
Informal lecture notes for complex analysis

Robert Neel

I’ll assume you’re familiar with the review of complex numbers and their
algebra as contained in Appendix G of Stewart’s book, so we’ll pick up where
that leaves off.

1 Elementary complex functions

In one-variable real calculus, we have a collection of basic functions, like poly-
nomials, rational functions, the exponential and log functions, and the trig
functions, which we understand well and which serve as the building blocks for
more general functions. The same is true in one complex variable; in fact, the
real functions we just listed can be extended to complex functions.

1.1 Polynomials and rational functions

We start with polynomials and rational functions. We know how to multiply
and add complex numbers, and thus we understand polynomial functions. To
be specific, a degree n polynomial, for some non-negative integer n, is a function
of the form

f(z) = cnz
n + cn−1z

n−1 + · · ·+ c1z + c0,

where the ci are complex numbers with cn 6= 0. For example, f(z) = 2z3 + (1−
i)z+ 2i is a degree three (complex) polynomial. Polynomials are clearly defined
on all of C. A rational function is the quotient of two polynomials, and it is
defined everywhere where the denominator is non-zero.

Example: The function f(z) = z2+1
z2−1 is a rational function. The denomina-

tor will be zero precisely when z2 = 1. We know that every non-zero complex
number has n distinct nth roots, and thus there will be two points at which the
denominator is zero. It’s easy to see that those points are 1 and −1, and so f is
defined on C \ {1,−1}. If we want to compute f at some point, we just use our
rules for complex algebra. For instance, using that (1 + i)2 = 1 + 2i − 1 = 2i,
we have

f(1 + i) =
(1 + i)2 + 1
(1 + i)2 − 1

=
1 + 2i
−1 + 2i

=
1 + 2i
−1 + 2i

· −1− 2i
−1− 2i

=
−1− 2i− 2i+ 4

1 + 4
=

3
5
− 4

5
i.

1
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1.2 The exponential function and logarithm

We’ve already seen the (complex) exponential function. Recall that we have the
useful formula

ex+iy = ex (cos y + i sin y) .

Here we use our usual convention of writing a complex number as z = x+ iy for
real x and y. One reason this formula is useful is that it allows us to actually
compute. We had originally defined ez by a power series, and if we used that
definition directly, then evaluating something like e1+πi would require summing
an infinite series. Instead, using the above formula allows us to write

e1+πi = e1 (cosπ + i sinπ) = −e.

Another reason this formula is useful is that it allows us to give a somewhat
intuitive interpretation of the exponential function. Notice that we have written
our “input” variable in Cartesian coordinates, but our “output” variable is in
polar coordinates. We see that ex+iy is the complex number with modulus (or
r, in polar coordinates) ex and argument (or θ, in polar coordinates) y. If our
input is a real number, then y is zero and the output will be real and positive
(since the positive real axis has argument zero) and will have modulus ex. Thus
we confirm that this agrees with the real exponential function for real input.
Looking at e1+πi again, we see that this number has modulus e1 = e, and
argument π, which corresponds to the negative real axis.

The relationship to polar coordinates also allows us to understand what
happens when we try to take the inverse of ez to obtain the (complex) logarithm.
By definition, log z should be the number w with the property that ew = z.
If we write w = u + vi for real u and v, then we find that u = log |z| and
v = arg(z). So while u is well-defined as the real logarithm of a real number,
in defining v we encounter exactly the same problem we encountered in trying
to define the argument of a complex number. Namely, we cannot define v so
as to be continuous and have a single value, as a true function must. As a
result, we cannot define the logarithm to be continuous and single-valued. The
solution we adopt is the same as for the argument (indeed, since v = arg(z), we
should make sure that our convention for the argument and the logarithm are
compatible). We consider log z to have infinitely many values, which differ by
integer multiples of 2πi. Thus, just like arg(z), log z is not really a function.
However, we will cheat a little and act like it is, with the implicit understanding
that it really takes on infinitely many values.

Examples: We’ve already seen that e1+πi = −e, and thus one choice for
log(−e) is 1 + πi. Any other choice differs by an integer multiple of 2πi, so
all possible logarithms of −e are given by 1 + (2n + 1)πi for all integers n.
For a second example, we consider log i. Since the modulus of i is 1, we have
u = log 1 = 0. Further, the argument of i is π/2 (up to multiples of 2π),
so one choice of v is v = π/2. Thus all possible values of log i are given by
(π/2)i + 2πni = (1/2 + 2n)πi for all integers n. You can check that these give
i after exponentiation.
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We have a few final comments about the exponential and log functions before
moving on. It is clear that ez is defined on all of C. As for log z, the above
discussion shows that it is defined for any non-zero z (unsurprisingly), and thus
has domain C \ {0}. It follows that the range of ez is C \ {0} while the range
of log z is all of C. After this discussion of arg(z) and log z, you might wonder
if it would be nice to develop a theory of many-valued functions. In a full
complex analysis course, this is often done. However, for our purposes, it will
be enough just to understand these two functions as explained above. Finally,
this might seem like a lot of hassle to deal with one function. However, when
we get to complex integration, we will see that the fact that we can’t define a
single-valued, continuous logarithm is quite important.

1.3 Trig functions

To finish our discussion of elementary complex functions, we turn to the trig
functions. In order to define sin z and cos z, we use the same method as for
the exponential function. Namely, we start with the power series from real
variables, and we assert that that power series continues to make sense for
complex numbers (this is true, but we won’t prove it). Further, it turns out
that after some algebraic manipulation of power series, we can express both of
these trig functions in terms of the exponential function. In particular, we have

sin z = z − z3

3!
+
z5

5!
− · · ·

=
eiz − e−iz

2i

and cos z = 1− z2

2!
+
z4

4!
− · · ·

=
eiz + e−iz

2
.

Examples: We compute sin i and cos i. Using the above representations in
terms of the exponential function, we have

sin i =
ei

2 − e−i2

2i
=

1
2

(
e− 1

e

)
i

and cos i =
ei

2
+ e−i

2

2
=

1
2

(
e+

1
e

)
.

Both sin z and cos z have all of C as their domain. The other four trig
functions can be defined in terms of sine and cosine in the usual way. Observe
that, in complex analysis, the trig functions can all be defined in terms of the
exponential function. For this reason, it is common to focus attention on the
exponential function and push the trig functions to the sidelines. We will follow
this approach to some extent.
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2 Complex functions in general

In the last section, we approached complex functions via concrete examples.
Now we approach them from the other direction, asking what they are in general.
By definition, a complex function is a function from an subset D of C to C.
In other words, it takes as “input” a complex number and gives as “output” a
complex number, and we allow for the possibility that it isn’t defined everywhere
in C (as is the case for rational functions, for example). Just as a complex
number can be written in terms of its real and imaginary parts, a complex
function can always be written in terms of its real and imaginary parts as

f(z) = f(x+ iy) = u(x, y) + iv(x, y),

where u and v are both functions from R2 to R. We have already seen one
example of this way of writing complex functions; we saw that ez can be written
like this with u(x, y) = ex cos y and v(x, y) = ex sin y. Similar representations
can be given for the other functions we discussed in the last section.

Examples: Consider f(z) = z2. In terms of its real and imaginary parts,
we have

f(x+ iy) = (x+ iy)2 = x2 + 2ixy − y2 = (x2 − y2) + (2xy)i.

Thus we have u(x, y) = x2 − y2 and v(x, y) = 2xy. For a second example,
consider f(z) = 1/z, defined on C \ {0}. We have

f(x+ iy) =
1

x+ iy

x− iy
x− iy

=
x− iy
x2 + y2

=
x

x2 + y2
+

−y
x2 + y2

i,

and so u(x, y) = x/(x2 + y2) and v(x, y) = −y/(x2 + y2).
This way of writing complex functions is not restricted to the examples from

the last section (indeed, if it is supposed to be completely general, it can’t be).
Two obvious examples are f(z) = Re(z) for which u(x, y) = x and v(x, y) = 0,
and f(z) = Im(z) for which u(x, y) = y and v(x, y) = 0.

Example: Consider f(z) = z. Then f(x+ iy) = x− iy, and so u(x, y) = x
and v(x, y) = −y.

Of course, we can also consider going the other way. That is, given two
functions u(x, y) and v(x, y) from R2 to R, we can try to write find a nice
formula in terms of the algebra of complex numbers for the resulting f . We
said “nice formula” because there is always a trivial way of doing this just by
writing x and y as Re(z) and Im(z), but that’s not interesting. As an example,
consider u(x, y) = 2x − 1 and v(x, y) = 2y + 2. A little work shows that these
are the real and imaginary parts of f(z) = 2z + (−1 + 2i). So in this case, our
two real polynomials in two variables can be “combined” into a single complex
polynomial. On the other hand, if we consider u(x, y) = 2x and v(x, y) = y,
then it turns out that there is no complex polynomial which has these as its
real and imaginary parts. We’ll talk more about how to show that and what it
means in the next section.
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The above makes it clear that we can take any function from R2 to R2,
written as f(x, y) = (u(x, y), v(x, y)) and view it as a complex function f(z) =
u(x, y) + iv(x, y), and vice versa. This is not surprising, since we know that we
can identify C with R2 just by viewing C as the complex plane. Thus, at this
level of generality, whether we view a function as a function from one complex
variable to one complex variable or as a function from two real variables to
two real variables is really just a matter of perspective. This fact has numerous
advantages. For example, we would like to talk about limits of complex functions
and about complex functions being continuous. We can define these ideas in
terms of what we already know for functions from R2 to R2. Thus, a sequence
of complex numbers converges to some limit if the corresponding sequence of
points in R2 converges to the corresponding limit. Similarly, a complex function
is continuous if it is continuous when viewed as a function from R2 to R2. Finally,
a subset of C is bounded, open, or closed if the corresponding subset of R2 is
bounded, open, or closed. This allows us to take what we already know about
real functions from Calc III and import it into our study of complex functions,
which is certainly convenient. For example, we see that all of our elementary
functions from the last section are continuous on their domains.

On the other hand, the fact that complex functions can be viewed as func-
tions from R2 to R2 calls into question the point of what we are doing. After all,
if we already know how to work with real functions, why bother to reconceptu-
alize them as complex functions? In order to answer that question, we need to
introduce the notion of complex differentiation.

3 Complex differentiation

3.1 The definition

Our goal here is to define and begin to discuss the complex derivative of a
complex function. In contrast to the ideas at the end of the last section (like
continuity), it is not true that a function from C to C is complex differentiable if
it is differentiable as a function from R2 to R2. So here we will have a difference
between the real and the complex points of view.

To define the complex derivative, we simply mimic the definition of the
derivative of a real function of one variable.

Definition: A function f(z) from an open set D ⊂ C to C is complex
differentiable at a point c ∈ D if

lim
z→c

f(z)− f(c)
z − c

exists. If so, the limit is the complex derivative of f at c, which we write f ′(c).
Further, f is complex differentiable if it is complex differentiable at every point
in D, in which case the complex derivative is a function which we write f ′(z).

Note that the difference quotient makes sense because the quotient of two
complex numbers makes sense (unlike the quotient of two points in R2). Just



6 Robert Neel

as in the real case, we also use the notation df
dz (z) for the complex derivative.

Alternative terminology for “complex differentiable” is “holomorphic.” We will
generally use the term holomorphic in the following, and we will call the com-
plex derivative just the derivative, it being clear from context what is meant
(for example, the notation f ′ is meaningless if we think of f as a real func-
tion from R2 to R2). Holomorphic functions are also often called analytic or
complex-analytic functions. If one is picky, “analytic” means something a bit
different than “holomorphic,” but there is a theorem which says that a (com-
plex) function is analytic if and only if it is holomorphic, so people often use the
two terms interchangeably. We won’t be pursuing that here, so we’ll just stick
with holomorphic.

To get a feel for our new notion, we will compute a few simple derivatives
directly from the definition. The most obvious place to start is with a constant
function, f(z) = C for some C ∈ C. Then at any point c ∈ C we have

f ′(c) = lim
z→c

C − C
z − c

= 0,

and thus f(z) is holomorphic with derivative f ′(z) = 0. This is reassuring, since
any reasonable notion of derivative should have something to do with measuring
how a function changes, and so a constant function should, intuitively, have
derivative zero. As a second example, we take f(z) = z. Then

f ′(c) = lim
z→c

z − c
z − c

= 1,

and so we see that f(z) is holomorphic with derivative f ′(z) = 1. This is
also reassuring, since if we restrict this function to the real axis it becomes
f(x) = x (which has derivative 1), and we would hope that our notion of
complex differentiation would be, in some sense, compatible with our notion of
real differentiation. We will have more to say about this later on.

Before discussing the general properties of the complex derivative, we give
an example to show that not every simple complex function is complex differ-
entiable. The example we have in mind is f(z) = Re(z). To see that this is not
(complex) differentiable at any point we reason as follows. In order for the limit
of the difference quotient to exist, we must get the same limit no matter how
we approach the point c. We make the change of variables h = z− c so that we
can rewrite the definition of the derivative as

lim
z→c

f(z)− f(c)
z − c

= lim
h→0

f(c+ h)− f(c)
h

.

We write c = a+ bi. We first consider what happens when we approach c along
the real axis by letting h = t for real t and observing that the difference quotient
becomes

f(c+ h)− f(c)
h

=
f(a+ t+ bi)− f(a+ bi)

t
=

(a+ t)− a
t

= 1.
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Thus, as t → 0, we get 1. Next we approach c along the imaginary axis by
letting h = ti for real t so that the difference quotient becomes

f(c+ h)− f(c)
h

=
f(a+ ti+ bi)− f(a+ bi)

ti
=
a− a
ti

= 0.

As t→ 0, we get 0. Since we get different limits approaching along the real and
imaginary axis, the limit of the difference quotient as h→ 0 does not exist, and
therefore f(z) = Re(z) is nowhere (complex) differentiable.

3.2 Complex differentiation rules

Simple functions like constant functions and f(z) = z can be differentiated just
using the definition, as we saw. However, just as in the real case, for more
complicated functions we rely on various differentiation rules. The following
rules extend the familiar rules from real calculus to the complex setting. In
fact, they are proved in essentially the same way, so we won’t give the proofs
here.

Theorem: Let f(z) and g(z) be holomorphic functions. Then the following
are true:

1. (Linearity) For any constants c, d ∈ C, cf(z) + dg(z) is holomorphic and
(cf(z) + dg(z))′ = cf ′(z) + dg′(z).

2. (Product rule) The product (fg)(z) is holomorphic and (fg)′(z) = f ′(z)g(z)+
f(z)g′(z).

3. (Quotient rule) The quotient f(z)/g(z) is holomorphic wherever g(z) 6= 0
and (

f(z)
g(z)

)′
=
f ′(z)g(z)− f(z)g′(z)

g2(z)
.

4. (Chain rule) The composite function f(g(z)) is holomorphic whenever g(z)
is in the domain of f(z), and (f(g))′(z) = f ′(g(z))g′(z).

Of course, these rules are are only useful if we already have functions f
and g, the derivatives of which we know. In the last lecture, we showed that
the derivative of any constant function is 0 everywhere and the derivative of
f(z) = z is 1 everywhere. Using this and the product rule, we see that(

z2
)′

= (z · z)′ = 1 · z + z · 1 = 2z.

Iterating this procedure, we see that (zn)′ = nzn−1. Finally, using the above
and linearity, we see that any (complex) polynomial, which we write

f(z) = cnz
n + cn−1z

n−1 + · · ·+ c1z + c0,

is holomorphic on all of C and has derivative

f ′(z) = ncnz
n−1 + (n− 1)cn−1z

n−2 + · · · 2c2z + c1.
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Going beyond polynomials, observe that, using the quotient rule, we can
write (

1
zn

)′
=

0 · zn − 1 · nzn−1

z2n
=
−n
zn+1

.

(On the homework, you are asked to show that (1/z)′ = −1/z2 by a different
method.) More generally, the quotient rule and the above formula for polyno-
mials allow us to differentiate any rational function.

These computations for polynomials and rational functions are a good start.
However, it’s not immediately clear what to do about differentiating ez, for
example. Moreover, we would like to go beyond elementary functions and look
at general complex functions f(x + iy) = u(x, y) + iv(x, y). How to do this is
the subject of the next section.

3.3 The Cauchy-Riemann equations

Consider a general complex function f(x + iy) = u(x, y) + iv(x, y). As we saw
last lecture, a necessary condition for it to be complex differentiable is that
the difference quotient gives the same limit along both the real and imaginary
axis (this is how we showed that Re(z) is not holomorphic). Assume that
f(z) = f(x+ iy) is holomorphic. Then it must be true that, for real t,

f ′(z) = lim
t→0

f(z + t)− f(z)
t

= lim
t→0

f(z + it)− f(z)
it

.

In terms of u and v, we see that the approach along the real axis gives

lim
t→0

f(z + t)− f(z)
t

= lim
t→0

u(x+ t, y) + iv(x+ t, y)− u(x, y)− v(x, y)
t

= lim
t→0

u(x+ t, y)− u(x, y)
t

+ i · lim
t→0

v(x+ t, y)− v(x, y)
t

=
∂u

∂x
+ i

∂v

∂x
,

while the approach along the complex axis gives

lim
t→0

f(z + it)− f(z)
it

= lim
t→0

u(x, y + t) + iv(x, y + t)− u(x, y)− v(x, y)
it

= −i · lim
t→0

u(x, y + t)− u(x, y)
t

+ lim
t→0

v(x, y + t)− v(x, y)
t

= −i∂u
∂y

+
∂v

∂y
.

These two quantities must be equal, and thus their real and imaginary parts
must be equal. We conclude that if f(z) is holomorphic, u(x, y) and v(x, y)
must satisfy

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.
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These are called the Cauchy-Riemann equations. So if f(z) is holomorphic, its
real and imaginary parts satisfy the Cauchy-Riemann equations, and further-
more, its derivative can be written

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y
.

The obvious question now is whether the converse holds, that is, if the real
and imaginary parts of f(z) satisfy the Cauchy-Riemann equations, is f(z) holo-
morphic? The answer is yes, assuming that the partial derivatives are sufficiently
smooth. This is the content of the next theorem.

Theorem: Suppose u(x, y) and v(x, y) have continuous first order partial
derivatives. Then the complex function f(z) = f(x+ iy) = u(x, y) + iv(x, y) is
holomorphic if and only if u and v satisfy the Cauchy-Riemann equations, and
if so, its derivative is f ′(z) = ∂u

∂x + i ∂v∂x = ∂v
∂y − i

∂u
∂y .

We won’t give a proof of this theorem here; one can be found in almost
any complex analysis book. This is a significant result. It gives us a way to
determine whether an arbitrary function is holomorphic and, if so, what its
derivative is, in terms of the (real) partial derivatives of u and v, which we
understand from Calc III.

3.4 Applications of the Cauchy-Riemann equations

As a first application, we show that ez is holomorphic and compute its derivative.
Recall that the real and imaginary parts are given by u(x, y) = ex cos y and
v(x, y) = ex sin y. Thus we have

∂u

∂x
= ex cos y,

∂u

∂y
= −ex sin y,

∂v

∂x
= ex sin y,

∂v

∂y
= ex cos y.

It’s easy to see that these partial derivatives satisfy the Cauchy-Riemann equa-
tions, and that d

dz e
z = ez.

Our next objective is to determine the derivative of log z. This might seem
strange, since log z isn’t a true function because it takes infinitely many values.
However, we will see that its derivative is a function. Recall that the real and
imaginary parts of log z are u(x, y) = log

√
x2 + y2 and v(x, y) = arg(x + iy).

So u is a true function, and finding its partials is easy; we have

∂u

∂x
=

x

x2 + y2
and

∂u

∂y
=

y

x2 + y2
.

As for v(x, y), we see that it is just the θ coordinate of (x, y). It’s partials are

∂v

∂x
=

−y
x2 + y2

and
∂v

∂y
=

x

x2 + y2
.
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To see where these come from, first observe that a formula for arg(x+iy) which is
valid in, say, the first quadrant is arg(x+ iy) = Arctan

(
y
x

)
. Taking the partials

of this expression gives the above. The problem is that this formula breaks
down at x = 0. To get around this, one can change coordinates by rotating the
plane and then check that you get the same formulas everywhere in the plane.
This isn’t particularly hard, but it is tedious, so we won’t provide the details.
Also, note that even though arg(x+ iy) takes infinitely many values, its partial
derivative are true functions. To understand this, note that in a small, simply
connected ball around a point (that is, the ball doesn’t contain the origin), we
can choose unique, continuous values for arg(x + iy). Any other choice differs
by addition of a multiple of 2π, but a multiple of 2π is a constant, and so when
we take the derivative we get the same answer no matter what multiple of 2π we
choose. At any rate, now that we’ve found the partials of the real and imaginary
parts of log z, we see that they satisfy the Cauchy-Riemann equations and that

d

dz
log z =

x

x2 + y2
+ i

−y
x2 + y2

=
1
z
.

Before moving on, we note that there is another approach to differentiating
log z. One can prove that if f(z) is holomorphic and has non-zero derivative in a
small ball around a point c, then the inverse of f exists on some ball around f(c),
is holomorphic there, and has derivative (f−1)′(z) = 1/f ′(f−1(z)). Proving the
existence of the inverse and that it is holomorphic takes a little work, but the
formula for the derivative is just an application of the chain rule. In particular,
by the definition of the inverse function we have f(f−1(z)) = z. Differentiating
both sides gives

f ′(f−1(z)) · (f−1)′(z) = 1,

and solving for (f−1)′(z) gives the above formula. (This is also how you find
the derivatives of the inverse trig functions in real calculus.) If we let f(z) = ez

and f−1(z) log z, we get

(log)′(z) =
1

elog z
=

1
z
.

We chose to use the Cauchy-Riemann equations in order to get more practice
with them and also to see the connection of the derivative with the “gradient”
of θ (recall that, back when we were studying Green’s theorem, this was our
main example of a vector field with curl zero but with nonzero integral over
closed curves around the origin). This connection will be important when we
get to complex integration.

Finally, we consider the derivatives of the trig functions. Unsurprisingly,
d
dz sin z = cos z and d

dz cos z = − sin z. Deriving the first of these formulas is
a problem on your homework, and the second is done in the same way. Once
we know these, we can see that the other four trig functions have the expected
derivatives just by using the quotient rule.

At this point, we have a grasp of how to compute complex derivatives roughly
equal to what we know about computing one dimensional real derivatives. In-
deed, we’ve seen that basically all of our elementary real functions extend to be
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elementary complex functions and that they obey exactly the same differenti-
ation rules. So given a complex function built out of elementary functions, we
can differentiate it exactly the way we would the corresponding real function.
In some sense, this shouldn’t be too surprising, since the complex derivative of
an elementary function should, intuitively, agree with the real derivative when
z is real.

Example: Let f(z) = iz3 + cos2 z. Then f ′(z) = 3iz2 − 2 cos z sin z. Note
that, to be a bit oversimplistic, the difference between this and taking the cor-
responding real derivative is that we have a z instead of an x.

On the other hand, when we deal with functions that aren’t built out of
elementary functions, things are different. Here the Cauchy-Riemann equations
are especially helpful. We already saw that Re(z) is not holomorphic. If we
consider Im(z), we have u(x, y) = y and v(x, y) = 0. Then

∂u

∂x
= 0,

∂u

∂y
= 1,

∂v

∂x
= 0,

∂v

∂y
= 0.

Thus the Cauchy-Riemann equations are not satisfied anywhere (to say they
are satisfied means that they are both satisfied), and Im(z) is not anywhere
(complex) differentiable. By the same method, we can show that neither |z| nor
z is holomorphic.

This justifies our earlier claim that the complex function f(z) given by
u(x, y) = 2x and v(x, y) = y cannot be written as a complex polynomial. In
particular, we have

∂u

∂x
= 2,

∂u

∂y
= 0,

∂v

∂x
= 0,

∂v

∂y
= 1.

These partial derivatives don’t satisfy the Cauchy-Riemann equations, and thus
f(x + iy) = 2x + iy is not (complex) differentiable anywhere. Since we know
that all complex polynomials are holomorphic, it follows that this f cannot be
re-written as a complex polynomial.

As the above suggests, holomorphic complex functions (or functions from
R2 to R2 which can be viewed as holomorphic complex functions under the
correspondence between R2 and C) can be profitably understood as complex
functions and studied using complex differentiation. On the other hand, non-
holomorphic complex functions (or functions from R2 to R2 which correspond
to non-holomorphic functions) are, as a rule, better understood as real func-
tions from R2 to R2 using real calculus. In the next section, we describe the
relationship between the real and complex derivatives in more detail.
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4 Relation between real and complex derivatives

Before beginning, it is worth noting that the following description is a bit of a
digression in the normal development of complex analysis. Most complex anal-
ysis courses (in my experience) don’t bother to discuss it, and it isn’t necessary
in order to use complex analysis (or, in our case, to do the homework for this
course). Thus, if you find it confusing or unhelpful, you can safely ignore it.
I’m including it on the assumption that at least some people will find it helpful
or interesting, and also because this is mostly a course in real calculus, and
it provides connections between real calculus and out new notion of complex
differentiation.

4.1 Real differentiation

We begin by recalling the “differential” point of view on one dimensional, real
calculus. Suppose a function f from R to R has derivative f ′(x) at some point
x. One way of viewing this is that it tells you how the “output” changes if
you change the “input,” at least in the linear approximation. In particular, if
you change x by adding some ∆x, then f(x) changes by f ′(x)∆x (in the linear
approximation). In other words, the changes in x and f(x) (the “input” and
“output”) are related by (real) multiplication by the (real) derivative.

This point of view extends nicely to functions from R2 to R2. If f(x, y) =
(u(x, y), v(x, y)) is such a function, consider the matrix of partial derivatives[

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
.

This matrix allows us to relate the change in (x, y) and the change in f(x, y).
In particular, suppose we change the input by adding some (∆x,∆y) to (x, y).
Then, in the linear approximation, the output changes by adding (here we write
our vectors as column vectors and make use of matrix multiplication)[

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
·
[
∆x
∆y

]
=

[
∂u
∂x∆x+ ∂u

∂y∆y
∂v
∂x∆x+ ∂v

∂y∆y

]
.

So we can view this matrix as a map from R2 to R2 which takes changes in (x, y)
and maps them to the corresponding changes in f(x, y). Thus, for any point
(x, y), we will think of this matrix of partial derivatives as the derivative of f
at (x, y), in the sense that it completely describes (in the linear approximation)
the change in f(x, y) given a change in (x, y). Also note that, for any 2 × 2
matrix, we can find a function which has that as its derivative.

4.2 Complex differentiation

Now we consider how these ideas extend to the case of a complex function
f(z) = f(x+ iy) = u(x, y) + iv(x, y). First, suppose that f is holomorphic with
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derivative f ′(z) = α + iβ at some point z. Then if we change the input by
∆z = ∆x+ i∆y, the output changes (in the linear approximation) by

f ′(z)∆z = (α∆x− β∆y) + i(α∆y + β∆x).

Looking at the left-hand side of this equation, we see that this situation is
analogous to what we saw for one real variable. Namely, the change in input
and output are related by multiplication by the derivative; the difference is that
all of the quantities in question are complex numbers instead of real numbers
and the multiplication involved is complex multiplication. On the other hand,
we can also view this function as a function from R2 to R2 and ask about its
real derivative in the sense we were just talking about. If we think of ∆z and
f ′(z)∆z as vectors in R2, then the equation above describes a linear map from
R2 to R2 which we can write as[

α −β
β α

]
·
[
∆x
∆y

]
=
[
α∆x− β∆y
α∆y + β∆x

]
.

In other words, if we look at the map from the complex plane to the complex
plane given by multiplying everything by α+iβ and then think of this as a linear
map from vectors in R2 to vectors in R2, the corresponding matrix which gives
this map is the one in the preceding equation. (That this is the right matrix
can be seen just by comparing this with the result of the complex multiplication
above and seeing that it gets both the real and imaginary parts right.) From
this equation, or from direct computation with the real and imaginary parts, it
follows that [

α −β
β α

]
=

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
.

Note that the relationships among the partial derivatives that this implies are
the same as the ones from the Cauchy-Riemann equations. Further, this shows
that the complex derivative of f as a complex function and the real derivative
of f as a function from R2 to R2 are compatible. More concretely, both give
the same relationship between change in input and change in output; the only
difference is whether those changes are thought of as complex numbers or as
vectors in R2. All of this is true under the assumption that f is holomorphic.

To approach the relationship between real and complex differentiation from
the other direction, let f(x, y) = (u(x, y), v(x, y)) be any real differentiable
function from R2 to R2. If we want to think of it as having a complex derivative,
then the reasoning from the previous paragraph indicates that its derivative,
as map from R2 to R2, must correspond to complex multiplication by some
complex number. Further, this will be the case if and only if its matrix of
partials derivatives has the special from[

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
=
[
α −β
β α

]
in which case the corresponding complex multiplication is multiplication by
α + iβ. Finally, note that the matrix of partial derivatives has this form if
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and only if the partials satisfy the Cauchy-Riemann equations, and if so, the
complex derivative can be written in terms of the partials in exactly the way
described in the previous section.

To summarize, we see that our notions of real and complex differentiation are
compatible. More specifically, a holomorphic function is also differentiable as a
function from R2 to R2 and the resulting linear map (which is what we’re calling
the derivative) corresponds to complex multiplication. In the other direction,
a (real) differentiable function from R2 to R2 is complex differentiable if and
only if its derivative can be interpreted as complex multiplication. This won’t
be true for just any matrix of partial derivatives (there are plenty of linear
maps from R2 to R2 which don’t correspond to complex multiplication), but
the condition that it is true is precisely the Cauchy-Riemann equations. So if
our function can be seen as a holomorphic (complex) function, that is often
an advantageous point of view to adopt, since it makes the differential calculus
look “one variable,” instead of the usual two variable real theory. But if our
function isn’t holomorphic, it is better viewed as a real function, since only the
real calculus will apply.

5 Contour integrals

Now that we have a solid background in the basics of complex differentiation,
it’s time to move on to complex integration.

Consider a curve C in the complex plane parametrized by z(t) for a ≤ z ≤ b.
Of course, we can write this in terms of its real and imaginary parts as z(t) =
x(t)+iy(t). Now suppose we have a (complex) function f(z) = u(x, y)+iv(x, y).
We want to integrate f along the curve C. In order to define such an integral
we start, as usual, with a Riemann sum approximation. If we subdivide the
curve by subdividing the interval at points a = t0, t1, . . . , tn = b, then the
corresponding Riemann sum looks like

n∑
j=1

f(z(t)) · (z(ti)− z(ti−1))

where the “dot” here refers, of course, to complex multiplication. (This is the
difference with the definition of a real line integral, in which both factors are
vectors and we take their dot product.) Then the contour integral of f along
C, written

∫
C
f(z) dz, is defined to be the limit as n → ∞, assuming that this

limit exists.

This makes a good definition, but in order to compute with it, we will re-
write it in terms of the parametrization and the real and imaginary parts of f
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and z. A little computation shows that∫
C

f(z) dz =
∫ b

a

[u(x(t), y(t))x′(t)− v(x(t), y(t))y′(t)] dt

+ i

∫ b

a

[v(x(t), y(t))x′(t) + u(x(t), y(t))y′(t)] dt

=
∫
C

u dx− v dy + i

∫
C

v dx+ u dy.

An easy way to remember this is by writing the complex differential as dz =
dx+i dy and then multiplying by f(z) written in terms of its real and imaginary
parts.

Example: Let C be the quarter-circle from 1 to i and let f(z) = z2. Then
we can parametrize C as z(t) = cos t + i sin t for 0 ≤ t ≤ π/2. In terms of this
parametrization, we have that f(z(t)) = cos2 t− sin2 t+ i(2 cos t sin t). Further,
we have dz = dx + i dy = sin t dt + i cos t dt, and thus, after some algebra, we
find that

f(z(t)) · dz =
[
sin3 t− 3 sin t cos2 t+ i

(
cos3 t− 3 cos t sin2 t

)]
dt

=
[
sin t− 4 sin t cos2 t+ i

(
cos t− 4 cos t sin2 t

)]
dt.

Note that the last line is obtained using cos2 t = 1 − sin2 t and vice versa, and
we have done this with an eye toward the fact that we’re about to integrate this
expression. We have∫

C

f(z) dz =
∫ π/2

0

(
sin t− 4 sin t cos2 t

)
dt+ i

∫ π/2

0

(
cos t− 4 cos t sin2 t

)
dt

=
[
− cos t+

4
3

cos3 t
]π/2
0

+ i

[
sin t− 4

3
sin3 t

]π/2
0

= −1
3
− 1

3
i.

Before leaving this example, it is worth noting that these computations can
be streamlined by taking better advantage of complex functions. In particular,
this parametrization of the curve C can be re-written as z(t) = eit for 0 ≤ t ≤
π/2. Then we have f(z(t)) = e2it. Further, we see that dz = ieit dt, and thus∫

C

f(z) dz = i

∫ π/2

0

e3it dt

= i

∫ π/2

0

cos(3t) dt−
∫ π/2

0

sin(3t) dt

= i

[
1
3

sin(3t)
]π/2
0

+
[

1
3

cos(3t)
]π/2
0

= −1
3
i− 1

3
.
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Note that here we wrote f(z(t)) = e2it = cos(2t) + i sin(2t), while above we had
that this was equal to cos2 t− sin2 t+ i(2 cos t sin t). However, these can be seen
to be equal using the double-angle formulas. In fact (to continue this digression
one more step), the relationship between the exponential and trig functions in
complex analysis provides an efficient way to derive and/or remember various
trig identities.

6 Antiderivatives

Recall the philosophy we developed when discussing complex differentiation that
complex analysis should be, in some sense, analogous to real calculus. Based on
this intuition, we might expect that it’s possible to use the fact that z3/3 is an
antiderivative of z2 in order to compute the integral from last section. (We say
that F (z) is an antiderivative of f(z) if F ′(z) = f(z)). Indeed, we might hope
for some sort of fundamental theorem of calculus which allows us to evaluate
integrals by evaluating antiderivatives at the endpoints of the curve. However,
if this is true, then the corresponding contour integrals must be independent of
path, since the fundamental theorem only uses the endpoints. Because of this,
our first step in exploring the fundamental theorem of calculus in the complex
setting will be to consider when contour integrals are independent of path.

Recall from the last section that the real and imaginary parts of a contour
integral can be written∫

C

f(z) dz =
∫
C

u dx− v dy + i

∫
C

v dx+ u dy.

The contour integral will be independent of path precisely when the real and
imaginary parts are each independent of path. Fortunately, the above equation
gives the real and imaginary parts in terms of (real) line integrals, and so we
can apply Green’s theorem. For the moment, assume that f(z) is defined on a
simply-connected domain. Doing so, we see that the real part is independent of
path if and only if −∂v/∂x = ∂u/∂y and that the imaginary part is independent
of path if and only if ∂u/∂x = ∂v/∂y. These are just the Cauchy-Riemann
equations. So, at least on a simply-connected domain, contour integrals of f(z)
are independent of path precisely when f(z) is holomorphic. Moreover, if we
take the potentials for the real and imaginary parts and combine them into a
complex function, a little work shows that we get an antiderivative for f(z).

This indicates that we should restrict our attention to holomorphic functions
(so holomorphic functions are the natural objects for both complex differentia-
tion and complex integration). By refining these considerations a bit, one can
prove the following complex analogue of the fundamental theorem of calculus.

Theorem: Let f(z) be a function defined on an open subset D of C. If
f(z) has an antiderivative then f(z) is holomorphic. Conversely, if f(z) is holo-
morphic and D is simply-connected, then f(z) has an antiderivative. Finally, if
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F (z) is an antiderivative of f(z) and C is a curve from z0 to z1, then∫
C

f(z) dz =
∫ z1

z0

f(z) dz = F (z1)− F (z0).

Example: We return to the previous example, integrating z2 along the
quarter-circle from 1 to i. We know an antiderivative of z2 is z3/3, and thus∫

C

z2 dz =
∫ i

1

z2 dz =
[

1
3
z3

]i
1

= −1
3
i− 1

3
.

This agrees with our earlier computations. Obviously, this approach is easier
than what we did in the previous section.

Just as for differentiation, we can now apply many of our techniques from
real calculus to finding complex antiderivatives, and thus to computing complex
integrals.

Example: Let C be any curve from 0 to πi, and let f(z) = zez. Then f(z)
is holomorphic on the whole complex plane, and so the contour integral is the
same no matter what particular C we choose. Integration by parts (just as in
the real case) shows that an antiderivative is F (z) = (z − 1)ez. Thus∫

C

f(z) dz = [(z − 1)ez]πi0

= (πi− 1)eπi + e0

= 2− πi.

7 Non-simply-connected domains

The theorem from the last section assures us that any holomorphic function on
a simply-connected domain has an antiderivative, although not necessarily one
that can be written in terms of elementary functions. However, as we know from
our study of Green’s theorem, things are more complicated on domains which
are not simply-connected. First, note that the theorem applies on any domain
if we know that f(z) has an antiderivative. For example, this is the case for
f(z) = 1/z2. Although it is only defined on C\{0}, we know that F (z) = −1/z
is an antiderivative. In particular, the contour integral of 1/z2 over any closed
curve is zero, even a closed curve around the 0.

To see this “by hand,” we will integrate 1/z2 over the unit circle, oriented
counterclockwise. To keep the computation manageable, we will use complex
notation. We parametrize the circle as z(t) = eit for 0 ≤ t ≤ 2π. Then
1/z2(t) = e−2it and dz = ieit dt, so that∫

C

1
z2
dz =

∫ 2π

0

ie−it dt

= i

∫ 2π

0

cos(−t) dt−
∫ 2π

0

sin(−t) dt

= 0.
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Similar considerations apply to 1/zn for any n ≥ 2. Namely, we know
what the antiderivatives are, and so the corresponding contour integrals are
independent of path. At this point, we have a pretty good understanding of
integration for all of our elementary functions except for 1/z. Of course, 1/z is
only defined on C \ {0}. If we look for an antiderivative, the obvious answer is
log z, and we saw in the last lecture that d

dz log z = 1/z. However, log z is not
a “true” function, and thus the previous theorem does not apply.

In order to see what is going on, we compute the integral of 1/z along the
counterclockwise unit circle. We use the same parametrization as we did above
for 1/z2; the difference is that now the integrand is 1/z(t) = e−it. We have∫

C

1
z
dz =

∫ 2π

0

i dt

= 2πi.

This should not be too surprising in light of the connection between log z and
polar coordinates. This clearly shows that contour integrals of 1/z are not
independent of path. On the other hand, as Green’s theorem shows, the value
of an integral around a closed curve depends only on how many times the curve
“goes around” the origin, and not on any other features of the curve (making
this more precise is beyond the scope of this course, although it is typically done
in courses devoted to complex analysis).

At this point, we’ve seen that contour integrals of holomorphic functions
share many features of real, one-dimensional integrals. In particular, if our holo-
morphic function is built out of elementary functions then we can use the usual
methods of calculus to try and find an antiderivative. On a more general level,
any holomorphic function on a simply-connected domain has an antiderivative.
On non-simply-connected domains, more complicated phenomena can occur,
with a first example given by 1/z. In the final section, we will look at some
consequences of the behavior of 1/z.

8 Applications of the behavior of 1/z

At first, the fact that 1/z has non-zero integral over curves around the origin
seems like an irritation. It is, basically, the one issue preventing the complex
integration of elementary complex functions from completely mirroring the (one-
dimensional, real) integration of elementary real functions. However, this fact
is actually quite useful, and in this section we explore two applications, one
somewhat theoretical and the other more concrete.

8.1 Cauchy’s integral formula

Any simple, closed curve C divides the complex plane into two regions, an
“inside” and an “outside.” We say that such a C encloses a point z0 if z0
is contained in the “inside” region. The following theorem is almost a direct
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consequence of Green’s theorem and the above computation for the integral of
1/z around the unit circle.

Theorem: (Cauchy’s integral formula) Let D be an open, simply-connected
region, let f(z) be a holomorphic function on D, and let C be a simple, closed
curve in D, oriented counterclockwise, that encloses a point z0. Then

f(z0) =
1

2πi

∫
C

f(z)
z − z0

dz.

We will outline a proof. By Green’s theorem, we can replace C by any other
simple, closed, counterclockwise curve which encloses z0. (This is the same
argument for changing the curve we’ve used in the real case; just apply it to
the real and imaginary parts of the contour integral.) In particular, let Cr be a
circle of radius r centered at z0. For small r, f(z) on Cr can be approximated
by f(z0). So ∫

C

f(z)
z − z0

dz ≈ f(z0)
∫
Cr

1
z − z0

dz.

The integral on the right is equivalent to the integral of 1/z over a circle after a
simple change of coordinates, and thus we know it is equal to 2πi for any r. In
the limit as r → 0 this approximation becomes exact, and the theorem follows.
In order to make this rigorous, one needs only to justify the approximation and
be a bit more precise about our intuitive use of notions about curves.

Intuitively, this formula says that the value of f(z) at any point inside C can
be computed by a weighted average of the values of f(z) on C. This has many
important consequences, a few of which we’ll mention here. First, this means
that the values of f(z) on the curve determine the values of f(z) everywhere
inside of the curve. More specifically, the values inside are averages of the
values on the curve. This implies that, if we look at the image of D under
f , points that are inside of C have images which are inside the image of C.
Finally, we mention that this formula plays an important role in proving that
any holomorphic function can actually be differentiated infinitely many times.
(None of these facts are true for general real-differentiable functions from R2 to
R2.)

8.2 Computing real integrals

As a more concrete application of these ideas, we give an example of how they
can be used to compute certain real integrals. This is not the most important
application of complex analysis, but since this was primarily a class on real
integration, perhaps it’s appropriate to end by coming back to real integrals.

We start with a simple example. Consider the improper integral∫ ∞
−∞

1
1 + x2

dx = lim
R→∞

∫ R

−R

1
1 + x2

dx.

The reason this is a simple example is that we know Arctan(x) is an antideriva-
tive of 1/(1 + x2), and the integral can be computed using that. However, we
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will present an alternative method using complex analysis. This can be viewed
as a contour integral, namely

lim
R→∞

∫
CR

1
1 + z2

dz

where CR is the straight line from −R to R in the complex plane. This, of
course, is not a closed curve. However, if we let C̃R be the semi-circle from R
to −R with positive imaginary part (that is, we choose the upper semi-circle),
then the union of these two curves, which we write CR ∪ C̃R is a simple, closed
curve. Further, we see that

1
1 + z2

=
1

z + i
· 1
z − i

.

Thus the domain is C\{i,−i}. If we look at the half-disk bounded by CR∪ C̃R,
then 1/(z+ i) is holomorphic on this region. We assume that R ≥ 1 so that the
half-disk contains i. Then by applying Cauchy’s integral formula with f(z) =
1/(z + i) and z0 = i, we find that∫

CR∪C̃R

1
1 + z2

dz = 2πi
1

i+ i
= π.

The final step is to control the integral over C̃R in the limit. It’s not hard
to see that the integral of any complex function f(z) over a curve C obeys the
estimate ∣∣∣∣∫

C

f(z) dz
∣∣∣∣ ≤ max

z∈C
|f(z)| · length(C).

In our case, |z2| = R2 everywhere on C̃R and length(C̃R) = πR. Thus (using
the triangle inequality on z2 + 1), we have∣∣∣∣∫

C̃R

1
1 + z2

dz

∣∣∣∣ ≤ πR

R2 − 1

and lim
R→∞

∫
C̃R

1
1 + z2

dz = 0.

Since

lim
R→∞

∫
CR

1
1 + z2

dz = lim
R→∞

∫
CR∪C̃R

1
1 + z2

dz − lim
R→∞

∫
C̃R

1
1 + z2

dz

it follows that ∫ ∞
−∞

1
1 + x2

dx = lim
R→∞

∫
CR

1
1 + z2

dz = π.

As mentioned, this could have been done more easily using regular one-
dimensional calculus. However, consider the related problem of computing∫ ∞

−∞

cosx
1 + x2

dx = lim
R→∞

∫ R

−R

cosx
1 + x2

dx.
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In this case we don’t have a nice antiderivative, and there’s no obviously way
to compute this integral using one-dimensional real calculus. However, we
can determine the answer fairly easily by modifying our previous computation.
Rewrite this integral as

Re
[

lim
R→∞

∫
CR

eiz

1 + z2
dz

]
where CR is defined as above. (You might have been expecting us to use cos z
in the numerator instead of using eiz and taking the real part. It turns out
that this approach is noticeably easier.) Once again, we consider the simple,
closed curve CR ∪ C̃R where C̃R is defined as above. Since eiz is holomorphic
everywhere, we can apply Cauchy’s integral formula with f(z) = eiz/(z+ i) and
z0 = i to see that ∫

CR∪C̃R

eiz

1 + z2
dz = 2πi

ei
2

i+ i
=
π

e

for any R > 1. Further, we see that eiz = e−y(cosx + i sinx). Since y ≥ 0 on
C̃R, it follows that |eiz| ≤ 1 on C̃R. Then, in light of our previous work, we see
that ∣∣∣∣∫

C̃R

eiz

1 + z2
dz

∣∣∣∣ ≤ πR

R2 − 1

and lim
R→∞

∫
C̃R

eiz

1 + z2
dz = 0.

Just as above, we conclude that∫ ∞
−∞

cosx
1 + x2

dx = Re
[

lim
R→∞

∫
CR

eiz

1 + z2
dz

]
= Re

[π
e

]
=
π

e
.

The idea underlying this method is to replace the integral along the the
real axis with the integral around a closed curve containing one point at which
the integrand is not defined. This second integral can then be evaluated just
using a little algebra and Cauchy’s integral formula. Doing this in any concrete
situation is something of an art, but when possible it’s generally an efficient
method.


