief update equations into the equation set 26, we get the profit equations
defined in terms of the original distribution:

πi(bi) =
(

1− F (φj(bi))
1− F (θi)

) (
1− F (φk(bi))

1− F (θi)

)
(bi − C(θ̂i, Q2))Q2

πj(bj) =
(

F (θj)− F (φi(bj))
F (θj)

)
·

(
1−

∫ min(φk(bj),θj)

θmin

(
F (φk(bj))− F (θi)

1− F (θi)

)
f(θi)
F (θj)

dθi

)
(bj − C(θj , Q2))Q2

πj(bj) =
(

F (θk)− F (φi(bk))
F (θk)

)
· (27)

(
1−

∫ min(φj(bk),θj)

θmin

(
F (φj(bk))− F (θi)

1− F (θi)

)
f(θi)
F (θj)

dθi

)
(bk − C(θk, Q2))Q2

We will conclude this short-term contracting section by mentioning briefly the impossibility of strategic
behavior while setting the equilibrium bids. In a first-price auction setting, suppliers cannot behave
strategically due to the intractability of the analysis, as a result of the asymmetry that occurs among
suppliers in the second period. The suppliers are not able to define their second-period bidding strategies
in a closed form even if we assume that they have symmetric bidding strategies in the first period.
However, due to the asymmetries in the first period and in the cost advantage due to winning, it will be
even more complex to define the second period strategies. Hence, being unable to derive them analytically,
the suppliers choose to act naively in this short-term contracting setting.

4.2 Long-term Contracting Now, we will consider the long-term contracting environment, in
which suppliers behave as if they have constant fixed unit cost throughout the entire project life. Since
we consider this environment a benchmark for the short-term contracting setting, we will study two con-
tracting alternatives that the buyer might offer. The first alternative will be the declining-price contract,
whereas the second alternative will be the fixed-price contract. The intuition beyond the declining-price
contract is that the buyer will be willing to realize productivity by having a price reduction in each
period. We can link the contract environment to an auction setting by setting the reserve price of a given
period to the winning bid of the previous period. We will show that this policy is a weakly dominant
strategy for the buyer; the buyer’s choice will depend on the suppliers being myopic or strategic. Myopic
suppliers submit their bids by focusing only in the current period, while strategic suppliers consider the
declining-price condition in setting their bids.

We start our analysis by considering myopic suppliers, and then we elaborate the discussion by consid-
ering strategic suppliers. In the declining-price contract, under an incentive-compatible and individual-
rational mechanism, the minimum-cost myopic supplier is offered the price defined by the following
equation:

βM
t (cj) = cj +

∫ rt

cj

(
1− F (x)
1− F (cj)

)
dx (28)

The optimal price schedule for any project can be obtained by evaluating equation 28 at rt = βM
t−1(cj)

for each period. The offered price schedule for a given myopic supplier during the project life will follow
a pattern similar to the representative one shown in figure 6, in which it can be observed that the price
converges exponentially to her true cost.

Next, we can analyze the case of strategic suppliers. We start with two periods in order to show the
intuition beyond the equilibrium price offered to the minimum cost strategic supplier. The second-period
expected profit, πS

j2, is given by the following equation:

πS
j2 = (1− F (φS

2 (bj2)))(bj2 − cj)Q2 (29)

Because prices are fixed in the initial period for both periods, and the same supplier is awarded in
both periods, each supplier will set the reserve price to her own submitted first period bid. Therefore,
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Figure 6: Submitted Bids of a Myopic Supplier During Project Life

there is no explicit term due to the reserve price affecting the expected profit. This will come into play
while defining the optimal equilibrium price.

The optimal bidding strategy to maximize the expected profit defined by equation 29, as a result of
solving the necessary first-order condition, is given by the following:

βS
2 (cj) = cj +

∫ r2

cj

(
1− F (x)
1− F (cj)

)
dx (30)

The important point is that r2 will be replaced by bj1 as a result of the above reasoning. Therefore,
we can include the optimal strategy given by equation 30 after replacing r2 by bj1 in the expected profit
function of the project, denoted by π̃S

j .

π̃S
j =

[
(1− F (φS

1 (bj1)))
] ·

[
Q1(bj1 − cj) + Q2

∫ bj1

cj

(
1− F (x)
1− F (cj)

)
dx

]
(31)

The total expected profit from the project can be expressed as a function of the first period bid. As
can be seen from equation 31, there is a tradeoff in choosing the optimal bid value. However, the main
difference from the myopic suppliers case is that the positive effect of increasing the bid is weighted more
due to the declining-price consideration. The optimal equilibrium price offered to the minimum cost
supplier, is defined by the following:

βS
1 (cj) = cj +

∫ r1

cj

(
1− F (x)
1− F (cj)

)
dx +

Q2

Q1

∫ r1

βS
1 (cj)

(
1− F (x)
1− F (cj)

)
dx (32)

Proposition 4.5 The optimal bidding strategy of a given strategic supplier j, βS
1 (cj), is defined by

equation 32.

Proof. The intuition behind the optimal bidding strategy given by equation 32 is that strategic
suppliers ask for an additional subsidy in their initial-period price to recover expected opportunistic
losses in the future due to declining price schedule, under an incentive-compatible and individual-rational
mechanism. Under a fixed-price contract, the bidding strategies in each period will be given by the
following:

cj +
∫ r1

cj

(
1− F (x)
1− F (cj)

)
dx (33)

and the total profit will be as follows:

(Q1 + Q2)
∫ r1

cj

(
1− F (x)
1− F (cj)

)
dx (34)

However, due to the adjustment of the reserve price according to the winning bid, there is a difference
of

(∫ r1

βS
1 (cj)

(
1−F (x)
1−F (cj)

)
dx

)
that can be considered an opportunistic loss between equations 32 and 28.
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Strategic suppliers will weigh this term with the quantity ratio and will add it to their first period bids
in order to compensate the loss totally. It can be analytically shown that this bidding strategy satisfies
the first-order condition. ¤
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Figure 7: First-Period Equilibrium Price Offered to A Strategic Supplier

The graph in figure 7 represents a strategic supplier’s first-period equilibrium price as a function of
her true cost, while she is competing against five other strategic suppliers. We again assume that the
costs are drawn from U(1,3).

Proposition 4.6 The submitted bids of the strategic players are more dense, i.e. the deviation of the
equilibrium prices in the all strategic suppliers case is less than the deviation of equilibrium prices in the
all myopic suppliers case.

Analytically it is possible to show that the standard deviation of the submitted bids in the all strategic
suppliers case is lower. The extra term, compensation amount, which strategic suppliers add to the
myopic suppliers’ bid, is a decreasing function of the true cost. Therefore, the submitted bids are closer
to each other.

An observation about the optimal bidding strategy is that the quantity demanded has an impact on the
magnitude of the markup added by the supplier to compensate the opportunistic loss. Specifically, there
is an inversely proportional relation to the first-period quantity demanded and a directly proportional
relation to the second-period quantity. As the second-period quantity increases, the opportunistic loss to
be considered increases, and as the first-period quantity increases the opportunistic loss is compensated
by adding smaller markup to unit item. Inflating the markup due to this intuition results in the following
proposition.

Proposition 4.7 In the case where all suppliers are strategic, asupplier’s optimal bidding strategy will
lead to a higher bid (or at least equal for the special case cj = r1) than the one resulting from a supplier’s
optimal bidding strategy in the case where all suppliers are myopic.

.

Proof. The proposition can easily be proven by using the definitions of the optimal bidding strategies
given by equations 28 and 32. The difference between the strategic bid and the myopic bid equals to
Q2
Q1

∫ r1

βS
1 (cj)

(
(1−F (x))
(1−F (cj))

)
dx and is positive since βS

1 (cj) < r1 as long as cj < r1. If cj = r1, then the
submitted bids will be the same in both cases. As all integral terms equal to zero, the submitted bid
equals to r1 in both cases. ¤

We can easily generalize this intuition of compensating future losses to any finite T -period auction,
such that the opportunistic loss in period t will be compensated partially in each of the prior periods.
In other words, while determining the optimal bid in a given period t, the supplier will consider the
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opportunistic losses in all future periods, from t + 1 to T , caused by bidding bjt in the current period t.
These considerations lead to an additional markup to compensate for each future period.

Therefore, the optimal bidding strategy for a given period t can be stated as follows:

βS
t (cj) = cj +

∫ βS
t−1(cj)

cj

(
1− F (x)
1− F (cj)

)
dx

+
T∑

j=t+1

[(
Qj

Qt

)
·
∫ βS

t−1(cj)

βS
t (cj)

(
1− F (x)
1− F (cj)

)
dx

]
(35)

where the last period bidding strategy is given by the following:

βS
T (cj) = cj +

∫ βS
T−1(cj)

cj

(
1− F (x)
1− F (cj)

)
dx (36)
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Figure 8: Equilibrium Price Schedule of A Strategic Supplier

Equations 35 and 36 are obtained using a dynamic program logic. First, we define the optimal bidding
strategy for the last period in the project life. Next, we substitute this strategy in the expected joint-
profit equation of the previous period in order to find the previous period optimal strategy. We continue
to substitute each found strategy in the previous period’s expected joint-profit equation until we reach
the initial period. Finally, we can evaluate the bidding strategies of each period in a forward procedure.
Figure 8 shows an example view of the equilibrium price pattern of a given strategic supplier.

Proposition 4.8 The path followed by the submitted bids for a T -period auction will depend on the
distribution of the quantity demanded throughout the periods.

.

Proof. As the optimal bidding strategy in any period t is defined by equation 35, and it is easy to
see that the markup in any period is directly proportional to the ratio of the further period quantities to
the current period quantity. The more fluctuation in the demand, the more fluctuation there will be in
the mark-ups, leading to changes in the path that the optimal bid follows. ¤

An extension that we have considered for the case of strategic suppliers is the stochastic demand for the
second period. As the quantity demanded does not have any role in the determination of the submitted
bid for myopic suppliers, it is not important whether or not the demands are deterministic. However,
the quantity demanded has a significant role in setting the equilibrium bids for strategic suppliers. The
stochastic quantity demanded will be a straightforward extension of the studied model, because the costs
are independent of the quantity demanded.

βS
1 (cj) = cj +

∫ r1

cj

(
1− F (x)
1− F (cj)

)
dx +

E[Q2]
Q1

∫ r1

βS
1 (cj)

(
1− F (x)
1− F (cj)

)
dx (37)
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The only difference from the deterministic demand will be in the adjustment of compensation markup.
The supplier will adjust the compensation markup based on the expected value of the quantity demanded
in the second period, instead of the actual quantity demanded in the second period. The same type of
extension will hold for all of the strategic supplier bidding strategies.

As we mentioned at the outset of this long-term setting analysis, the declining-price contract is a
weakly dominant strategy for a buyer. Starting with the all strategic suppliers model, we would like
to show that although the reserve price has an effect on the expected periodical payments, it does not
change the expected total project procurement cost. Because the strategic suppliers consider the future
periods while setting their current period bids, they compensate for future expected losses. Therefore,
changing the reserve price will only change these adjustments, and at the end the total will remain the
same as if the contract were a fixed price contract. In terms of mechanism design perspective, the total
expected payment to a single supplier is given by the following:

M̄j(cj) =
T∑

t=1

[
Qt

(
(1− F (cj))cj +

∫ r1

cj

(1− F (x)) dx

)]
(38)

As can be seen from equation 38, the expected total procurement cost is independent of the reserve
prices set in periods other then the first period.

However, in the case of all myopic suppliers, the reserve price policy significantly affects the expected
total procurement cost since the myopic suppliers do not consider the future periods and do not compen-
sate for future possible losses in their current period bids. Therefore, the buyer’s best response is to set
a declining-price policy to capture the surplus instead of leaving it totally to the suppliers.

5. Numerical Study. In this section, we try to visualize the stated propositions by providing basic
examples. We assume that the suppliers’ types are independently and identically distributed according
to the uniform distribution defined on the closed interval [0,1], donated by U(0,1). We choose a uniform
distribution because it is reasonable to assume supplier types are evenly distributed in a given range, and
uniform distribution is commonly used in the auction literature.

We assume the any supplier’s cost is defined by the following equation:

C(θ, Q) = (45 + 10θ)− 5Q + (0.6− 0.2θ)Q2

.
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Figure 9: Bidding Function versus Type (Case-I)

The critical quantity Qc for this example is seven lots. Assuming that the quantity demanded is three
lots, i.e. Q=3, we will look at the case Q < Qc. First we look at the relation between the submitted bid
and the true type. In figure 9, the upper linear function represents the equilibrium bidding strategy of
a supplier competing with four other suppliers, and the lower linear function represents the average cost
of the same supplier, as functions of her true type.
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As stated in the proposition, the submitted bid is an increasing function of the type. Another obser-
vation is that the profit margin, the difference between the submitted bid and the true cost, diminishes
as the type increases. Intuitively, the supplier with a higher type needs to decrease the added markup
due to the loss of competitive advantage as her cost comes closer to the upper limit of the possible cost
space.

Next, in figure 10, we provide the supplier’s equilibrium bidding strategy, with a true type of 0.5, as
a function of the number of participating suppliers. And the lower straight line in this graph shows the
same supplier’s average cost. As seen from the graph, the submitted bid exponentially approaches true
cost as the number of opponents increases.
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Figure 10: Bidding Function versus N (Case-I)

In the following example, we visualize the effect of stochastic demand. We assume that demand follows
the uniform distribution in the finite range [2,6]. In figure 11, the line starting from a higher value shows
the bidding function under demand uncertainty, while the other represents the bidding function in case
of a deterministic demand, that is equal to E[q], i.e. 4 lots in this example.
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Figure 11: Effect of Demand Uncertainty (Case I)

In figure 12, the upper line represents the bidding function under stochastic demand, while the other
line shows the deterministic-demand case bidding function. In this example, we assume that demand
follows the uniform distribution defined on [8,10]. Thus, in the deterministic equivalent case, Q = E[q] = 9
lots.
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Figure 12: Effect of Demand Uncertainty (Case II)

6. Conclusion. In this paper, we consider the derivation of capacity-constrained suppliers’ competi-
tive bidding strategies in a repeated procurement auction setting. First, we discuss the detailed derivation
of the equilibrium bids in a single period procurement setting. The single period setting provides the
fundamental results for the repeated setting.

Based on our best knowledge of the current literature, this study is the first to consider jointly capacity,
cost functions capturing economies and diseconomies of scale, and repeated procurement setting. Our
study captures various U-shaped functions that can be generalized to represent cost as a function of
attributes other than quantity. Such attributes might be quality and delivery time related attributes. As
a closely related extension, we plan to focus on such generalizations in future work. We model various
U-shaped cost function possibilities to capture both homogenous and non-homogenous supplier structures
while determining the competitive bids.

Since the cost is a function of quantity rather than being a static constant, the interaction of the
suppliers’ cost functions play an important role in deriving the winning probabilities, and hence the
equilibrium bids. Therefore, we study pairwise single- and double-crossing scenarios. We start our
analysis for both scenarios with the restricted setting and then generalize the results to the arbitrary
number of crossing setting for N suppliers.

Although we cannot extensively characterize the equilibrium bidding functions for general distributions
in the second period of a repeated setting, we observe how bid aggressiveness changes based on the
quantities demanded in both periods and on the cost function structure. We show that there might still
be scenarios in which the incumbent might have a winning chance in the second period even in the case
of losing comparative advantage for the second period by winning in the first period.

Due to the cost asymmetries between the incumbent and the entrants in the second period, efficient
allocation cannot be guaranteed. Because the equilibrium bids are asymmetric, there exists a positive
probability that there might be a more efficient (i.e. less costly) supplier than the winner in the second
period.

In the long-term contracting setting, we distinguish between myopic and strategic suppliers to empha-
size the effect of the strategic thinking on determining the equilibrium prices, and hence the effect on the
total procurement cost for the buyer. The strategic supplier of a given cost inflates the bid of a myopic
supplier who has the same given cost. The inflation amount depends on different attributes for each
period. This can be considered a compensation (hedging) amount against the possible loss in the future
due to the current period bid. From the mechanism design perspective, if the suppliers are strategic,
then the payment rule should provide an additional subsidy to the suppliers so that the corresponding
direct mechanism could be incentive compatible and individually rational. The extent of compensating
opportunistic losses depends on information availability and market structure.

From the buyer’s point of view, offering a declining-price contract is a weakly dominant strategy in
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long-term contracting. This policy does not affect a strategic supplier’s expected total profit. It only
changes the periodical expected profits, but, on the overall, they end up with the same expected total
profit. However, in the case of myopic players, the policy plays a significant role in determining the
expected total profit. Therefore, the buyer could gain some of the surplus that would otherwise go totally
to the suppliers by setting the reserve price to the winning bid in the case of myopic suppliers.

However, strategic behavior in the short-term contracting setting described by this study is intractable,
and therefore it is reasonable to assume that suppliers will determine their bids naively. In the case of
strategic thinking, due to the asymmetry among suppliers at the second period, the equilibrium bids
submitted in the first period will also be asymmetric. Therefore it might not be possible to have full
separation of types, and we need to deal with pooling which cannot be characterized under a first price
auction setting.

Therefore, strategic thinking can only be considered by suppliers if the auction in the second period is
a second-price auction instead of a first-price auction. Because bidding the true cost is a weakly dominant
strategy even in the case of asymmetries, the second-period bids will be known while bidding for the first
period, and these can strategically be taken into account in setting the first-period bid. This will be a
challenging extension of the current study.

We also believe that this study provides a basic framework on which more advanced auction settings
can be built. We will extend this study to consider non-price attributes that play crucial roles in selecting
the awarded supplier in the industrial procurement setting. Though the price will always be a major
decision factor, non-price attributes such as quality, delivery performance, or service level might be
equally important in choosing the awarded supplier in practice. Another extension will be to study the
suppliers’ optimal strategies in case of bundling option for multi-item auctions in the presence of non-price
attributes. As a final remark, an in-depth theoretical analysis of strategic thinking in all these settings
will remain a challenging research question.

Appendix A. Detailed Mechanism Derivation. Given a direct mechanism (P,M) consisting
of a pair of functions P : Θ → ∆ and M : Θ → RN where Pj(θ) is the probability that supplier j will
be awarded and Mj(θ) is the expected payment received by supplier j, we represent the probability that
supplier j will be awarded the contract when she reports her type to be ϑj instead of θj , while all other
suppliers report their costs truthfully, by pj(ϑj). Similarly, mj(ϑj) represents the expected payment to
supplier j when her report is ϑj , and all other suppliers tell the truth.

The probability of winning the contract and the expected payment received depend only on the reported
type and not on the true type. Supplier j’s expected payoff when she reports ϑj instead of her true type
θj , again assuming that all other suppliers tell the truth, can then be defined as:

mj(ϑj)− pj(ϑj)C(θj , Q) (39)

Representing the expected profit of supplier j when she submits her true type θj , by πj(θj), the direct
revelation mechanism (P,M) is said to be IC if for all j, for all θj and ϑj :

πj(θj) ≡ mj(θj)− pj(θj)C(θj , Q) ≥ mj(ϑj)− pj(ϑj)C(θj , Q) (40)

Further derivation of the mechanism depends on the specific structure of the cost function and quantity
demanded. Due to our single crossing point assumption, there will be two different mechanisms under
deterministic demand: one for quantities less than Qc and one for quantities more than Qc. We call
the first one as LTP Mechanism, because the lowest type supplier is the preferred supplier that provides
the lowest cost for quantities less than Qc. By following similar logic, we call the second one as HTP
Mechanism. Due to the fact that both suppliers have the same cost when Q = Qc, there will not be any
competition between the suppliers. Hence, each supplier will bid exactly the same amount equivalent to
the cost, resulting in neither gain nor loss.

Proposition A.1 LTP mechanism is incentive compatible if and only if the associated pj is non-
increasing, whereas HTP is incentive compatible if and only if pj is non-decreasing.

Proof. IC implies that: πj(θ) ≥ maxϑ∈ Θj{mj(ϑ) − pj(ϑ)C(θj , Q)}. In words, each supplier will
maximize her expected payoff when she reveals her true type in a direct mechanism which has the
appropriate payment and allocation rules that provide the required incentive scheme.
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From equations 39 and 40, we can state that incentive compatibility is equivalent to the following
requirement for all θj and ϑj :

πj(ϑ) ≥ πj(θ) + pj(θ)(C(θj , Q)− C(ϑj , Q)) (41)

The convexity of πj(θ) depends on the structure of C(θ, Q). As stated in the U-shaped cost function
conditions, cost being an affine function of type, the equilibrium expected profit πj(θ) is a convex function.

The relation defined by equation 41 implies that for all θ, −pj(θ)C
′
(θ, Q) is the slope of a line that

supports the function πj at the point θ. As πj is absolutely continuous, it can be differentiable almost
everywhere in the interior of its domain:

π
′
j(θ) = −pj(θ)C

′
(θ,Q) (42)

Under LTP mechanism, equation 42 implies that pj is a nonincreasing function since C
′
(θ, Q) > 0 and

πj is convex.

In order to show that incentive compatibility is implied by the statement that pj is a non-increasing
function, we can rewrite equation 41 by using equation 44 as:

∫ θj

ϑj

pj(tj)C
′
(tj , Q) dtj ≥ pj(θj)(C(θj , Q)− C(ϑj , Q)) (43)

The relation defined by equation 43 certainly holds if pj is nonincreasing.

However, under HTP mechanism pj is nondecreasing based on equation 42. This is due to the fact
that C

′
(θ, Q) < 0 while πj is convex. In a similar way, it can be shown that

∫ θj

ϑj
pj(tj)C

′
(tj , Q) dtj ≥

pj(θj)(C(θj , Q)− C(ϑj , Q)) holds when pj is nondecreasing. ¤
After discussing the incentive compatibility of the mechanisms, we continue our study by considering

individual rationality. With the implicit assumption that the supplier has no other outside option where
she can utilize her existing capacity to earn profit, we can set the outside option profit to zero. At the
same, we also assume that the supplier does not incur costs if she chooses not to participate. Hence,
a direct mechanism (P,M) is individually rational if, for all j and θj , the equilibrium expected profit
πj(θj) ≥ 0. The equivalence of this requirement under LTP and HTP mechanisms is stated by the
following proposition.

Proposition A.2 LTP mechanism is individually rational if mj(θmax) ≥ pj(θmax)C(θmax, Q), while
HTP mechanism is individually rational if mj(θmin) ≥ pj(θmin)C(θmin, Q).

Proof. In LTP mechanism, we can define πj(θj) as the definite integral of its derivative:

πj(θj) = πj(θmax) +
∫ θmax

θj

pj(tj)C
′
(tj , Q) dtj (44)

Equation 44 implies that the shape of the expected profit function is completely determined by the
allocation rule P alone. The payment rule M only determines the constant πj(θmax).

The expected payment to j under an incentive compatible direct mechanism (P,M) is given by:

mj(θj) = mj(θmax)− pj(θmax)C(θmax, Q) + pj(θj)C(θj , Q) +
∫ θmax

θj

pj(tj)C
′
(tj , Q) dtj (45)

Given LTP mechanism is incentive compatible, then IR is equivalent to the requirement that
πj(θmax) ≥ 0, and hence mj(θmax) ≥ pj(θmax)C(θmax, Q).

In a similar logic, we can derive the equilibrium expected profit under HTP mechanism to be defined
by:

πj(θj) = πj(θmin)−
∫ θj

θmin

pj(tj)C
′
(tj , Q) dtj (46)
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And the payment function will be defined as:

mj(θj) = mj(θmin)− pj(θmin)C(θmin, Q) + pj(θj)C(θj , Q)−
∫ θj

θmin

pj(tj)C
′
(tj , Q) dtj (47)

Hence, IR is equivalent to mj(θmin) ≥ pj(θmin)C(θmin, Q) under HTP mechanism. ¤
Considering the buyer as the designer of these mechanisms, we provide the properties of these incentive

compatible and individually rational mechanism so that they are also optimal. By optimality of the
mechanism, we mean that the buyer minimizes the total procurement cost defined by the following
equation:

∑

j∈N
E[mj(θj)] =

∑

j∈N

∫ θmax

θmin

mj(θj)fj(θj) dθj (48)

We claim the following proposition defines optimal allocation and payment rules for LTP and HTP
mechanisms.

Proposition A.3 The optimal LTP mechanism is given by:

Pj(θ) > 0 ⇔ ψj(θj) = mini∈N ψi(θi) ≤ C(θmax, Q)

Mj(θ) = Pj(θ)C(θj , Q) +
∫ θmax

θj
Pj(ϑj , θ−j)C

′
(ϑj , Q) dϑj (49)

where the optimal HTP mechanism is defined as:

Pj(θ) > 0 ⇔ ψj(θj) = mini∈N ψi(θi) ≤ C(θmin, Q)

Mj(θ) = Pj(θ)C(θj , Q)− ∫ θj

θmin
Pj(ϑj , θ−j)C

′
(ϑj , Q) dϑjj (50)

Proof. We will go over the proof for LTP mechanism in detail and define the similarity for HTP
mechanism. Substituting equation 45 to equation 48, we can rewrite the expected total procurement cost
as: ∑

j∈N
E[mj(Θj)] =

∑

j∈N
(mj(θmax)− pj(θmax)C(θmax, Q))

+
∑

j∈N

∫ θmax

θmin

(
C(θj , Q) +

Fj(θj)
fj(θj)

C
′
(θj , Q)

)
pj(cj)fj(cj) dcj (51)

As the first term in equation 51 is constant, the buyer will focus on the second term, which is dependent
on the allocation rule, to minimize the total expected procurement cost.

We can simplify equation 51 by defining ψj(θj) ≡ C(θj , Q)+ Fj(θj)
fj(θj)

C
′
(θj , Q). This term can be named

as the virtual cost of a supplier with true type θj . When the virtual cost is an increasing function of the
true type θj , the design problem is called regular. A sufficient condition for regularity is that Fj(θj)

fj(θj)
is

increasing.

Rewriting pj(θj) explicitly as
∫
Θ−j

Pj(ϑ, θ−j)f−j(θ−j) dθ−j , the expected total procurement cost can
be reexpressed as:

∑

j∈N
(mj(θmax)− pj(θmax)C(θmax, Q)) +

∫

Θ


∑

j∈N
ψj(θj)Pj(θ)


 f(θ) dθ (52)

The function defined by equation 52 can be considered as a weighting function. Therefore, the optimal
solution will be to assign positive weight to the smallest virtual costs since the objective is to minimize
the function. If the buyer is not willing to pay more than the maximum possible cost of producing at the
given quantity level, then the optimal allocation and payment rules can be defined as:

Pj(θ) > 0 ⇔ ψj(θj) = mini∈N ψi(θi) ≤ C(θmax, Q)

Mj(θ) = Pj(θ)C(θj , Q) +
∫ θmax

θj
Pj(ϑj , θ−j)C

′
(ϑj , Q) dϑj (53)
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The above defined mechanism is both incentive compatible and individually rational. In order to
prove IC, based on proposition A.1 it is sufficient to show that pj is non-increasing. Suppose ϑj < θj .
Due to the regularity condition, ψj(ϑj) < ψi(θj) and therefore for any θ−j , it is true that Pj(ϑ, θ−j) ≥
Pj(θ, θ−j). Hence, pj is a non-increasing function. For IR, by definition it is clear that mj(θmax) =
pj(θmax)C(θmax, Q).

The defined mechanism is optimal as it minimizes both parts of the equation 52. It minimizes the
first part by setting the payment to the highest type at its possible minimum value, and particularly it
minimizes the second part by giving positive weight only to the minimal terms that are lower than the
maximum possible cost level.

Same methodology can be used to derive the optimality results for HTP mechanism by performing
appropriate changes. The virtual cost will now be defined as

ψj(θj) ≡ C(θj , Q)− 1− Fj(θj)
fj(θj)

C
′
(θj , Q)

. For the regularity of the design problem, 1−Fj(θj)
fj(θj)

being a decreasing function is sufficient. The optimal
allocation and payment rules are given by:

Pj(θ) > 0 ⇔ ψj(θj) = mini∈N ψi(θi) ≤ C(θmin, Q)

Mj(θ) = Pj(θ)C(θj , Q)− ∫ θj

θmin
Pj(ϑj , θ−j)C

′
(ϑj , Q) dϑjj (54)

This can be restated more specifically as:

Pj(θ) =
{

1 ifψj(θj) < mini 6=j ψi(θi) and ψj(θj) ≤ C(θmin, Q)
0 otherwise

Mj(θ) =
{

C(κj(θ−j), Q) ifPj(θ) = 1
0 ifPj(θ) = 0 (55)

In equation 57, κj(θ−j) is defined by:

κj(θ−j) = sup {ϑj : ψj(ϑj) ≤ C(θmin, Q) and ∀ i 6= j, ψj(ϑj) ≥ ψi(θi)} (56)

¤
Whenever the mechanism design problem is regular, the optimal LTP mechanism can be restated as:

Pj(θ) =
{

1 ifψj(θj) < mini6=j ψi(θi) and ψj(θj) ≤ C(θmax, Q)
0 otherwise

Mj(θ) =
{

C(κj(θ−j), Q) ifPj(θ) = 1
0 ifPj(θ) = 0 (57)

In equation 57, κj(θ−j) is defined by:

κj(θ−j) = inf {ϑj : ψj(ϑj) ≤ C(θmax, Q) and ∀ i 6= j, ψj(ϑj) ≥ ψi(θi)} (58)

In words, only the awarded(winning) supplier receives some payment, that is actually the highest value
that would result in her winning. κj(θ−j) represents the most competitive opponent of supplier j among
the remaining suppliers. Similar argumentation holds for the optimal HTP mechanism.

Appendix B. Proof of Proposition 3.1. Proof. We can prove this proposition, by arguing
that while all but supplier j follow the strategy β(θ) defined by equation ??, it is optimal for a given
supplier j to follow the same strategy β(θj).

In other words, we prove the proposition by showing that this bidding strategy is incentive compatible
and individually rational for a given supplier.

The corresponding direct mechanism (P,M) for this mechanism can be defined:

Pj(θj) = (1− F (θj))

Mj(θj) = Pj(θj)C(θj , Q) +
∫ θmax

θj

C
′
(x,Q)(1− F (x)) dx (59)
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In order to show that the corresponding direct mechanism is incentive compatible, we need to show
that Pj(θj) is a decreasing function of θj given by proposition A.1. Taking the partial derivative leads
to the following equation: ∂Pj(θj)

∂θj
= (N − 1)(1 − F (θj))(N−2)(−f(θj)) ≤ 0. Hence, this proves that the

corresponding direct mechanism is incentive compatible. As Mj(θmax) = 0, the corresponding direct
mechanism is also individually rational due to proposition A.2.

Alternatively, we can prove that the bidding function defined in equation ?? is indeed the symmetric
equilibrium strategy, by using contradiction. Suppose supplier j bids b instead of bidding β(θj). We can
denote the type for which b is the equilibrium bid by η, i.e. β(η) = b. We can define supplier j’s expected
profit from bidding β(η) although her true type is θ as:

π(β(η), θ) = (1− F (η)) (β(η)− C(θj , Q))Q (60)

We can call ∆ to represent the difference between the actual profit π(θ), that the supplier gets when
bids according to true type, and the deceived profit π(β(η), θ), that she gets when reveals her type other
than her true type.

∆ = π(θ)− π(β(η), θ)

= (1− F (η)) [C(θ, Q)− C(η,Q)] Q +
∫ η

θ

C
′
(x,Q) (1− F (x)) dx (61)

Since C(θ,Q) is an affine function of θ,

• C
′
(x,Q) = K for all x ∈ Θ

• C(θ, Q)− C(η,Q) = (θ − η)C
′
(x,Q)

Simplifying the equation 61 we can show that ∆ is always negative, proving that the bidding function
defined by equation ?? is the symmetric equilibrium strategy for each supplier. ¤

Appendix C. Proof of Proposition 3.2. Proof. We will follow a similar way to the one we
use for proposition 3.1. We argue that while all but supplier j follow the strategy β(θ) defined by
equation ??, it is optimal for a given supplier j to follow the same strategy β(θj). In other words, we
prove the proposition by showing that this bidding strategy is incentive compatible and individually
rational for a given supplier.

The corresponding direct mechanism (P,M) for this mechanism can be defined:

Pj(θj) = (F (θj))

Mj(θj) = Pj(θj)C(θj , Q)−
∫ θj

θmin

C
′
(x,Q)(F (x)) dx (62)

In order to show that the corresponding direct mechanism is incentive compatible, we need to show
that Pj(θj) is an increasing function of θj . Taking the partial derivative leads to the following equation:
∂Pj(θj)

∂θj
= (N − 1)(F (θj))(N−2)(f(θj)) ≥ 0. Hence, this proves that the corresponding direct mechanism

is incentive compatible. As Mj(θmin) = 0 and C
′
(x,Q) < 0 ∀x, the corresponding direct mechanism is

also individually rational.

It is again possible to show that this is indeed the equilibrium strategy by arguing a supplier can never
be better off by lying when all the others are telling the truth. ¤

Appendix D. Mathematical Extension to N Suppliers. In the main body of this study, we
consider two suppliers game. N suppliers game will just be a mathematical extension of the stated results,
given the single-crossing point assumption. However, in real life this assumption might be too restrictive.
Therefore, we work on an extension to pairwise single crossing points, resulting in arbitrary number of
crossing points, as a further study.

In the direct mathematical extension, the significant difference will be on the winning probability, which
then effects the equilibrium bid functions. The change will be to have N − 1 power of all probability
terms in the defined functions, as each supplier will be trying to compete N − 1 other suppliers.
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As the number of suppliers participating in the procurement auction increases, the bid decreases as
a result of the reduction in the mark-up. Specifically, the submitted bid converges exponentially to the
true cost as the number of participating suppliers increases.

The intuition is that with the increasing number of suppliers participating in the auction, the competi-
tion increases. This will lead to the conclusion that the probability of a lower cost supplier’s participation
increases and hence the suppliers reduce their mark-ups to be more competitive. Analytically, taking the
first order partial derivative of β(θj) with respect to N will prove the proposition by showing that the
partial derivative is indeed negative for both cases.

The modification in the short-term contracting involves more detailed extension. At the end of the
first period there will be more than one entrant, and hence each of them will update her beliefs about
the other entrants as:

Fjk(θ | θi) =
F (θ)− F (θi)

1− F (θi)

Fjk(θ) =
∫ min(θ,θj)

θmin

(
F (θ)− F (θi)

1− F (θi)

)
f(θi)
F (θj)

dθi (63)

Hence, the first order condition equations will look like:

φ
′
E(b) =

1− F (φE(b))
(N − 1)f(φE(b))

· 1
b− C(φI(b), Q1 + Q2)

φ
′
I(b) =

F (θf )− F (φI(b))
f(φI(b))

(
1

b− C(φE(b), Q2)
− (N − 2)f(φE(b))

1− F (φE(b))
φ
′
E(b)

)
(64)
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